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The chloroplast has a central position in oxygenic photosynthesis and primary metabolism. In addition to these

functions, the chloroplast has recently emerged as a pivotal regulator of plant responses to abiotic and biotic stress

conditions. Chloroplasts have their own independent genomes and gene-expression machinery and synthesize

phytohormones and a diverse range of secondary metabolites, a significant portion of which contribute the plant

response to adverse conditions.

chloroplast  abiotic stress  biotic stress

1. Introduction

As sessile organisms, plants have to cope with various environmental conditions that are unfavorable or stressful

for their growth and development. These adverse environmental conditions include abiotic stresses such as

drought, heat, chilling/freezing, salinity, and nutrient deficiency as well as biotic stresses such as herbivore attack

and pathogen infection . These abiotic and biotic stresses limit crop yields and cause tremendous economic

losses. These adverse effects are getting worse due to climate change, increasing population, and less arable land

. Plants have evolved a number of strategies to sense stress signals and adapt to adverse environments.

Increasing evidence has revealed the essential role of the chloroplast, an organelle for photosynthesis in green

plants, in plant stress response and stress adaption .

The chloroplast is a double-membrane plant endosymbiotic organelle where photosynthesis takes place .

Chloroplasts have retained their own genomes, and the chloroplast genome contains approximately 120 genes

involved in chloroplast activities such as energy production and gene expression . Chloroplasts produce

energy through photosynthesis and oxygen-release processes, which sustain plant growth and crop yield. As such,

chloroplasts are responsible for the biosynthesis of active compounds such as amino acids, phytohormones,

nucleotides, vitamins, lipids, and secondary metabolites . Furthermore, the chloroplast plays a vital role in plant

acclimation to environmental stresses . When plants are in adverse environmental conditions, chloroplasts

sense these stresses and synthesize biologically active compounds and phytohormones, which protect plants from

environmental stresses. In addition, chloroplasts communicate with the nucleus through plastid-to-nucleus

retrograde signaling to acclimate to environmental stresses (Figure 1) .
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Figure 1. An overview of the various mechanisms in chloroplast response to adverse stresses. Adverse

environmental stresses cause perturbations and generate signals in chloroplasts that regulate chloroplast gene

expression and protein remodeling. A series of cellular activities are then triggered to restore chloroplast

homeostasis. Adverse conditions can affect the structure, function, and development of chloroplasts. Chloroplasts

synthesize biologically active compounds and phytohormones to acclimate to stresses. Moreover, the chloroplast is

able to communicate its status to the nucleus through retrograde signaling to regulate nuclear stress-responsive

genes. The SAL1/PAP, MEcPP, and ROS pathways act as important components of the chloroplast retrograde

signaling pathway. Dashed lines indicate postulated regulation. ROS, reactive oxygen species; EX1/2, executor

1/2; MEcPP, methylerythritol cyclodiphosphate; PAP, phosphonucleotide 3′-phosphoadenosine 5′-phosphate.

Retrograde signaling pathways refer to the communications from the plastid to the nucleus . The chloroplast

functions as an environmental sensor. Fluctuations in the environment perturb chloroplast homeostasis, and the

disturbance then drives the chloroplasts to communicate with the nucleus through retrograde signals. Eventually,

plants remodel metabolism and gene expression to adapt to external stresses . The retrograde

signaling typically includes tetrapyrroles, phosphoadenosines, carotenoid oxidation products, isoprenoid

precursors, carbohydrate metabolites, and reactive oxygen species (ROS) .

Under a series of unfavorable environmental conditions, chloroplasts generate the ROS retrograde signals

including superoxide anion (O ), hydrogen peroxide (H O ), hydroxyl radical (OH▪), and singlet oxygen ( O ) 

. The ROS in plants can severely threaten their health and viability. However, under stressful conditions,
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ROS function as a retrograde signal and modify the nuclear transcriptome to cope with these adverse stresses.

Plants have evolved many strategies to maintain ROS dynamic equilibrium and normal photosynthetic efficiency,

including complicated redox reaction chains and the ROS-scavenging system . Singlet oxygen is

generated at photosystem II (PSII) under high-light conditions through the excitation of ground-state triplet oxygen

. The singlet-oxygen-mediated transcriptional responses were first identified in the flu Arabidopsis

mutant . The functional FLU protein is a nuclear-encoded plastid protein that negatively regulates chlorophyll

biosynthesis and consequently accumulates the strongly photosensitizing chlorophyll precursor protochlorophyllide.

When dark-treated flu mutants are moved into the light, the mutants specifically accumulate singlet oxygen . The

singlet oxygen regulates a set of nuclear genes called singlet oxygen-responsive genes (SORGs), and most of

these genes play a role in photosynthesis, carbon metabolism and plastid mRNA processing . The activity of

singlet oxygen signaling requires two nuclear-encoded proteins, Executor (Ex) 1 and 2, which are located in the

thylakoid membrane of chloroplasts . Furthermore, it has been reported that the plastid ATP-

dependent zinc metalloprotease FtsH2 is involved in EX1/EX2 signaling . Studies also find that β-cyclocitral is

another singlet oxygen signaling pathway, which occurs independently of EX1 and EX2 . Hydrogen

peroxide acts as another retrograde signaling molecule. The specific role of hydrogen peroxide is identified through

an RNAi line of thylakoid membrane-bound ascorbate peroxidase (tAPX) . A number of putative components of

the hydrogen peroxide signal transduction network were identified, including a series of transcription factors,

mitogenactivated protein kinases (MAPKs) and miRNAs .

Methylerythritol cyclodiphosphate (MEcPP), an intermediate of the methylerythritol phosphate (MEP) pathway for

plastid isoprenoid biosynthesis, functions as another retrograde signal to activate stress-responsive nuclear gene

expression . MEcPP was first identified by screening for mutants with elicited expression of hydroxyperoxide

lyase (HPL). HPL is a nuclear stress-responsive gene and encodes a chloroplast enzyme, which plays a

fundamental role in the defense-related molecules (such as the hormone jasmonic acid JA) synthesis . The

constitutively expressing HPL (ceh1) mutant was discovered. When exposed to high light or wounding stresses,

plants accumulate MEcPP and regulate the expression of a series of nuclear genes .

Phosphonucleotide 3′-phosphoadenosine 5′-phosphate (PAP) is an important plastid metabolite and recently has

emerged as a new retrograde signal for plant stress responses . Chloroplast 3′ (2′), 5′-bisphosphate

nucleotidase SAL1 can dephosphorylate PAP to adenosine monophosphate (AMP). When plants respond to

drought and high light stresses, the activity of SAL1 is inhibited and PAP thus accumulates. PAP can regulate a

series of nuclear stress-responsive genes . Recent research has revealed the role of PAP in the drought stress

response through regulating stomatal closure .

2. Chloroplast Response to Abiotic Stress

Advancing research has shown that chloroplasts play multifaceted roles in the plant response to various types of

abiotic stress, including heat, chilling, salt, drought, and high light stresses. Here, we summarize the present state

of knowledge on chloroplast responses to various abiotic stresses (Table 1).

Table 1. Summary of known chloroplast biological processes involved in plant stress response.
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Components Species Process/Stimulus Molecular Function Reference

Heat stress

SGR Musa acuminata Chlorophyll degradation Stay-green protein

Rca1 Triticum aestivum Modulate the activity of Rubisco A catalytic chaperone

CDJ2

Solanum
lycopersicum,
Lycopersicon
esculentum

Protect Rubisco activity
Chloroplast-targeted

DnaJ protein

Ub2 Triticum aestivum Improve antioxidant capacity
Ubiquitin/26S

proteasome system

Hsp21
Arabidopsis

thaliana
Associate with the thylakoid

membranes
Small heat-shock
protein chaperone

Chilling stress

FBPase,
SBPase

Zea mays L.
Compensate for decreases in

photosynthetic capacity
Enzymes involved in

the Calvin cycle

DUA1 Oryza sativa Regulate chloroplast
development

RNA-binding protein

WHY1
Solanum

lycopersicum

Upregulate the PSII key D1
reaction center protein encoding

gene psbA; maintain high
Rubisco content

WHIRLY proteins—the
plant-specific DNA-

binding proteins

CDJ1
Lycopersicon
esculentum Maintain PSII activity

Chloroplast-targeted
DnaJ protein

RBD1
Arabidopsis

thaliana

Regulate chloroplast protein
translation by influencing 23S

rRNA processing

Chloroplast RNA-
binding protein

Salt stress

SP1
Arabidopsis

thaliana

Induce the degradation of
translocon at the outer envelope

membrane of chloroplasts
(TOC)

Uiquitin E3 ligase
suppressor of PPI1

locus 1

Hsp70,
Clp protease

Arabidopsis
thaliana

Protect plants from salinity-
triggered oxidative stress

Hsp70—chaperone;
Clp—a protease

system

RH22 Brassica rapa Affect chloroplast gene
translation

Cloroplast-targeted
DEAD-box RNA

[48]

[49]

[50][51]

[52]

[53]

[54]

[55]

[56][57]

[58]

[59]

[60][61]

[62]

[63]



Chloroplasts in Plant Stress Responses | Encyclopedia.pub

https://encyclopedia.pub/entry/17758 5/18

Components Species Process/Stimulus Molecular Function Reference
helicase

CspA, CspB Oryza sativa Impart SGR phenotype
RNA-binding bacterial

chaperones

High-light stress

SAL1-PAP
Arabidopsis

thaliana
Regulate stress-inducible

nuclear genes
Components of

retrograde pathway

FtSH
Chlamydomonas

reinhardtii
Control the quality of thylakoid

membrane proteins
Thylakoid membrane

protease

Drought stress

SAL1-PAP
Arabidopsis

thaliana
Regulate the stress-inducible

nuclear genes
Components of

retrograde pathway

RH22 Brassica rapa Affect chloroplast genes’
translation

Chloroplast-targeted
DEAD-box RNA

helicase

CTR1 Oryza sativa
Interact with two chloroplast-

localized proteins, OsCP12 and
OsRP1

RING Ub E3 ligase

PhyB Oryza sativa Repress the activity of
ascorbate peroxidase

Phytochrome B

LOX6 Zea mays Additional storage of nitrogen
Mesophyll lipoxygenase

in chloroplast

NADP-ME4 Salsola laricifolia
Alleviate chlorophyll content

decrease and PSII
photochemical efficiency

NADP-malic enzyme

BBX21
Solanum

tuberosum
Reduce chloroplast electron

transport capacity
B-box (BBX) protein

Biotic stress

PP2C62,
PP2C26

Arabidopsis
thaliana

Catalyze the dephosphorylation
of the photosynthesis-related

protein, chaperonin-60

Components of the
serine/threonine-
specific protein

phosphatase family

XopL
Nicotiana

benthamiana
Eliminate stromules formation

and chloroplast relocation
E3 ubiquitin ligase

WKS1 Triticum aestivum Phosphorylate thylakoid-
associated ascorbate

A serine/threonine
kinase
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Components Species Process/Stimulus Molecular Function Reference
peroxidase (tAPX) and detoxify

peroxides; phosphorylate an
extrinsic member of

photosystem II (PSII) PsbO

THF1
Nicotiana

benthamiana
Maintain chloroplast

homeostasis
Chloroplastic protein
thylakoid formation1

APX8 Oryza sativa Regulate H O  accumulation
Thylakoid membrane-

bound ascorbate
peroxidase

LHCB5 Oryza sativa Regulate ROS accumulation
Light-harvesting

complex II protein

NTRC
Arabidopsis

thaliana
Modulate chloroplast-generated

ROS

Redox detoxification
system NADPH-

dependent thioredoxin
reductase C

MPK3,
MPK6

Arabidopsis
thaliana

Manipulate plant photosynthetic
activities and promote ROS

accumulation

Mitogen-activated
protein kinase

PsbQ

Nicotiana
benthamiana,
Arabidopsis

thaliana

A target for pathogen
suppression and contributes to

plant immunity responses

The oxygen evolving
complex of

photosystem II

ALC

Solanum
lycopersicum,
Arabidopsis

thaliana

Regulate disease-associated
necrotic cell death

Chloroplast genes with
altered responses to

coronatine

RipAL
Ralstonia

solanacearum
Localized to chloroplasts and

targeted chloroplast lipids
Type III effector

proteins

Tsn1 Triticum aestivum Interact with effector protein
ToxA

A unique wheat disease
resistance-like gene,

regulated by the
circadian clock and light

Rpi-vnt1.1
Nicotiana

benthamiana

Recognize the effector protein
AVRvnt1, and mediate a light-
dependent immune response

A nucleotide-binding
leucine-rich repeat

(NLR) protein

CAS
Arabidopsis

thaliana

Recognize the effector protein,
and interfere with the salicylic
acid (SA) signaling pathway

A chloroplast-localized
calcium-sensing

receptor
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2.1. Response to Heat Stress

Leaf photosynthesis is substantially affected by abnormal temperature stresses, including heat stress which is

usually 10–15 °C above an optimum temperature for plant growth or chilling stress which occurs in the

temperatures range 0–15 °C . Chloroplasts play an essential role in activation of physiological adaptive

processes to these adverse temperature stresses.

It is reported that the chloroplast is sensitive to high-temperature stress during photosynthesis . Research has

revealed a close association between the chloroplast-related genes and high-temperature stress in the model plant

rice. The expression of more than two hundred genes was upregulated in response to heat stress . In a series of

plant species, heat-induced leaf chlorosis has been observed . After heat treatment, the activities of chlorophyll-

degrading enzymes increased significantly, and the activity of key chlorophyll-synthesizing enzymes was

unchanged . Studies on genetic variations in hybrids of colonial (Agrostis capillaris) x creeping bentgrass

(Agrostis stolonifera) indicated that the rapid breakdown of chlorophyll induced by heat stress was related to

activation of genes encoding chlorophyllase and pheophytinase, and pheophytinase (PPH) activity . The stay-

green physiological traits were selected to evaluate the heat tolerance of plants and reveal the potential

mechanism of heat damage associated with alterations in Chl metabolism and antioxidant and photosynthetic

capacity. In creeping bentgrass species, adaptability to high temperature and stay-green genotypes was highly

associated with chlorophyll metabolism . Stay-green (SGR) genes encode magnesium dechelatase, and are

involved in chlorophyll (Chl) degradation. Stay-green (SGR) homologs remove magnesium from Chl a, which is

one of the most important components in the Chl degradation pathway in plants . Under high-temperature

conditions, accumulation of sugars in the peel was induced in bananas, and these sugars regulated Chl

degradation through SGR proteins .

A series of research has shown that regulation of the activity of photosynthetic pathway enzyme Rubisco

contributes to plant adaption to the heat stress. Rubisco activase (Rca1), a catalytic chaperone involved in

modulating the Rubisco activity, plays a role in wheat response to heat stress . The tomato (Solanum

lycopersicum) chloroplast-targeted DnaJ protein (SlCDJ2) is located in the thylakoids and stroma of the

chloroplasts. When plants respond to heat stress, SlCDJ2 protects Rubisco activity, and contributes to

maintenance of CO  assimilation capacity, which establishes a role for SlCDJ2 in coping with heat stress . The

tomato (Lycopersicon esculentum) chloroplast-targeted DnaJ protein (LeCDJ1) also plays a role in plant response

to high temperature .

Furthermore, the activity of PSI and PSII is severely affected by high-temperature conditions. In A. thaliana, heat

stress can modulate the transcript accumulation of the plastid-encoded PSI and PSII genes such as the psaA,

psaB, psbA, psbD, and psbN. Furthermore, the regulation is performed in part via the expression of HS-responsive

nuclear genes for the plastid transcription machinery . In wheat plants, the increased photosynthetic rate,

improved ATPase activity in the thylakoid membrane, and enhanced efficiency of PSII photochemistry, which was

achieved by overexpression of the ubiquitin/26S proteasome system TaUb2, contributed to plants coping with high-

temperature stress . When plants are exposed to transient heat waves, insufficient PSI photoprotection including
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the regulation of linear electron transport and the prevention of over-reduction, may affect the wheat photosynthetic

capacity and make plants more susceptible to heat stress .

When plants were subjected to high-temperature stress, they generated large amounts of ROS and initiated related

signaling events to survive the adverse environments . In a recent study, researchers found that, under heat

stress, the ROS levels contributed to mitigation of PSII photoinhibition in a coffee crop . When plants respond to

heat stress, the chloroplast heat-shock protein (Hsp) 21 becomes associated with the thylakoid membranes and

plays a role in plant stress resistance .

2.2. Response to Low-Temperature Stress

In addition to high-temperature tolerance, chloroplasts are involved in plant cold-stress response. A series of

studies have reported that chloroplasts can also perceive chilling stress signals, promote photosynthesis, and

enhance plant resistance to adverse environment stress . Previous and recent studies showed that low-

temperature conditions could affect the abundance of various proteins involved in photosynthesis . Through

iTRAQ-based proteomic analysis between chilling-tolerant and chilling-sensitive rice lines, scientists revealed the

dynamic response of chloroplast photosynthetic proteins under chilling conditions . Systematic analysis of cold-

stress response using transcriptome data was performed in rice, and the stay-green (SGR) proteins were identified

as hub genes in this life process. Furthermore, SGR proteins were involved in the crosstalk between cold-stress

responses and diurnal rhythmic patterns, providing new insights in understanding the plant environmental stress

response against climate change .

Chilling can affect the structure, function, and development of chloroplasts . Scientists revealed that chilling can

induce structural changes during chloroplast biogenesis in cucumber cotyledons . When exposed to low

temperatures, plant chloroplasts changed the content of unsaturated fatty acids in chloroplast membranes to

increase plant tolerance to the adverse temperatures . When plants adapted to chilling stresses, the activities

of chloroplast dark-reaction-related enzyme were also regulated. For instance, the reductive activity of two key

enzymes involved in the Calvin cycle, fructose-1,6-diphosphatase (FBPase) and isoheptanone-1,7-diphosphatase

(SBPase) was significantly reduced . Low-temperature stress hinders chloroplast development and plant

photosynthesis. The rice (Oryza sativa) RNA-binding protein DUA1 is required for RNA editing of the rps8-182 site,

and plays a vital role in chloroplast development under low-temperature conditions . The chloroplast gene psbA

encodes the key D1 reaction center protein of PSII. Recently, the tomato (Solanum lycopersicum) WHIRLY1

(SlWHY1) was found to be induced by chilling conditions and could upregulate the transcription level of psbA

through directly binding to the upstream region of its promoter (the sequence “GTTACCCT”). The increased D1

abundance enhanced plant resistance to photoinhibition caused by chilling stresses . Scientists also found that

SlWHY1 could increase the expression level of RbcS1, a member of the Rubisco small-subunit (RBCS) multigene

family, and help plants maintain high Rubisco content under low-temperature conditions . Despite the role of

chloroplast-targeted DnaJ protein in plant response to heat stress, the function of tomato (Lycopersicon

esculentum) chloroplast-targeted DnaJ protein (LeCDJ1) under chilling stress was also investigated. LeCDJ1

showed essential functions in maintaining PSII activity under low-temperature stress .
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The ROS function has an important retrograde signal in chloroplasts under a series of unfavorable environmental

conditions. Chilling stress can regulate the redox state of chloroplasts. When plants respond to chilling stress, the

photosynthetic electron transport chain in chloroplasts transfers excess electrons to O  and causes O  increase in

bermudagrass . In A. thaliana, regulation of chloroplast-to-nucleus ROS signaling is a strategy to promote

plants acclimation to cold stress . Researchers revealed that melatonin increases the chilling tolerance of

cucumber seedlings through regulating the ROS balance . Scientists have also found that, under chilling stress,

exogenous applications of acetylsalicylic acid can enhance the chloroplast antioxidant system activity and thus

improve the tolerance of plants under low temperatures .
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