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Semantic Segmentation has become one of the key steps toward scene understanding, especially in autonomous driving

scenarios. In the standard formulation, Semantic Segmentation uses only data from color cameras, which suffer

significantly in dim lighting or adverse weather conditions. A solution to this problem is the use of multiple heterogeneous

sensors (e.g., depth and thermal cameras or LiDARs) as the input to machine learning approaches tackling this task,

allowing to cover for the shortcomings of color cameras and to extract a more resilient representation of the scene.
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1. Introduction

In recent years, the autonomous driving field has experienced an impressive development, gaining a huge interest and

expanding into many sub-fields that cover all aspects of the self-driving vehicle . Examples are vehicle-to-vehicle

communications , energy-storage devices, sensors , safety devices , and more. Among them, a fundamental field is

scene understanding, a challenging Computer Vision (CV) task that deals with the processing of raw environmental data

to construct a representation of the scene in front of the car that allows for the subsequent interaction with the

environment (e.g., route planning, safety breaks engagement, packet transmission optimizations, etc.).

Scene understanding is the process of perceiving, analysing, and elaborating on an interpretation of an observed scene

through a network of sensors . It involves several complex tasks, from image classification to more advanced ones like

object detection and Semantic Segmentation (SS). The first task deals with the assignment of a global label to an input

image; however, it is of limited use in the autonomous driving scenario, given the need for localizing the various elements

in the environment . The second task provides a more detailed description, localizing all identified objects and providing

classification information for them . The third task is the most challenging one, requiring the assignment of a class to

each pixel of an input image.

2. Semantic Segmentation with Deep Learning

A graphic example of a possible deployment of the task in autonomous driving scenarios is reported in Figure 1.

Figure 1. The car screen shows an example of semantic segmentation of the scene in front of the car.
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Early approaches to semantic segmentation were based on the use of classifiers on small image patches , until the

introduction of deep learning, which has enabled great improvements in this field as well.

The first approach to showcase the deep learning potential on this task is found in , which introduced an end-to-end

convolutional model, the so-called Fully Convolutional Network (FCN) model, which is made of an encoder (or contraction

segment) and a decoder (or expansion segment). The former maps the input into a low-resolution feature representation,

which is then upsampled in the expansion block. The encoder (also called backbone) is typically a pretrained image

classification network used as a feature extractor. Among these networks, popular choices are VGG , ResNet , or

the more lightweight MobileNet .

Other remarkable architectures that followed FCN are ParseNet (Liu et al. ), which models global context directly rather

than only relying on a larger receptive field, and DeconvNet (Noh et al. ) which proposes an architecture that contains

overlapping deconvolution and unpooling layers to perform nonlinear upsampling, resulting in improving the performance

at the cost of increasing the complexity of the training procedure.

A slightly different approach is proposed in the Feature Pyramid Network (FPN), developed by Lin et al. , where a

bottom-up pathway, a top-down pathway, and lateral connections are used to join low-resolution and high-resolution

features and to better propagate the low-level information into the network. Inspired by the FPN model, Chen et al. 

proposes the DeepLab architecture, which adopts pyramid pooling modules wherein the feature maps are implicitly

downsampled through the use of dilated convolutions of different rates. According to the researchers, dilated convolutions

allow for an exponential increase in the receptive field without a decrease in resolution or increase in parameters, as may

happen in the traditional pooling or stride-based approaches. Chen et al.  further extended the work by employing

depth-wise separable convolutions.

Nowadays the current objective in semantic segmentation consists of improving the multiscale feature learning while

making a trade-off between keeping the inference time low and increasing the receptive field/upsampling capability.

One recent strategy is feature merging through attention-based methods. Recently, such techniques gained a lot of

traction in Computer Vision, following its success in Natural Language Processing (NLP) tasks. The most famous

approach of this class is the transformer architecture , introduced by Vaswani et al. in 2017 in an effort to reduce the

dependence of NLP architectures on recurrent blocks, which have difficulty in handling long-time relationships between

input data. This architecture has been adapted to the image understanding field in the Vision Tranformers (ViT) 

work, which presents a convolution-free, transformer-based vision approach able to surpass previous state-of-the-art

techniques in image classification (at the cost of much higher memory and training data requirements). Transformers have

been used as well in semantic segmentation in numerous works .

Although semantic segmentation was originally tackled by RGB data, recently many researchers started investigating its

application for LiDAR data . The development of such approaches is supported by an ever-increasing

number of datasets that provide labeled training samples, e.g., Semantic KITTI . More in detail, PointNet  was

one of the first general-purpose 3D pointcloud segmentation architectures, but although it achieved state-of-the-art results

on indoor scenes, the sparse nature of LiDAR data led to a significant performance decrease in outdoor settings, limiting

its applicability in autonomous driving scenarios. An evolution of this technique is developed in RandLANet , where an

additional grid-based downsampling step is added as preprocessing, together with a feature aggregation based on

random-centered KD-trees, to better handle the sparse nature of LiDAR samples. Other approaches are SqueezeSeg 

and RangeNet , wherein the segmentation is performed through a CNN architecture. In particular, the LiDAR data is

converted to a spherical coordinate representation allowing one to exploit 2D semantic segmentation techniques

developed for images. The most recent and better-performing architecture is Cylinder3D , which exploits the prior

knowledge of LiDAR topologies—in particular their cylindrical aspect—to better represent the data fed into the

architecture. The underlying idea is that the density of points in each voxel is inversely dependent on the distance from

the sensor; therefore the architecture samples the data according to a cylindrical grid, rather than a cuboid one, leading to

a more uniform point density.

RGB data carries a wealth of visual and textual information, which in many cases has successfully been used to enable

semantic segmentation. Nevertheless, depth measurements provide useful geometric cues, which help significantly in the

discrimination of visual ambiguities, e.g., to distinguish between two objects with a similar appearance. Moreover, RGB

cameras are sensitive to light and weather conditions which can lead to failures in outdoor environments . Thermal

cameras give temperature-based characteristics of the objects, which can better enhance the recognition of some objects,

thereby improving the resilience of semantic scene understanding in challenging lighting conditions .
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3. Multimodal Segmentation Techniques in Autonomous Driving

Table 1 shows a summarized version of the methods, comparing them according to

modalities used for the fusion;

datasets used for training and validation;

approach to feature fusion (e.g., sum, concatenation, attention, etc.); and

fusion network location (e.g., encoder, decoder, specific modality branch, etc.).

Table 1. Summary of recent multimodal semantic segmentation architectures. Modality shorthand: Dm, raw depth map;

Dh, depth HHA; De, depth estimated internally; E, event camera; T, thermal; Lp, light polarization; Li, LiDAR; Ls, LiDAR

spherical; F, optical flow. Location: D, decoder; E, encoder. Direction: D, decoder; C, color; B, bi-directional; M, other

modality.

Metadata Fusion Approach Fusion Architecture

Name Year Dataset(s) Modality(ies) + × ⨀

Ad-
Hoc
Block

Ad-
Hoc
Loss

Multi-
Task Location Direction Parallel

Branches
Skip
Connections

Multi-
Level
Fusion

LWM 2021  DmDe + - + - + + D D/C 2 + +

SSMA 2019
 

DmDhT - + + + + - E D 2 + +

CMX 2022
 

EDhLpT + + - + - - E D/B 2 + +

AsymFusion 2021  Dm + - - + - - E B 2 - +

SA-Gate 2020  Dh + - + + - - E B 2 + +

ESANet 2021  Dm + - - - - - E C 2 + +

DA-Gate 2018
 

DmDe - - - - + - N/A N/A 1 - -

RFBNet 2019  Dh + + + + - - E B 2 - +

MMSFB-
snow 2021  DmT - - + + - - E D 2 + +

AdapNet 2017  DmT + + - + - - D D 2 - -

RFNet 2020  Dm + - - + - - E C 2 + +

RSSAWC 2019  DmLi + - + - - - E D 2 - -

PMF 2021  Li + + + + + - E M 2 + +

MDASS 2019  DmF + - - - - - E D 2/3 + +

CMFnet 2021  DmLp - + + - - - E D/B 3+ - +

CCAFFMNet 2021  T - - + + - - E C 2 + +

DooDLeNet 2022  T - + + - - - E D 2 + +

GMNet 2021  T + + - + - + E D 2 + +

FEANet 2021  T + + - - - - E C 2 - +

EGFNet 2021  T + + + + - - E D 2 - +

ABMDRNet 2021  T + + + + + + E D 2 - +

AFNet 2021  T + + - + - - E D 2 - -

FuseSeg-
Thermal 2021  T + - + - - - E C 2 + +
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On the other hand, in Table 2, researchers report the numerical score (mIoU) attained by the methods in three benchmark

datasets, respectively: Cityscapes  for 2.5D SS in Table 2a, KITTI  for 2D + 3D SS in Table 2b and MSSSD/MF 

for RGB + Thermal SS in Table 2c.

Table 2. Architectures Performance Comparison.

Name Backbone mIoU

(a) Cityscapes dataset (2.5D SS).

LWM ResNet101 83.4

SSMA ResNet50 83.29

CMX MiT-B4 82.6

AsymFusion Xception65 82.1

SA-Gate ResNet101 81.7

ESANet ResNet34 80.09

DA-Gate ResNet101 75.3

RFBNet ResNet50 74.8

MMSFB-snow ResNet50 73.8

AdapNet AdapNet 71.72

RFNet ResNet18 69.37

RSSAWC ICNet 65.09

MDASS VGG16 63.13

CMFnet VGG16 58.97

(b) KITTI dataset (2D + 3D SS).

PMF ResNet34 63.9

FuseSeg-LiDAR SqueezeNet 52.1

RaLF3D SqueezeSeg 37.8

xMUDA 
SparseConvNet3D 

ResNet34 49.1

(c) MSSSD/MF dataset (RGB + Thermal SS).

CMX MiT-B4 59.7

CCAFFMNet ResNeXt50 58.2

DooDLeNet ResNet101 57.3

GMNet ResNet50 57.3

FEANet ResNet101 55.3

EGFNet ResNet152 54.8

ABMDRNet ResNet50 54.8

AFNet ResNet50 54.6

FuseSeg-Thermal DenseNet161 54.5

RTFNet ResNet152 53.2

Early attempts of multimodal semantic segmentation approaches combine RGB data and other modalities into multi-

channel representations that were then fed into classical semantic segmentation networks based on the encoder–decoder

framework . This simple early fusion combination strategy is not too effective because it struggles to capture the

Metadata Fusion Approach Fusion Architecture

Name Year Dataset(s) Modality(ies) + × ⨀

Ad-
Hoc
Block

Ad-
Hoc
Loss

Multi-
Task Location Direction Parallel

Branches
Skip
Connections

Multi-
Level
Fusion

RTFNet 2019  T + - - - - - E C 2 - +

FuseSeg-
LiDAR 2020  LsLi - - + - - - E M 2 + +

RaLF3D 2019  LsLi + - + - - - E D 2 + +

DACNN 2018  DmDh + - - - - - E D 2 - -

xMUDA 2020  Li - - + - + + D D 2 - +
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different types of information carried by the different modalities (e.g., RGB images contain color and texture, whereas the

other modalities typically better represent the spatial relations among objects). Within this reasoning, feature-level and

late-fusion approaches have been developed. Fusion strategies have typically been categorized into early, feature and

late-fusion strategies, depending on the fact that the fusion happens at the input level, in some intermediate stage or at

the end of the understanding process. However, most recent approaches try to get the best of the three modalities by

performing multiple fusion operations at different stages of the deep network .

A very common architectural choice is to adopt a multi-stream architecture for the encoder with a network branch

processing each modality (e.g., a two-stream architecture for RGB and depth) and additional network modules connecting

the different branches that combine modality-specific features into fused ones and/or carry information across the

branches . This hierarchical fusion strategy leverages multilevel features via progressive feature merging and

generates a refined feature map. It entails fusing features at various levels rather than at early or late stages.

The feature fusion can take place through simple operations e.g., concatenation, element-wise addition, multiplication,

etc., or a mixture of these, which is typically addressed as a fusion block, attention, or gate module. In this fashion, multi-

level features can be fed from one modality to another, e.g., in  where depth cues are fed to the RGB branch, or

mutually between modalities. The fused content can either reach the next layer or the decoder directly through skip

connections .

The segmentation map is typically computed by a decoder taking in input the fused features and/or the output of some of

the branches. Multiple decoders can also be used but it is a less common choice .
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