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Semantic Segmentation has become one of the key steps toward scene understanding, especially in autonomous

driving scenarios. In the standard formulation, Semantic Segmentation uses only data from color cameras, which

suffer significantly in dim lighting or adverse weather conditions. A solution to this problem is the use of multiple

heterogeneous sensors (e.g., depth and thermal cameras or LiDARs) as the input to machine learning approaches

tackling this task, allowing to cover for the shortcomings of color cameras and to extract a more resilient

representation of the scene.

semantic segmentation  autonomous driving  multimodal  LiDAR  survey

1. Introduction

In recent years, the autonomous driving field has experienced an impressive development, gaining a huge interest

and expanding into many sub-fields that cover all aspects of the self-driving vehicle . Examples are vehicle-to-

vehicle communications , energy-storage devices, sensors , safety devices , and more. Among them, a

fundamental field is scene understanding, a challenging Computer Vision (CV) task that deals with the processing

of raw environmental data to construct a representation of the scene in front of the car that allows for the

subsequent interaction with the environment (e.g., route planning, safety breaks engagement, packet transmission

optimizations, etc.).

Scene understanding is the process of perceiving, analysing, and elaborating on an interpretation of an observed

scene through a network of sensors . It involves several complex tasks, from image classification to more

advanced ones like object detection and Semantic Segmentation (SS). The first task deals with the assignment of

a global label to an input image; however, it is of limited use in the autonomous driving scenario, given the need for

localizing the various elements in the environment . The second task provides a more detailed description,

localizing all identified objects and providing classification information for them . The third task is the most

challenging one, requiring the assignment of a class to each pixel of an input image.

2. Semantic Segmentation with Deep Learning

A graphic example of a possible deployment of the task in autonomous driving scenarios is reported in Figure 1.
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Figure 1. The car screen shows an example of semantic segmentation of the scene in front of the car.

Early approaches to semantic segmentation were based on the use of classifiers on small image patches ,

until the introduction of deep learning, which has enabled great improvements in this field as well.

The first approach to showcase the deep learning potential on this task is found in , which introduced an end-to-

end convolutional model, the so-called Fully Convolutional Network (FCN) model, which is made of an encoder (or

contraction segment) and a decoder (or expansion segment). The former maps the input into a low-resolution

feature representation, which is then upsampled in the expansion block. The encoder (also called backbone) is

typically a pretrained image classification network used as a feature extractor. Among these networks, popular

choices are VGG , ResNet , or the more lightweight MobileNet .

Other remarkable architectures that followed FCN are ParseNet (Liu et al. ), which models global context

directly rather than only relying on a larger receptive field, and DeconvNet (Noh et al. ) which proposes an

architecture that contains overlapping deconvolution and unpooling layers to perform nonlinear upsampling,

resulting in improving the performance at the cost of increasing the complexity of the training procedure.

A slightly different approach is proposed in the Feature Pyramid Network (FPN), developed by Lin et al. , where

a bottom-up pathway, a top-down pathway, and lateral connections are used to join low-resolution and high-

resolution features and to better propagate the low-level information into the network. Inspired by the FPN model,

Chen et al.  proposes the DeepLab architecture, which adopts pyramid pooling modules wherein the feature

maps are implicitly downsampled through the use of dilated convolutions of different rates. According to the

researchers, dilated convolutions allow for an exponential increase in the receptive field without a decrease in

resolution or increase in parameters, as may happen in the traditional pooling or stride-based approaches. Chen et

al.  further extended the work by employing depth-wise separable convolutions.
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Nowadays the current objective in semantic segmentation consists of improving the multiscale feature learning

while making a trade-off between keeping the inference time low and increasing the receptive field/upsampling

capability.

One recent strategy is feature merging through attention-based methods. Recently, such techniques gained a lot of

traction in Computer Vision, following its success in Natural Language Processing (NLP) tasks. The most famous

approach of this class is the transformer architecture , introduced by Vaswani et al. in 2017 in an effort to reduce

the dependence of NLP architectures on recurrent blocks, which have difficulty in handling long-time relationships

between input data. This architecture has been adapted to the image understanding field in the Vision Tranformers

(ViT)  work, which presents a convolution-free, transformer-based vision approach able to surpass previous

state-of-the-art techniques in image classification (at the cost of much higher memory and training data

requirements). Transformers have been used as well in semantic segmentation in numerous works .

Although semantic segmentation was originally tackled by RGB data, recently many researchers started

investigating its application for LiDAR data . The development of such approaches is supported by

an ever-increasing number of datasets that provide labeled training samples, e.g., Semantic KITTI . More in

detail, PointNet  was one of the first general-purpose 3D pointcloud segmentation architectures, but although

it achieved state-of-the-art results on indoor scenes, the sparse nature of LiDAR data led to a significant

performance decrease in outdoor settings, limiting its applicability in autonomous driving scenarios. An evolution of

this technique is developed in RandLANet , where an additional grid-based downsampling step is added as

preprocessing, together with a feature aggregation based on random-centered KD-trees, to better handle the

sparse nature of LiDAR samples. Other approaches are SqueezeSeg  and RangeNet , wherein the

segmentation is performed through a CNN architecture. In particular, the LiDAR data is converted to a spherical

coordinate representation allowing one to exploit 2D semantic segmentation techniques developed for images. The

most recent and better-performing architecture is Cylinder3D , which exploits the prior knowledge of LiDAR

topologies—in particular their cylindrical aspect—to better represent the data fed into the architecture. The

underlying idea is that the density of points in each voxel is inversely dependent on the distance from the sensor;

therefore the architecture samples the data according to a cylindrical grid, rather than a cuboid one, leading to a

more uniform point density.

RGB data carries a wealth of visual and textual information, which in many cases has successfully been used to

enable semantic segmentation. Nevertheless, depth measurements provide useful geometric cues, which help

significantly in the discrimination of visual ambiguities, e.g., to distinguish between two objects with a similar

appearance. Moreover, RGB cameras are sensitive to light and weather conditions which can lead to failures in

outdoor environments . Thermal cameras give temperature-based characteristics of the objects, which can

better enhance the recognition of some objects, thereby improving the resilience of semantic scene understanding

in challenging lighting conditions .

3. Multimodal Segmentation Techniques in Autonomous
Driving
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g
Table 1 shows a summarized version of the methods, comparing them according to

modalities used for the fusion;

datasets used for training and validation;

approach to feature fusion (e.g., sum, concatenation, attention, etc.); and

fusion network location (e.g., encoder, decoder, specific modality branch, etc.).

Table 1. Summary of recent multimodal semantic segmentation architectures. Modality shorthand: Dm, raw depth

map; Dh, depth HHA; De, depth estimated internally; E, event camera; T, thermal; Lp, light polarization; Li, LiDAR;

Ls, LiDAR spherical; F, optical flow. Location: D, decoder; E, encoder. Direction: D, decoder; C, color; B, bi-

directional; M, other modality.

Metadata Fusion Approach Fusion Architecture

Name Year Dataset(s)Modality(ies) + × ⨀

Ad-
Hoc

Block

Ad-
Hoc
Loss

Multi-
Task LocationDirection Parallel

Branches
Skip

Connections

Multi-
Level

Fusion

LWM  2021   DmDe + - + - + + D D/C 2 + +

SSMA  2019
 

DmDhT - + + + + - E D 2 + +

CMX  2022
 

EDhLpT + + - + - - E D/B 2 + +

AsymFusion  2021   Dm + - - + - - E B 2 - +

SA-Gate  2020   Dh + - + + - - E B 2 + +

ESANet  2021   Dm + - - - - - E C 2 + +

DA-Gate  2018
 

DmDe - - - - + - N/A N/A 1 - -

RFBNet  2019   Dh + + + + - - E B 2 - +

MMSFB-
snow  2021   DmT - - + + - - E D 2 + +

AdapNet  2017   DmT + + - + - - D D 2 - -

RFNet  2020   Dm + - - + - - E C 2 + +

RSSAWC  2019   DmLi + - + - - - E D 2 - -
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On the other hand, in Table 2, researchers report the numerical score (mIoU) attained by the methods in three

benchmark datasets, respectively: Cityscapes  for 2.5D SS in Table 2a, KITTI  for 2D + 3D SS in Table 2b

and MSSSD/MF  for RGB + Thermal SS in Table 2c.

Table 2. Architectures Performance Comparison.

Metadata Fusion Approach Fusion Architecture

Name Year Dataset(s)Modality(ies) + × ⨀

Ad-
Hoc

Block

Ad-
Hoc
Loss

Multi-
Task LocationDirection Parallel

Branches
Skip

Connections

Multi-
Level

Fusion

PMF  2021   Li + + + + + - E M 2 + +

MDASS  2019   DmF + - - - - - E D 2/3 + +

CMFnet  2021   DmLp - + + - - - E D/B 3+ - +

CCAFFMNet  2021   T - - + + - - E C 2 + +

DooDLeNet  2022   T - + + - - - E D 2 + +

GMNet  2021   T + + - + - + E D 2 + +

FEANet  2021   T + + - - - - E C 2 - +

EGFNet  2021   T + + + + - - E D 2 - +

ABMDRNet  2021   T + + + + + + E D 2 - +

AFNet  2021   T + + - + - - E D 2 - -

FuseSeg-
Thermal 

2021   T + - + - - - E C 2 + +

RTFNet  2019   T + - - - - - E C 2 - +

FuseSeg-
LiDAR 

2020   LsLi - - + - - - E M 2 + +

RaLF3D  2019   LsLi + - + - - - E D 2 + +

DACNN  2018   DmDh + - - - - - E D 2 - -

xMUDA  2020   Li - - + - + + D D 2 - +
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Name Backbone mIoU

(a) Cityscapes dataset (2.5D SS).

LWM  ResNet101  83.4

SSMA  ResNet50  83.29

CMX  MiT-B4  82.6

AsymFusion  Xception65  82.1

SA-Gate  ResNet101  81.7

ESANet  ResNet34  80.09

DA-Gate  ResNet101  75.3

RFBNet  ResNet50  74.8

MMSFB-snow  ResNet50  73.8

AdapNet  AdapNet  71.72

RFNet  ResNet18  69.37
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Early attempts of multimodal semantic segmentation approaches combine RGB data and other modalities into

multi-channel representations that were then fed into classical semantic segmentation networks based on the

encoder–decoder framework . This simple early fusion combination strategy is not too effective because it

struggles to capture the different types of information carried by the different modalities (e.g., RGB images contain

color and texture, whereas the other modalities typically better represent the spatial relations among objects).

Within this reasoning, feature-level and late-fusion approaches have been developed. Fusion strategies have

typically been categorized into early, feature and late-fusion strategies, depending on the fact that the fusion

happens at the input level, in some intermediate stage or at the end of the understanding process. However, most

recent approaches try to get the best of the three modalities by performing multiple fusion operations at different

stages of the deep network .

A very common architectural choice is to adopt a multi-stream architecture for the encoder with a network branch

processing each modality (e.g., a two-stream architecture for RGB and depth) and additional network modules

Name Backbone mIoU

RSSAWC  ICNet  65.09

MDASS  VGG16  63.13

CMFnet  VGG16  58.97

(b) KITTI dataset (2D + 3D SS).

PMF  ResNet34  63.9

FuseSeg-LiDAR  SqueezeNet  52.1

RaLF3D  SqueezeSeg  37.8

xMUDA 
SparseConvNet3D 

ResNet34 
49.1

(c) MSSSD/MF dataset (RGB + Thermal SS).

CMX  MiT-B4  59.7

CCAFFMNet  ResNeXt50  58.2

DooDLeNet  ResNet101  57.3

GMNet  ResNet50  57.3

FEANet  ResNet101  55.3

EGFNet  ResNet152  54.8

ABMDRNet  ResNet50  54.8

AFNet  ResNet50  54.6

FuseSeg-Thermal  DenseNet161  54.5

RTFNet  ResNet152  53.2
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connecting the different branches that combine modality-specific features into fused ones and/or carry information

across the branches . This hierarchical fusion strategy leverages multilevel features via progressive

feature merging and generates a refined feature map. It entails fusing features at various levels rather than at early

or late stages.

The feature fusion can take place through simple operations e.g., concatenation, element-wise addition,

multiplication, etc., or a mixture of these, which is typically addressed as a fusion block, attention, or gate module.

In this fashion, multi-level features can be fed from one modality to another, e.g., in  where depth cues are fed to

the RGB branch, or mutually between modalities. The fused content can either reach the next layer or the decoder

directly through skip connections .

The segmentation map is typically computed by a decoder taking in input the fused features and/or the output of

some of the branches. Multiple decoders can also be used but it is a less common choice .
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