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Context is essential for generic neural networks. In Computer Vision background defines context. Therefore, smart

background substitution can improve the generalization capability of a trained model. 
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1. Introduction

Deep learning and computer vision (CV) algorithms have recently shown their capabilities in addressing various

challenging industrial and scientific problems . Successful application of machine learning and computer vision

algorithms for solving complex tasks is impossible without relying on comprehensive and high-quality training and

testing data . CV algorithms for solving classification, object detection, and semantic and instance

segmentation require a huge variety of input data to ensure robust work of the trained models . There are two

major ways to enlarge a training dataset. The first one is obvious and implies physical collection of the dataset

samples in various conditions to ensure high diversity of the training data. There is a set of huge datasets that have

been collected for solving computer vision problems. These datasets are commonly used as the benchmark 

. One of the specifics of these datasets is that they are general-domain sets. Unfortunately, general-domain-

labeled data can be almost useless for solving specific industrial problems. One of the feasible applications of such

well-known datasets is that they can serve as a good basis for pre-training of neural networks (transfer learning)

. Using these pre-trained neural networks, it is possible to fine-tune them and adapt them to address specific

problems. However, in some cases, even for fine-tuning, a comprehensive dataset is in high demand. Some events

are rare, and it is possible to collect only a few data samples . Thus, a second approach for enhancing the

characteristics of the dataset can help. This approach is based on artificial manipulations with the initial dataset 

. One of the well-developed techniques is data augmentation, where original images are transformed according

to special rules . Usually, the goal of image augmentation is to make the training dataset more diverse. However,

augmentation can be used to deliberately shift the data distribution. If the distribution of the original training dataset

differs from the distribution of the test set, it is important to equalize them as much as possible.

The agricultural domain is part of the industrial and research areas for which the development of artificial methods

for improvement of training datasets is vital . This demand appears due to the high complexity and

variability of the investigated system (plant) that has to be characterized by computer vision algorithms . The

difficulty of the agricultural domain makes it a good candidate for testing augmentation algorithms.
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There are many different plant species, and plants grow slowly. Thus, collecting and labeling huge datasets for

each specific plant growing in each specific stage is a complex task . Overall, it is difficult to collect datasets ,

especially for plants, and it is expensive to annotate them .

2. Image Augmentation

Computer vision models require many training data. Therefore, it becomes challenging to obtain a good model with

limited datasets. Namely, a small-capacity model might not capture complex patterns, while a big capacity model

tends to overfit if small datasets are used . Slight changes in test data connected with surrounding and

environmental conditions might also lead to a decrease in model performance .

To overcome this issue, researchers use various image augmentation techniques. Data augmentation aims to add

diversity to the training set and to complicate the task for a model . Among these plant image augmentation

approaches, it can be distinguished: basic computer vision augmentations, learned augmentation, graphical

modeling, augmentation policy learning, collaging, and compositions of the ones above.

Basic computer vision augmentations are the default methods preventing overfitting in most computer vision

tasks. They include image cropping, scaling, flipping, rotating, and adding noise . There are also advanced

augmentation methods, connected with distortion techniques and coordinate system changes . Since these

operations are quite generic, most popular ML frameworks support them. However, although helpful, these

methods demonstrate limited use, as they bring insufficient diversity to the training data for few-shot learning

cases.

Learned augmentation stands for generating training samples with an ML model. For this purpose, conditional

generative adversarial networks (cGANs) and variational autoencoders (VAEs) are frequently used. In the

agricultural domain, there are examples of applying GANs to Arabidopsis plant images for the leaf counting task 

. The main drawback of this approach is that generating an image with a neural network is quite resource-

intensive. Another disadvantage is the overall pipeline complexity: the errors of a model that generates training

samples are accumulated with the errors of a model that solves the target task.

Learned augmentation policy is a series of techniques used to find combinations of basic augmentations that

maximize model generalization. This implies hard binding of the learned policy to the ML model, the dataset, and

the task. Although it is shown to provide systematic generalization improvement on object detection  and

classification , its universal character as well as the ability to be performed along with multi-task learning are not

supported with solid evidence.

Collaging presupposes cropping an object from an input image with the help of a manually annotated mask and

pasting it to a new background with basic augmentations of each object . In , a scene generation technique

using object mask was successfully implemented for an instance detection task. It boosted model performance

significantly compared with the use of only original images. The study on image augmentation for instance
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segmentation using a copy–paste technique with object mask was extended in . The importance of scene

context for image augmentation is explored in .

3. Image Synthesis

Graphical modeling is another popular method in plant phenomics. It involves creating a 3D model of the object of

interest and rendering it. The advantage of this process is that it permits the generation of large datasets  with

precise annotations, as the labels of each pixel are known. However, this technique is highly resource-intensive;

moreover, the results obtained using the existing solutions  seem artificial. More realistic synthesis is very

time-consuming. This approach is suitable when there are not many variations of the modeled object. If there are

many different object types, it can be easier to collect and annotate new images.

4. Neural Image Generation and Image Retrieval

To gain new training images for CV tasks, one can implement GAN-based or diffusion-based models. Currently,

they allow for the creation of rather realistic images and meet the demands of different domains, such as

agricultural , manufacturing processes , remote sensing , or medical . Such models can be considered

as a part of an image recognition pipeline. Moreover, recent results in Natural Language Processing (NLP) offer

opportunities to extend image generation applications via textual description. For instance, an image can be

generated based on a proposed prompt, namely, a phrase or a word. Such synthetic images help to extend the

initial dataset. The same target image can be described by a broad variety of words and phrases that lead to

diverse visual results. Another way to obtain additional training images is a data retrieval approach. It supposes to

search for existing images from the Internet or some database according to a user’s prompt. For instance, the

CLIP model can be used to compute embedding of a text and to find images that match it better based on distance

in a special embedding space .
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