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Load prediction with higher accuracy and less computing power has become an important problem in the smart grids

domain in general and especially in demand-side management (DSM), as it can serve to minimize global warming and

better integrate renewable energies. Indeed, artificial neural networks (ANN) are the most used methods in forecasting

electrical load. They are widely employed in this field for their numerous advantages. In fact, the complexity of this task is

considerable due to several factors/parameters, such as weather and holidays (linear and non-linear relationships), which

is a well-suited problem for ANNs and their capacity to deal with non-linear relationships.
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1. Introduction

In December 2015, 196 countries agreed on an international treaty for limiting global climate change by reducing global

warming. The main goal is to limit global warming to well below 2 °C by limiting the use of fossil fuels  . Due to both the

availability and the cheap price of electricity in first world countries, and with the increase in the number of devices that

need electricity to operate and the appearance of new ones such as electric cars, electrical grids and their growing effect

on nature have become a significant concern.

Consequently, transition policies from fossils such as coal have been discussed in   while suggesting an increase in the

use of renewable energies. In fact, the research in   predicts that the return of investment (ROI) for renewable energies is

growing and will eventually become, in the future, similar to the ROI of fossils. This means that the economic expense that

prevents governments from using renewable energies at large scales will eventually disappear with time. Indeed, this is a

part of the MAESHA project , which is funded by the European Union through the H2020 program. The goal of this

project is the decarbonization of the future energy used in Mayotte and other islands by transforming the usual electrical

grid into a smart grid that is able to manage the demand side to be adapted to the available generation at any time.

Moreover, different challenges arise when trying to manage the electrical grid of isolated areas because it is impossible to

receive electricity from other countries or regions in the case of excessive demand, which can cause a blackout.

In addition, even though renewable energies are the main key to achieving the decarbonization of energy systems, their

production varies significantly within short times due to environmental factors, such as the radiation of the sun or the

speed of the wind, which can cause problems during peaks on the demand side.

Indeed, this brings the need for a smart grid that can detect, predict, and adapt to changes in order to match and manage

the demand side with the availability on the supply side. As a consequence, predicting electrical load in advance is a very

important challenge for demand-side management (DSM), especially in isolated areas  .

Moreover, most of the current machine learning models are built to predict and are tested on the  load demand of one

region or country only, without taking into consideration the reusability of their models.

In fact, to predict the load of multiple islands with acceptable accuracy, it is important to build a flexible model in both

space and time. First, as for the space, in order to predict the load in multiple regions without having to create different

prediction models, it could be interesting to build a model combining standard machine learning models that are known to

give good predictions with acceptable accuracy for the different situations or regions, thus having a reusable prediction

model that can be used directly or with minimal changes on different regions, islands, countries, or  even multiple

buildings. The second challenge is how to simply build a flexible model that can predict in the range of multiple days or a

week with an acceptable accuracy; at the same time, it should be able to predict a shorter range (the next 30 min or 24 h)

with high accuracy.
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2. Artificial Neural Networks for Energy

Since energy demand is a set of ordered values representing an evolution of a quantity over time, it is handled as a time

series forecasting problem.

Predicting energy consumption is frequently done in the short term: almost 60% of the studies employing data-driven

models make hourly predictions  . It is equally interesting to see that the load in general is highly affected by

cooling/heating (HVAC). Indeed, HVAC represents between 40% and 50% of the overall consumption of big buildings,

such as offices, schools, or hotels  . Forecasting this consumption is often easier since the HVAC is fairly continuous

over time and depends on external parameters such as local weather or time of the year  .

Moreover, since load prediction is a time series forecasting problem, wavelet transform (WT) is an important tool to help

find the different time and frequency features of the load curve  . Indeed, the use of WT in   was proven to be an

important preprocessing step for the prediction. Ref.   has even proposed a framework of wavelet neural networks

(WNN). Indeed, wavelet transform has been tried with different types of traditional and modern types of machine learning

layers, such as feed-forward or convolutional layers  .

On the other hand, it is not surprising to find familiar methods for time series, such as auto-regressive integrated moving

average (ARIMA) , support vector machines (SVM)  , and artificial neural networks (ANN), applied to this

field, as shown in  .

However, the  review in   shows that artificial neural networks are the most efficient prediction models for load

forecasting in the smart grids domain in general and for demand-side management specifically.

Indeed, ANNs are the most used methods in forecasting electrical load. They are widely employed in this field for their

numerous advantages. In  fact, the  complexity of this task is considerable due to several factors/parameters, such as

weather and holidays (linear and non-linear relationships), which is a well-suited problem for ANNs and their capacity to

deal with non-linear relationships. ANNs are extremely robust and flexible, especially the multilayer perceptron (MLP);

they do not need to be programmed but require data to train on. They are easy to implement but require some specialized

knowledge to configure. They can be used alone  , but they can also be combined with other models to obtain a hybrid

prediction  . One of the disadvantages is the massive amount of data required to train the network. If there are not

enough data to train the ANN, it will have difficulties generalizing and risk overfitting.

Another type of neural network widely used in the field of time series forecasting is the long short-term memory (LSTM). It

is an artificial recurrent neural network architecture that can process entire sequences of data, making it a privileged

model for handwriting recognition, speech recognition, and  time-series data. It can be used alone   or with a

convolutional layer for better results  . Some models combine neural networks with more classical models of time series

forecasting.

Hybrid Models

They represent combinations of two or more machine learning techniques. These models are more robust, as they have

the advantages of the individual techniques involved and improve the forecasting accuracy. By  combining separate

models, complex structures can be modelled more accurately. More and more papers use a hybrid approach thanks to

their performance  . They often combine linear with nonlinear models to be more robust and more accurate.

The most traditional hybrid models are a combination of ARIMA for linear relationships and SVM or ANN to model the

nonlinear component  . However, various methods and algorithms have been used in the prediction models, such as

empirical mode decomposition (EMD), the extended Kalman filter (EKF), characteristic load decomposition (CLD), and the

radial basis function neural network (RBFNN). Table 1 provides a brief review of these research for load predictions

covering short-term, mid-term, and long-term predictions and covering the various prediction algorithms used.

Table 1. The following table shows a sample of the various prediction methods used and how their proposed models do

not have the flexibility to be reusable in both time and space variations.

Article Time Range
Flexibility

Spatial
Flexibility Comment

  No No Tested on historical energy load from New York Independent System
Operator
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Article Time Range
Flexibility

Spatial
Flexibility Comment

No Yes Tested on Iran load dataset and New South Wales of Australian load
dataset

No No Twenty-four-hour load forecasting, tested on one dataset

No Yes Tested on four different microgrids

No No Their model is applied separately to the household, public, service,
and industrial sectors

No No Their proposed model has only yearly prediction

Yes No Day ahead and week ahead forecasting

Yes No One hour-ahead, peak day-ahead, and valley day-ahead forecasting

No Yes Tested on multiple European countries

No Yes Tested on 5 states in Australia

No Yes Tested on New South Wales (NSW) and Victoria (VIC) in Australia

Although some of the previous research, such as  , has been tested on multiple datasets from different countries, none

of them have been built to be general enough to be applied to any case, nor are they easily reusable without modifications

to the code (especially isolated areas such as Mayotte where blackouts happen regularly because of high load

consumption).

In addition, all previous research have concentrated on having one prediction range (i.e., 1 h, 24 h, 1 week, etc.).

However, having a prediction for 30 min can provide a higher accuracy than having a prediction for 1 week, and as a

consequence, having multiple prediction ranges at the same time (very short-term prediction with very high accuracy and

short- or mid-term prediction with slightly lower accuracy) can provide more stable results for the smart grid systems that

have to interact and make decisions for one or more days in real-time.
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