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Self-assembly of nanoscale objects is of essential importance in materials science, condensed matter physics, and

biophysics. Curvature modifies the principles and sequence of self-assembly in Euclidean space, resulting in unique and

more complex structures. Understanding self-assembly behavior in curved space is not only instrumental for designing

structural building blocks and assembly processes from a bottom-up perspective but is also critically important for

delineating various biological systems.
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1. Introduction

Self-assembly refers to the process by which disordered systems, without external intervention, organize into an ordered

structure through interactions among their constituents . This process is driven by thermodynamic equilibrium, with

the organized structure possessing the lowest free energy within the system. Colloids refer to fluid mixtures in which

dispersed particles have sizes ranging from 1 nm to 1 μm, which are commonly found in the natural world and biological

systems. When colloidal particles aggregate, many fascinating phenomena, including self-assembly, can emerge. In

contrast to atomic and molecular systems, the self-assembly of colloidal particles predominantly relies on forces such as

DNA-mediated interactions , van der Waals forces , electrostatic interactions , and hydrophobic effects . These

forces are considerably weaker than chemical bonds  and, thereby, cannot entirely dictate the formation of the most

stable structure. Thus, entropy plays an indispensable role in the self-assembly of colloidal particles. Self-assembly

phenomena are abundant in biological systems, such as viruses , bacteria , and living cells , and a comprehensive

understanding of these processes is essential for unraveling the complexity of life. These instances of self-assembly can

serve as a source of inspiration for the design of biomimetic systems or play a role in medical applications like targeted

drug delivery. However, biological systems often feature numerous curved interfaces, and the presence of interfaces

frequently exerts a profoundly influential and determinative impact on the overall system’s properties. The introduction of

curvature significantly enriches the processes and outcomes of self-assembly. Due to the mismatch between locally

favorable structures and curved space or the hindrance of evolution paths by curvature, ordered structures , phase

transitions , and dynamic processes  in curved space differ significantly from normal space. Additionally, the

inherent defects brought about by topology create new order structures and generate new physics, making topology an

equally important controlling factor alongside free energy. In recent years, the field of interface self-assembly at the

nanoscale has gradually emerged , where curved interfaces often serve as scaffolds for nanodevices, functioning as

constraints and templates . At the same time, with the development of nanoscale synthesis methods , the

variety of particles involved in self-assembly has greatly expanded, including grafted particles , Janus particles ,

various shapes of hard particles , mesoporous particles , and more. This enables more precise, complex, and

widespread self-assembly. Therefore, understanding the physical processes of particle self-assembly in curved space is of

great significance, aiding in the design of new heterogeneous materials or offering new perspectives on some biological

processes.

2. Colloids in Curved Space

A brief overview of cases of colloidal particle self-assembly in two-dimensional (2D) and three-dimensional (3D) curved

spaces is provided. The fundamental physical rules of self-assembly in curved space and the influence of curvature is

summarized. This helps illustrate how curvature can be used to control the outcomes and processes of self-assembly.

Consider identical hard disks packing on a 2D plane. In the densest packing arrangement, these particles naturally form a

hexagonal lattice structure, with each particle having six nearest neighbors, and the hexagons can densely cover the

entire 2D space. When the plane becomes curved, the introduction of curvature changes the distance distribution among

the particles because the sum of the interior angles of curved triangles is not equal to π. This alteration in distance
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distribution results in a change in the number of nearest neighbors for the particles. By using the Voronoi partition,

researchers can determine the number of nearest neighbors for each particle, denoted as c, which corresponds to the

number of edges of the Voronoi polygons surrounding the particle. The basic idea is to create polygons around each seed

point in such a way that every point within a given polygon is closer to the associated seed point than to any other seed

point. Particles with a number of nearest neighbors different from 6 are referred to as defects, and the charge of a defect

is defined as 𝑞=6−𝑐. On a plane, the appearance of defects is only related to the density and polydispersity of particles.

Regular and dense crystals are formed at high density. Determining the type and quantity of defect particles on a curved

surface requires applying Euler’s formula, which relates the number of vertices (V), edges (E), and faces (F) of Voronoi

polygons in a network:

(1)

𝜒 is the Euler characteristic, determined by the shape of the curved surface. If researchers replace V, E, and F in the Euler

formula with the number of edges per Voronoi polygon c and the number of Voronoi polygons N , researchers can obtain

the total defect charge determined by topology:

(2)

Indeed, you can relate curvature and the Euler characteristic using the Gauss-Bonnet theorem. The theorem states that

for a closed surface M with Gaussian curvature K, the Euler characteristic is related to the total Gaussian curvature over

the entire surface:

(3)

where dA represents the area element of the surface and ds is the line element of the boundary of M. This equation

provides a valuable relationship between geometry and topology. For a sphere, 𝜒=2, and 12 pentagon defects can form a

regular icosahedron structure. For a cylinder and a plane, the Gaussian curvature is zero everywhere, which allows

particles to form a defect-free perfect structure. For surfaces with negative curvature, 𝜒<0, and heptagon defects may

dominate. In crystallography, isolated defects that alter the rotational symmetry are referred to as disclinations , while

defects formed by the connection of a pentagonal and heptagonal defect, disrupting translational symmetry, are known as

dislocations. Dislocations, having positive and negative charges that cancel each other out, do not have a necessary

topological existence. They appear to accommodate variations in curvature, driven by local geometric requirements and

are consequently referred to as excess defects.

Irvine et al.  further investigated the relationship between the total defect charge and interface shape by confining

fluorescent PMMA particles to interfaces of various shapes, including spherical, arched, waist-shaped, barrel-shaped, and

planar. The topological shape of the interface dictates the total defect charge. For interfaces of different shapes, whether

with charged or neutral particles, the total defect charge is approximately equal to the integral of the interface Gaussian

curvature. The presence of defects is analogously likened to pleats, and they adapt to the rapid changes in surface

curvature by forming continuous dislocations. Subsequent simulations have confirmed and expanded upon these

experimental findings . The type, location, and orientation of defects are closely related to the curvature. Under weak

curvature, excess defects like pleats appear, with their orientation following the direction of the fastest Gaussian curvature

change, while under strong curvature, disclinations arise near regions of maximum (minimum) curvature.

Although the aforementioned studies provide a clear topological relationship between the total defect charge and interface

shape, in specific systems, the number and spatial arrangement of each type of defect still depend on the potential energy

interactions between particles and local geometric requirements. This is exemplified by the scar-like structures on a

spherical surface. Bausch et al.  explored the self-assembly of colloidal particles with arbitrary repulsive interactions

on a constrained spherical surface, where 1 µm diameter cross-linked polystyrene microspheres adhered to the surface of

water droplets with a radius R. When the number of particles is low, the spherical surface exhibits only 12 + 1 charge

defects. However, when the number of particles exceeds a critical value (N ≈ 360), additional defect structures emerge.

Defining a as the average distance between particles, it was discovered that the excess dislocation count is linearly

related to R/a. In other words, on a larger constrained spherical surface, there are more defects. Observing the

distribution of defects further reveals that they exist in the form of scars. On each scar, the coordination number of

V − E + F = χ

c

∑(6 − c)Nc ≥ 6χ

∫
M

KdA + ∫
∂M

kgds = 2πχ(M)
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particles varies as … 5-7-5-7-5 … The total defect charge on each chain of defects is +1. The locations of the twelve

scars correspond to a regular icosahedral structure.

On the one hand, these scars act as grain boundaries between different crystal regions, causing a change in crystal axis

orientation whenever the crystal axis extends to the scar’s position to adapt to the curvature of the sphere. On the other

hand, the presence of these scars serves to reduce the elastic energy loss caused by individual pentagonal defects.

Using elastic theory , it can be calculated that the length of each scar in the ground state should be 33.56°. Therefore,

the number of excess defects on the sphere follows a linear relationship with R/a.

From these studies, it can be concluded that the self-assembly in curved space results from the interplay between locally

favorable structures, topology, and geometry. This principle applies to 3D space as well. Taking the example of hard

sphere packing, as the packing density increases, the system enters an ordered structure at a packing density of

approximately 0.64  and eventually forms a face-centered cubic (FCC) or hexagonal close-packed (HCP) structure at a

packing density of 0.74 . Although FCC and HCP structures are energetically favorable, they cannot perfectly fill

the entire spherical space, especially under strong confinement. To maximize each particle’s free volume or entropy, the

structure that aligns better with spherical symmetry is the icosahedron. However, as the degree of confinement decreases

with a larger sphere, the system transitions from the icosahedron structure through a rhombicosidodecahedron structure

to an FCC structure . The observation of such structures changing with the degree of confinement has also been

observed in simulations of cylindrical confinement . This phenomenon is not limited to spherical confinement but is a

general characteristic of self-assembly in 3D confined spaces. The dynamics of this crystallization process, as revealed

through event-driven molecular dynamics (EDMD) simulations, suggest that the crystallization initiates at the spherical-

constrained surface, forming multiple layered structures inward.

In addition to the changes in self-assembled structures, another characteristic of 3D confined self-assembly is the

presence of numerous local optimal structures. The number of particles at specific values forms self-assembled structures

with better compatibility with spherical symmetry, known as the magic number . Whether under attractive potentials

or hard interactions, these structures often have enhanced stability, higher packing densities, and average particle-free

energy at a local minimum due to maximizing the number of neighboring particles . Not only within a sphere but also

within a cylindrical confinement, an optimal cylinder radius exists that maximizes the packing density to achieve a local

maximum .

In addition to structural, the influence of curvature on self-assembly is also reflected in deeper aspects, such as phase

transitions and crystallization dynamics. Phase transitions in 2D systems differ from those in 3D space, and there are

various microscopic theories for 2D phase transitions, with the KTNHY theory being the most famous . This

theory predicts that phase transitions in 2D space are mediated by defects and involve two continuous processes: the

unbinding of dislocation pairs disrupts translational symmetry while preserving orientational symmetry, leading the system

from a solid phase to a hexatic phase. The separation of dislocations forms disclinations, breaking orientational symmetry

and transitioning the system into a liquid phase. On a spherical surface, particles with dipole potentials undergo phase

transitions as the dimensionless interaction parameter Γ changes, and both crystallization and melting processes follow

the KTNHY theory . However, due to the presence of inherent defects, the potential strength required for phase

transitions differs from the results on a flat plane , and the curvature, to some extent, hinders crystallization. During the

crystallization process, defects that occur in normal positions are eventually absorbed by grain boundaries, leading to the

formation of the twelve scars. This has been confirmed in interstitial experiments on curved surfaces , where

dislocations are more likely to move in the direction parallel to Burger’s vector  and are subsequently absorbed when

they reach a grain boundary. However, what is surprising is that during the melting process, the positions where free

dislocations are generated are unrelated to grain boundaries. Instead, they randomly occur within the regular hexagonal

lattice.

In Euclidean spatial crystallization, nucleation theory is often used to explain the process. In confined spaces, however,

crystallization frequently initiates at the outer layers near the confining interface and progresses inward, resulting in the

formation of complex multi-layered structures . The curved interface acts as a template, influencing the final

crystalline structure. When hard spheres crystallize within a sphere or a cylinder , they first form distinct crystal

domains on the surface, and then the growth occurs inward. The competition and matching between the external and

internal structures determine the final structure. In the case of systems with potentials, the situation is even more complex

, and this competition exists in both thermodynamic and kinetic aspects. Crystallization initially occurs on the surface in

the form of defects with icosahedral symmetry. It then grows inward through body-centered cubic (BCC) solid metastable

states. Over an extended period, the structures formed by shorter-range (harder) interaction are predominantly FCC but
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are separated into icosahedral symmetry regions by the HCP domain. The structures formed by longer-range (softer)

interactions are closer to BCC single-crystal.
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