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Polydimethylsiloxane (PDMS) is an elastomer with excellent optical, electrical and mechanical properties, which
makes it well-suited for several engineering applications. Due to its biocompatibility, PDMS is widely used for

biomedical purposes. Some properties can be improved by adding additives.
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| 1. Introduction

Polydimethylsiloxane (PDMS) is an elastomeric polymer with interesting properties for biomedical applications,
including physiological indifference, excellent resistance to biodegradation, biocompatibility, chemical stability, gas
permeability, good mechanical properties, excellent optical transparency and simple fabrication by replica moulding
[L[2AEIAI5], pye to these characteristics, PDMS has been widely used in micropumps &, catheter surfaces [,
dressings and bandages &, microvalves B, optical systems R in the in vitro study of diseases 213l jn
implants 4113 in microfluidics and photonics LEIILAMLEILA  Moreover, soft-lithography technology has driven the
use of PDMS in microelectromechanical systems (MEMS) applications and in microfluidic components [LZ118]120]
Soft-lithography techniques such as micro-contact printing, replica moulding, micro-transfer moulding, micro-
moulding in capillaries and solvent-assisted micro-moulding usually require the use of PDMS to create an
elastomeric stamp or mould that incorporates nano- and microstructures for the transfer of patterns onto a

subsequent substrate 181121],

MEMS are approaches that use electronic and mechanical technologies to deal with biomedical problems on the
micro-scale 22, MEMS-based devices have been widely used in the biomedical area for applications such as
diagnostics and therapeutics. These systems can be microsensors or microtransducers, and are helpful in areas
such as physics, mechanics, electronics and biomedicals, as they can provide very precise and fast results 23,
The investigation and improvement of already existing MEMS are more and more common. As they are
increasingly commercialized, the necessity to find processes and materials that enable mass production while
reducing cost has emerged (21, MEMS are traditionally silicon-based and the pursuit for a more biologically friendly
material is needed. Polymers allow rapid prototyping and mass production techniques as well as having a lower
cost in relation to silicon, making them particularly attractive for the development of MEMS [21l, Photolithography is

the most commonly used technique in microfabrication, however, this method is expensive 24, With the
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introduction of polymers in microsystems, new manufacturing techniques have been studied, such as soft-
lithography, which can be a cheaper method comparatively to photolithography, even when a costly mould is
needed for patterning; once a mould is created, it can be reused several times 2] Additionally, there are
alternatives which are attempting to reduce the cost of the moulds, relying on cleanroom less approaches 22!,
Candidate polymers for the production of MEMS are polycarbonate (PC), polymethylmethacrylate (PMMA),
polyvinylchloride (PVC), polyethylene (PE) and PDMS [21],

Additionally, PDMS is the most commonly used material in the manufacturing of microfluidic devices, which are an
important technology for the development of systems such as drug delivery, DNA sequencing, clinical diagnostics,
point of care testing and chemical synthesis 28, The used materials in these systems should be biocompatible,

optically transparent and provide fast prototyping and low fabrication cost 22, features found in PDMS.

In addition to applications in microfluidics, PDMS has been widely used in the fabrication of biomodels (flow
phantom) for the in vitro hemodynamic study of diseases such as aneurysms and stenosis [281[22[30IB31] The
biomodels developed in PDMS allow good replicability of the lumen of the arteries and good transparency, being
ideal for the application of optical techniques of micro particle image velocimetry (micro-PIV), particle image
velocimetry (PIV), particle tracking velocimetry (PTV) and non-evasive techniques [22133I34] These experimental
tests have provided a greater understanding of these pathologies, validated numerical techniques and tested

medical devices such as stents [32[361(37],

PDMS has also been investigated in the field of medical implants [28139[40141][42] These types of implants are
usually made with titanium or its alloys; however, such materials do not allow good osseointegration 22, In order to
overcome this limitation, PDMS has been studied to produce coatings with microscale features that help the
bonding between the implant and the bone. The main characteristics for its use in implants are its high
biocompatibility, excellent resistance to biodegradation and flexibility, which makes PDMS one of the most
successful polymers in implanted devices, presenting only mild foreign body reactions (344451 Common
applications include cardiac pacemakers, cuff and book electrodes in the PNS, cochlear implants, bladder and pain

controllers and planar electrode arrays in the CNS [431146],

| 2. PDMS Properties

Silicon, glass and polymers are the typical materials used for micro devices fabrication: silicon, because of its
thermal conductivity and the availability of advanced fabrication technologies; glass, mainly due to its transparency;
polymers, because of its low cost, optical transparency and flexibility. Compared to glass and silicon, PDMS turns
out to be the most promising elastomer, because the other two materials have a high manufacturing cost, require
greater labour intensity and are rigid in nature. The variable elasticity of PDMS in medical applications is also
favourable; its modulus of elasticity is 1-3 MPa (compared to ~50 GPa of glass) @44 PDMS is also chemically
inert, thermally stable, permeable to gases, simple to handle and manipulate, exhibits isotropic and homogeneous
properties and can replicate submicron features to develop microstructures 12211481 Additionally, this elastomer is

optically transparent, can work as a thermal and electrical insulator and degrades quickly in the natural
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environment 2. PDMS presents a hyperelastic behaviour, which is the ability of a material to undergo large
deformations before rupture 9. This characteristic is also found in biological tissues and, for that reason, PDMS is
a well-suited material to mimic, for example, blood vessels #9. Another characteristic of this elastomer is its
biocompatibility, which means that PDMS is compatible with biologic tissues [#2. PDMS presents a transmittance
up to 90% for the wavelength from 390 nm to 780 nm BRUB2IES and, due to this characteristic, PDMS-based
microsystems allow the direct observation of the mimicked blood flow inside the mimicked vessels and the

integration of optical detection systems, hence playing an important role in this field.

With the purpose of extending the lifespan of a chip, PDMS is used to embed or encapsulate electronic
components by casting. Due to its thermal and electrical insulation capability, PDMS protects the components from
environmental factors and mechanical shock within a large temperature range (-50-200 °C) [23l48] |n Table 1,

some physical properties of PDMS are listed.

Table 1. Typical properties of cured PDMS.

Property (Unity) Result References

Transmittance at range 390 nm to 780 nm (%) 75-92 (541551
Index of refraction 1.4 [56]

Thermal conductivity (W/m-K) 0.2-0.27 (57][58]
Specific heat (kJ/kg-K) 1.46 [56]
Dielectric strength (kV/mm) 19 (57]
Dielectric constant 2.3-2.8 [56]
Electrical conductivity (ohm-m) 4 x 1013 (561
Volume resistivity (ohm-cm) 2.9 x 1014 [57]
Young’'s modulus (kPa) 360-870 [59]
Poisson ratio 0.5 [69]

Tensile strength (MPa) 2.24-6.7 [56][57]

Hardness (Shore A) 41-43 [55](61]
Viscosity (Pa-s) 35 [57]
Hydrophobicity—contact angle (°) ~108° + 7° [62]
Melting Point (°C) -49.9 to -40 [63]
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Despite these advantages, PDMS has some properties that can present a limitation in some applications. Due to
its CH3 groups, PDMS presents a hydrophobic surface (contact angle with water ~108° + 7°) [6264I65]  often
limiting its application in solutions composed of biological samples 8. Additionally, PDMS tends to swell when
combined with certain reagents 1748, |n some applications, the absorption of small molecules flowing through the
channels makes it difficult to quantitatively analyse experiments in proteomic drug discovery and cell culture (78],
In microchannels, the hydrophobicity of PDMS generates complications that include impedance to the flow of polar
liquids, which makes it difficult to wet its surface with aqueous solvents 49 On the other hand, much effort has
been made to make the PDMS surface hydrophilic and resistant to protein adsorption LE0I71][72][73]

Strategies employed in attempting to solve PDMS hydrophobicity include surface activation methods such as:
oxygen plasma; UV/ozone treatments; corona discharges, which are widely used for PDMS surface oxidation to
promote microchannel wettability. The main benefits of these methods are the short treatment time and easy
operation; however, the PDMS surface recovers its hydrophobicity when in contact with air within a few minutes (4
[75][76]

Another method is physisorption, which is a simple and efficient approach that relies on surface hydrophobic or
electrostatic interactions. This method includes the following techniques: layer-by-layer deposition; non-ionic
surfactants; charged polymers. The disadvantages are the lack of covalent bonds between PDMS and surface

modifiers, which lead to the loss of modifiers quickly through desorption ZZIZ8IZ9],

In order to improve the difficulties encountered in physisorption, chemical modification methods allow for
maintaining a long-term stability of the modified surface. These methods include: chemical vapor deposition,

surface segregation and self-assembled monolayers, silanization, and polymer brushes via grafting methods 1162
[80][81][82]

Adding waxes such as paraffin or beeswax to PDMS has been demonstrated to potentially increase the corrosion
resistance, hydrophobicity and thermal and optical properties of PDMS, which is useful in applications such as

sensors, wearable devices and superhydrophobic coating 83,

This entry is adapted from 10.3390/jfb13010002 and 10.3390/polym13234258
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