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This entry presents an overview of the recent developments in the synthesis of layered double hydroxide (LDH) on the

anodized films of Mg alloys prepared by either conventional anodizing or plasma electrolytic oxidation (PEO) and the

applications of the formed composite ceramics as smart chloride traps in corrosive environments.
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1. Introduction

Material degradation, specifically corrosion, is a serious issue limiting the use of active metals like magnesium in

advanced applications . Mg and its alloys have high specific strengths by which they can replace heavy metals in

different technological sectors . Therefore, it is highly important to improve the electrochemical stability of these

materials in corrosive environments to extend their applications. To date, several methods, such as sol-gel coating,

chemical vapor deposition, anodizing, and plasma electrolytic oxidation (PEO) have been utilized to enhance the

protective properties of light metals and their alloys . Among them, the anodizing method discovered in

1923 has been used extensively to form thin protective anodic films . As an updated version of anodizing, PEO is an

emerging method because of its unique plasma-in-water system. Typically, PEO transforms metal surfaces into a robust

layer of their corresponding oxides using numerous micro-sized plasma discharges, which are generated as the result of

electrical breakdown events at high overvoltages . These micro-sized plasma discharges induce a high-temperature

environment (T > ~3500 K) that is above the melting point of most metals and oxides , leading to a dynamic surface

topography comprising micropores due to local and repetitive melting-solidification cycles. However, due to the thin layer

and/or the porous structure of the anodic films produced via anodizing and PEO, the corrosive species would reach the

metallic substrate, leading to its corrosion in extreme environments . An additional treatment, therefore, must be applied

to the anodic films towards achieving higher electrochemical stability for large-scale applications . Several research

groups have used several approaches, such as the typical sealing by boiling water , post-treatment using polymers or

organic compounds , post-treatment by sol-gel coatings  in order to enhance the stability of anodic films of Mg

alloys. However, the boiling water approach would not be desirable on account of the slight improvements in the

protective properties as well as the high energy consumption associated with this method . Moreover, the application of

polymers and organic compounds to seal the anodic films would be limited due to the susceptibly of these materials to

degradation at elevated temperatures. Also, the use of sol-gel coatings led to the formation of many cracks as a result of

mismatching between the metal oxides incorporated by the sol-gel approach and MgO which is known to be the main

component of the anodic films produced on Mg alloy via anodizing and PEO .

In addition to the approaches described above, layered double hydroxides (LDHs) can provide another approach to

improve the protective properties by increasing the barrier properties . LDHs are lamellar crystals with

positively charged brucite-like host layers with interlayer regions containing charge-compensating anions and solvation

molecules . The typical formula of these materials can be described as [M M (OH) ] (A ) /n·mH O, where

M  and M  are the divalent and trivalent cations, respectively, while, A  is the interlayer anion (Figure 1) . Such

inorganic nano-containers have been widely proposed to improve the corrosion resistance of Mg and its alloys on account

of their merits, such as small size, high loading capacity, and simple modification .

Moreover, such materials have an excellent anion-exchange capability by the simultaneous release of interlayer anions

and the adsorption of aggressive species from the corrosive environment. Therefore, LDH-based protective films can be

considered as smart coatings, meaning that they can control the liberation of corrosion inhibitors and improve the long-

term corrosion performance.
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Figure 1. The general crystal structure of layered double hydroxide (LDH) film. Reprinted with permission from ref. .

Elsevier 2019.

Anodization of the Mg alloys surface results in the formation of magnesium oxide (MgO) that acts as the major source of

Mg  for the dense growth of LDHs, while LDH precursors are found to seal the anodic surface and can provide better

active and passive corrosion protection with long-term stability. Moreover, the LDH films made on the anodic coating of

Mg alloys can also increase the thickness of the protective film and, therefore, such factors could effectively stop corrosive

species from reaching the metallic substrate. Thus, a review on the evolution of LDH materials made on the anodic films

of Mg alloys focusing in depth on corrosion performance by covering the recent evaluation perspectives, trends in the

synthesis methods, a deep insight into the mechanism, and the structure–corrosion correlation is urgently required. To the

best of our knowledge, a review discussing the aforementioned aspects has not been undertaken.

2. Synthesis of LDH Films on Anodized Mg Alloys

To date, several methods have been utilized to produce LDHs on the Al, Mg, and Ti alloy substrates, such as the co-

deposition method , hydrothermal process , steam coatings method , electrodeposition , etc. These

techniques were highlighted recently by Tabish et al.  and Guo et al. . However, the methods that are usually

employed to fabricate LDH films on the anodic films of Mg alloys are hydrothermal treatment and the co-precipitation

method or a combination of both methods. Additional procedures, such as anion exchange reaction, and LDH

reconstruction can be used to modify the LDH films to improve the protective properties of the LDH-based composites .

2.1. Co-Precipitation Method

Generally, LDHs can be fabricated by immersion of the anodic films of Mg alloys in a solution containing a selected ratio

of divalent and trivalent metallic salts in the presence of the desired interlayer anion. Based on the type of metallic ions,

the pH of the reaction medium during the synthesis process is usually controlled to be in the range of 7–11. However,

several problems, such as the weak adhesion strength between the LDH film and the underlying substrate, complexity,

time-consuming, low crystallization, and formation of large amounts of waste would be the main drawbacks of the co-

precipitation method .

2.2. In Situ Hydrothermal Treatment

This feasible method has been employed in many studies to prepare homogenous LDH films on the anodic films of Mg

alloys. Briefly, LDHs film can be obtained by immersing the anodic film in an aqueous solution containing NO  anions

followed by hydrothermal treatment in a Teflon-lined autoclave at temperatures over 383 K. It is important to point out that

autoclave conditions would limit the industrial applications of these materials, in particular the transport applications.

Moreover, it is worth mentioning that the absence of autoclave conditions leads to the development of LDH films in

carbonated electrolytes and the CO -containing environment owing to the high sorption ability of LDH towards CO  

. This led to the formation of so-called “dead” LDH film in which the intercalation of corrosion inhibitors became very

difficult owing to the high charge density of CO  anions, reducing the smart protection property of the film .
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2.3. Anion Exchange

The LDH films are usually subjected to anion-exchange reactions to intercalate new anions into the gallery of LDH films.

Therefore, it can be considered as an indirect approach to modify the structure and composition of LDH films. Anions of

corrosion inhibitors, such as vanadate (VO ) , and molybdate (MoO )  are usually intercalated into the LDH films

formed on the anodic films of Mg alloys. The LDH films intercalated with corrosion inhibitors would have a dual function: (i)

entrapment of corrosive species and (ii) a controlled liberation of corrosion inhibitors. To sum up, although significant

advances are achieved in the fabrication of LDH/anodic film composites of Mg alloys, two main challenges should be

considered. First, how to increase the low adhesion strength between LDH coating and anodic films. Second, the

formation of LDH films that occurs usually under autoclave conditions would significantly limit the industrial applications of

these materials.
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