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Clay-based polymer nanocomposites are often referred to as polymer layered silicates, nanostructured polymers,

or simply polymer nanocomposites. These polymers are reinforced with inorganic particles containing at least one

dimension in the nanometric scale (<100 nm). Compared to traditional composites (macro- or microscale), polymer

nanocomposites offer the opportunity to explore new behaviors and functionalities beyond conventional polymers.

Nanoparticles often strongly influence the mechanical properties of polymers in very low volume fractions due to

the relatively short distance between nanoparticles, molecular compatibility, and interfacial interaction between the

particles and the polymer chains.
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1. Clay-Based Polymer Nanocomposites

Clay minerals are known as phyllosilicates, or lamellar silicates, which are the inorganic particles most commonly

used to prepare clay-based polymer nanocomposites . It is necessary to highlight that the clay particles are

not by themselves nanometric scale particles, but instead that they are formed by the stacking of several layers

that leads to the development of irregular aggregates, as schematized in Figure 1. Each layer has a high aspect

ratio between 100 and 800 nm in length and approximately 1 nm in thickness. Its uniform dispersion within the

polymer matrix favors developing a very high interfacial area per unit volume, which is the primary reinforcement

mechanism of clay-based polymer nanocomposites. However, the layer dispersion mechanism is complex since

different aspects must be considered, and that is why the specialized literature focuses on evaluating processing

conditions to achieve the maximum level of dispersion .

Figure 1. Schematic representation of the arrangement of the platelet stacks that conform to the clay particles.

[1][2][3]

[1][4][5][6][7]
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Clay layers have a molecular structure based on the stacking sequence. Interesting and complete information is

available on the web page of Professor Dorronsoro Fernández from the University of Granada, Spain (Department

of Soil Science and Agricultural Chemistry, https://www.edafologia.net/, last visited 12 May 2021).

The basic compositional unit is the silicon–oxygen (Si-O) tetrahedron, as outlined in Figure 2a. It consists of one

silicon cation (Si ) surrounded by four oxygen anions (O ). Chemically, the Si-O tetrahedron has a net electrical

charge of −4, (SiO ) , so it is balanced by adding other cations to neutralize their charges (Figure 3a). For this,

each vertex of the basal plane belongs to two tetrahedra, since each oxygen is in coordination with two silicones,

forming tetrahedral layers distributed under the configuration of hexagons, as can be seen in detail in Figure 4.

Sheet silicates (also called layered silicates or phyllosilicates) are obtained when three oxygens on each

tetrahedron link to other tetrahedra to form tetrahedral planes.

−4 −2
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Sheet silicates are planar structures containing different kinds of layer that can accommodate cations of all sizes.

Tetrahedral layers (labeled T in this work) consist primarily of SiO  tetrahedra. Octahedral layers (labeled O in this

work) contain divalent and trivalent cations (Mg   or Al ) in 6-fold coordination, where each octahedron is

supported on one of its faces, which represents the octahedral basal plane, as schematized in  Figure 2b.

Octahedral sheets are composed of individual octahedrons that share edges composed of oxygen and hydroxyl

anion groups, with Mg or Al typically serving as the coordinating cation, as presented in  Figure 3b. In two

dimensions, anions can fit together in symmetrical patterns to form hexagonal patterns (Figure 4).

In three dimensions, tetrahedral (T) and octahedral (O) layers may stack in various ways. The arrangement of both

layers can be better understood if they are represented through atomic planes, as outlined in Figure 5.

4

2+ 3+
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The first plane corresponds to the basal plane of the tetrahedral layer. Silicon atoms are placed in the second

plane, occupying part of the space in the basal plane of each tetrahedron (Figure 4). In a third plane, the unshared

oxygens (also called apical oxygen) are located just above the silicon, ending up occupying the remaining space,

as depicted in Figure 4. In this way, the arrangement of these three planes constitutes the fundamental unit of the

tetrahedral layers (Figure 5).

The union between tetrahedral and octahedral sheets occurs with the apical oxygen, linked to Mg  or octahedral

Al . However, not all the vertices of the octahedral basal plane, formed in part by the apical oxygen, would be

shared with the silicon atoms contained in the tetrahedra, so the charge balance occurs when they bind to a

hydrogen atom (H), forming hydroxyl groups (OH), as shown in Figure 4 and Figure 5. Thus, the basal plane of

the octahedron forms part of the superior plane of the tetrahedra and completes the third plane. It should be noted

that all planes represent a hexagonal lattice, while the third plane forms a centered hexagonal lattice, as shown

in Figure 4.

The fourth plane consists of the arrangement of octahedral Mg  or Al  atoms. These atoms are located in the

small free spaces left by every two apical oxygens and one OH group, as shown in Figure 6.

The octahedral Mg   covers all positions in the trioctahedral plane (Figure 6a). However, the octahedral

Al  covers just two positions of three vacancies, and it is called the dioctahedral plane (Figure 6b). Nonetheless,

this plane is within hexagonal networks.

The fifth plane corresponds to the superior plane of the octahedra (showed in Figure 5). If the structure ends in this

plane, the clay has a T:O sequence (also known as 1:1 structure). However, if another tetrahedral layer is added, a

sandwich-type T:O:T sequence is formed. The 1:1 sheet silicate is 7 Å thick, while the 2:1 sheet silicate is about 9

Å thick (Figure 7). Thus, the sheet silicates originate from the stacking of parallel planes with hexagonal

symmetries, alternating the planes of ions (O and OH) and cations (Si , Al , and Mg ).
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Most sheet silicates are monoclinic or triclinic, and have several different polymorphs related to how T:O:T and T:O

sheets stack to each other. Figure 8 shows a representative diagram of the 1:1 and 2:1 sheet silicates to better

visualize the structural arrangement described. Table 1 shows the classification of clay minerals according to their

structural configuration.

Table 1. Classification of clay minerals.

Structure Dioctahedral Trioctahedral

T:O
Kaolinite group 

Serpentine group 

Pyrophyllite Talc

[8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24]
[25]

[26][27]
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Structure Dioctahedral Trioctahedral

T:O:T

Smectite group 

Montmorillonite 
Saponite

Beidellite Hectorite

Nontronite Stevensite

Vermiculite group 

Illite

Mica group 

Muscovite Biotite

Paragonite Phlogopite

  Lepidolite

T:O:T:o
Chlorite group 

Paligorskite Sepiolite

Montmorillonite (discovered by Damour and Salvetat in Montmorillon, France) is currently the most widely used

mineral clay to prepare polymer nanocomposites. It is a smectite-type clay belonging to the 2:1 sheet silicates and

is composed of aluminosilicates (Al ). Montmorillonite clay has a high reaction capacity, exceptional resistance,

and a large aspect ratio.

2. Cation Exchange Capacity

The ability to absorb a certain amount of cations and retain them in an exchangeable state is known as the cation

exchange capacity (CEC), expressed in terms of milliequivalents per 100 g (meq/100 g) {Formatting Citation}. The

charge of the layer is not locally constant as it varies from layer to layer and must instead be considered an

average value over the whole crystal. The importance of knowing the CEC is that the sheets are not electrically

neutral due to isomorphic substitutions, where others replace cations such as Si   with a lower charge (Al ),

promoting an excess of negative charge. In this case, the load balance is maintained by the presence of individual

cations (as in the micas group) or hydrated cations (as in the case of vermiculites and smectites) in the interlaminar

space, which is the existing space between two consecutive sheets, also known as “galleries” (Figure 9a). When

the hydrated cations are ion-exchanged with organic cations such as more bulky alkylammonium, it usually results

in a larger interlayer spacing.

[28][29][30][31][32][33][34][35][36][37][38][39][40][41][42]

[43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62]

[63][64][65][66][67][68][69][70][71][72][73][74][75]

[12][76][77][78][79][80]

[79][81][82][83][84][85][86][87][88][89][90][91][92][93][94][95][96][97][98][99][100][101][102][103][104][105][106][107]

[108][109][110][111][112][113][114][115][116][117][118][119][120][121][122][123][124]

[125][126][127][128][129][130][131][132][133]
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Among the most frequent interlaminar cations are alkalines (Na  and K ) and alkaline earth (Mg ). The hydrated

cations such as water and different polar liquids increase the interlaminar space by swelling effect. If the

interlaminar cations coordinate with OH groups, an octahedral layer would be formed within the interlaminar space

(as chlorites,  Table 1), developing structures T:O:T:o or 2:1:1, as represented in  Figure 9b. In this case, the

number 2 represents the two tetrahedral layers, while 1:1 indicates that the layers of the octahedra differ from each

other since the interlaminar octahedra do not share vertices with the tetrahedra.

The bonding forces that join the sheets with the interlayer are weaker than those existing between the ions of the

same sheet, so the phyllosilicates have a clear parallel direction of exfoliation.

3. Coupling Agents

+ + 2+
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In the first instance, clay minerals can only be miscible with hydrophilic polymers. Therefore, the use of coupling

agents is necessary to make both phases compatible. These agents are fundamental molecules constituted by a

hydrophilic functionality (related to clays) and by an organophilic functionality (related to the polymer), which favors

the molecular compatibility between the sheets of the clay and the polymer chains.

The first coupled agents used to obtain nanocomposites were amino acids . However, the most popular are

alkylammonium ions, since they can easily be exchanged with the cations in the galleries. The alkylammonium ions

are primary alkylamines . Its basic formula is:

(1)

where  n  represents the chain length, which ranges from 1 to 18 carbons. Lan et al.  highlighted that the

exfoliation of the sheets is favored when ions with a chain length greater than eight carbon atoms are used, while

with shorter chains, it led to the formation of agglomerated structures.

Ideally, the alkylammonium ions can be accommodated in various ways within the galleries, depending on the

charge density of the clay minerals. Thus, the ions adopt monolayer, bilayer, or paraffin-like monolayers , as

outlined in Figure 10.

Figure 10.  Schematic representation of the configuration of alkylammonium ions within the galleries of clays.

Schematic figure based on Lagaly  with permission from Elsevier.

4. Nanocomposite Structures

Depending on the nature of the composite constituents (layered silicate, organic cation, and polymer matrix) and

the method of preparation, three main types of composite may be obtained. Thus, polymer nanocomposites can be

classified according to their morphology into agglomerates, intercalated, and exfoliated structures, as represented

in Figure 11.

[134]

[135][136]

CH3−(CH2)n−NH3+ 

[137]

[138]

[139]
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Figure 11. Schematic representation of the nanocomposite structures. Schematic figure based on Beyer  with

permission from Elsevier.

Agglomerated composites are formed when the polymer is unable to intercalate between the sheets of clay. In this

way, two separate and well-defined phases are obtained, where the sheets remain joined and aligned parallel to

each other. It is common to classify the properties of these materials within the microcomposites. Some authors

refer to the agglomerated composites as tactoids  or low-packing nanocomposites since there are no

variations in the interlaminar space .

In the case of intercalated composites (also classified as flocculated ), the polymer chains are intercalated

between the sheets of the clay, increasing the interlaminar space, obtaining a morphology of multiple highly

ordered sheets.

Exfoliated nanocomposites contain sheets entirely separated and dispersed within the polymer matrix. This type of

exfoliated structure presents relevant mechanical properties due to the high aspect ratio of single sheets. However,

this structure is difficult to obtain, and three main processing strategies are commonly used.

5. Polymer Intercalation in Solution

The clay mineral is suspended in a polar organic solvent such as water, toluene, ethanol, etc., forming a gel-like

structure. Subsequently, the polymer is dissolved and dispersed in the same type of solution, and the reaction is

initiated by mixing the solutions, where polymer chains start to fill spaces in the galleries. Then, the solvent is

removed by evaporation, obtaining the nanocomposite with a multilayered structure, as outlined in Figure 12.

[140]

[1][138]

[1][5]

[2]
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Figure 12. Schematic representation of polymer intercalation in solution. Schematic figure based on Zanetti 

with permission from John Wiley and Sons, and Unalan  from RSC Adv. Open Access.

The nanocomposites obtained through this method are highly selective since the polymer and clay minerals

possess different physical and chemical properties. The solvent is also essential because it is expensive and not

environmentally friendly for large-scale production.

6. In Situ Polymerization

In this method, the galleries are expanded using a liquid monomer or a monomer in solution. The polymerization

starts by the diffusion of an organic initiator or by catalysis through exchangeable cations (Figure 13) . After

polymerization termination, the solvent is evaporated, and the nanocomposite is ready for further modification. The

in situ polymerization should be the best method to obtain high intermolecular distance between the clay layers.

However, this method contains similar drawbacks to the solution-based method due to large-scale difficulties and

environmental considerations.

[141]

[142]

[143]
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Figure 13.  Schematic representation of in situ polymerization. Schematic figure based on Zanetti  with

permission from John Wiley and Sons, and Unalan  from RSC Adv. Open Access.

7. Melt Blending Process

This method consists of mixing both phases (polymer and clay minerals) under the action of a high-temperature

shear force. Melt intercalation is used for synthesizing thermoplastic polymer nanocomposites at a large scale. This

procedure is compatible with industrial processes such as extrusion, making it more economical, convenient, and

environmentally friendly because solvents are not required. However, the high temperatures during the extrusion

process (up to 220 °C) can degrade the coupling agents (clay minerals modified with alkylammonium).

In a broad definition, the extrusion process refers to any transformation operation in which molten material is forced

through a die to produce an article of constant cross-section and, in principle, indefinite length. In addition to

plastics, many other materials are processed by extrusion, such as metals, ceramics, or food, obtaining very varied

products such as aluminum or PVC window frames, pipes, pasta, etc. From a plastics point of view, extrusion is

one of the essential transformation processes. The polymer is generally fed in solid form (commonly dust or pellet)

in the hopper section and exits the extruder in the molten state. On some occasions, the polymer can be fed in

molten form from a reactor where the extruder acts as a pump, providing the necessary pressure to pass the

polymer through the nozzle. The extrusion process is frequently used to mix distinct materials, additives, and fillers

to add better performance, reduce costs, and obtain multiple functionalities. These new formulations are further

processed to create components or preforms using injection molding, blow molding, or thermoforming techniques.

Although there are various types of extruders, the most widely used are single-screw and twin-screw extruders.

Specifically, a single-screw extruder can perform six main functions: transporting the solid material towards the

melting zone, melting the polymer, pumping the melt, mixing, degassing, and forming. However, not all of the

above functions necessarily take place during the operation of the extruder. According to the purpose, the extrusion

[141]

[142]
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process starts with the material feeding system, a melting-plasticizing system, the pumping, and a pressurization

system, generating a mixing effect.

It is common to find in the literature that single-screw extruders have poor material mixing due to their design.

However, it is essential to consider many other factors that affect the end product, such as the wear of extruder

working parts, rotational speed, pressure, nozzle type, and many more. In addition, the extruders are not just used

for mixing but also for producing various materials, e.g., direct molding at the nozzle, injection into the die, etc.

Ekielski et al.  evaluated the wear status of the single-screw extruder working elements based on die pressure

and screw load values changes. The changes to these parameters were analyzed as a frequency spectrum using

wavelet analysis tools. Due to the dynamic characteristics of the process in determining natural frequencies, the

authors used the Morlet wavelet transform, observing that it is possible to accurately evaluate the degree of wear

of the friction elements in a single-screw extruder.

Extrusion technology is also used in the food processing industry, known as extrusion-cooking, to produce so-

called engineered foods and special feed. Leszek Moscicki and Dick J. van Zuilichem detailed an interesting work

related to extrusion-cooking using single-screw extrusion technology . The authors mentioned that the shear

exerted by the rotating screw and the additional heating of the barrel promote a rheological modification. The

physical aspects such as heat transfer, mass transfer, impulse transfer, residence time, and residence time

distribution have a substantial impact on the properties of food and feed during extrusion-cooking and can

drastically influence the quality of the final product.

Twin-screw extruders provide a much higher degree of shear than single-screw extruders, and the screw rotation

can be co-rotating or counter-rotating. Therefore, this process can be too aggressive for some applications; even

so, the high shear promotes twin-screw extrusion to prepare clay-based polymer nanocomposites (Figure 14).

However, the single-screw extrusion should be considered for producing starch-based bionanocomposites or other

natural composites.

Figure 14. Schematic representation of the production process using twin-screw extrusion.

[144]

[145]
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The literature is consistent in stating that the extrusion process leads to the development of intercalated structures.

However, exfoliated structures can develop if there is high molecular compatibility between the phases, and in

many instances, the use of additives is required (Figure 15).

Figure 15. Schematic representation of intercalated structures for melt blending. Schematic figure based on Vaia

 with permission from American Chemical Society, Copyright 1997.

Some authors  evaluated the influence of the extrusion process on the morphology of polymer

nanocomposites. In this way, Dennis et al.  observed that a single screw extruder did not provide sufficient

shear to separate or fracture the clay layers and did not offer an adequate residence time for layer dispersion. On

the other hand, intercalated structures and some agglomerations are present when using a twin-screw extruder

under the co-rotating configuration. By using the counter-rotating configuration, a high level of exfoliation was

achieved.

Fornes et al.  found that the design of the extrusion screws also conditioned the morphology of the

nanocomposites. The low- and medium-cut spindles developed interleaved structures, while a high-shear design

obtained a high level of exfoliation.

Based on the previous studies, it is possible to consider that using a counter-rotating twin-screw extruder with high-

or medium-shear screws should favor the exfoliation of the clay sheets. Nonetheless, it is important to consider that

factors such as molecular compatibility and good processing conditions (dosage rate, temperature, and residence

time, among others) are necessary for optimal exfoliation .

During the twin-screw extrusion process, the exfoliation mechanism begins with the fracture of the particles and the

sliding of the sheets until they become stacked sheets of smaller size, as schematized in Figure 16a. This first

phase requires a high shear intensity. Subsequently, the polymer is sandwiched between the sheets, taking

advantage of their flexibility to increase the distance between them. This second phase requires both high shear

and good molecular compatibility (Figure 16b). Finally, the exfoliated sheets are randomly dispersed within the

matrix (Figure 16c), requiring adequate residence time .

[146]

[147][148][149]

[148]

[149]

[150]

[7][151]



Clay-Based Polymer Nanocomposites | Encyclopedia.pub

https://encyclopedia.pub/entry/12657 15/31

Figure 16.  Schematic representation of the exfoliation mechanism of the clay platelets during the twin-screw

extrusion process: (a) fracture and sliding of the sheets, (b) intercalation, (c) exfoliation. Schematic figure based on

Fornes  with permission from Elsevier.

It is important to note that an intense shear does not guarantee a more significant number of exfoliated sheets.

Similarly, a longer residence time does not provide better dispersion. For this reason, a large number of studies

have focused on developing processing conditions that allow for increasing the level of exfoliation by using the melt

intercalation process .

It is possible to consider the average dimensions of each particle: length (ℓ ), thickness (t ), and aspect ratio (ℓ /t ).

Some authors  detailed that the increase in ℓ  can be related to the sliding of the sheets that occurred during the

twin-screw extrusion process, which can be defined as effective particle length, as shown in Figure 17.

[152]

[153][4][7][149][151][154]

p p p p

[7]
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Figure 17.  Schematic representation of the effective length and thickness of the clay particles present in

nanocomposites with a certain degree of intercalation. Schematic figure based on Fornes  and Chavarria 

with permission from Elsevier.

The clay-based polymer nanocomposites have gained the attention of academics and industry in recent decades.

Integrating small percentages of clay minerals into the polymer matrix improves the mechanical properties

compared to neat polymers. Properly dispersed and aligned clay platelets have proven to be very effective for

increasing stiffness without altering the polymer density. There is extensive literature regarding the mechanical

properties of polymers enhanced by low clay content, as summarized in Table 2.

Table 2. Mechanical properties for clay-based polymer nanocomposites.

Mechanical
Test References

Tensile

Compression

Bending

References
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