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A variety of techniques are available for monitoring metal corrosion in electrolytes. However, only some of them

can be applied in the atmosphere, in which case a thin discontinuous electrolyte film forms on a surface. Traditional

and state-of-the-art real-time corrosion monitoring techniques include atmospheric corrosion monitor (ACM),

electrochemical impedance spectroscopy (EIS), electrochemical noise (EN), electrical resistance (ER) probes,

quartz crystal microbalance (QCM), radio-frequency identification sensors (RFID), fibre optic corrosion sensors

(FOCS) and respirometry.
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electrochemical impedance spectroscopy  electrochemical noise  electrical resistance probes
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1. Introduction

The atmospheric corrosion of metallic materials has huge financial, environmental and cultural implications. In

2016, the Association for Material Protection and Performance (AMPP) published the International Measures of

Prevention, Application, and Economics of Corrosion Technologies (IMPACT) report, which estimated the global

cost of corrosion to be equivalent to 3.4% of the global Gross Domestic Product. They calculated that by using the

available corrosion control techniques, it would be possible to save between 15 and 35% of the total corrosion cost

. Alongside financial losses, undetected corrosion can cause sudden industrial and transport failures that may

result in environmental catastrophes and hazards that endanger health and lives. Furthermore, corrosion is known

to induce irreversible damage in, or even destruction of, unique cultural artefacts.

Atmospheric corrosion is a complex process of interaction between materials and the environment. Environmental

corrosivity is dependent on various parameters, including relative humidity (RH), temperature (T) and air pollutant

concentrations. Thus, understanding the corrosion of metallic materials requires detailed knowledge of these

parameters and their effect on the underlying corrosion processes . The main tools used to assess environmental

corrosiveness, corrosion progression, material corrosion behaviour and the effects of coatings and inhibitors,

involve cumulative or real-time monitoring of corrosion rates and environmental parameters, and frequent

equipment inspections. This review is focused on real-time corrosion monitoring, which we define as a long-term

instantaneous measuring of parameters directly linked to corrosion loss.

[1]

[2]
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Many real-time corrosion monitoring techniques have been developed for monitoring of metal corrosion in

electrolytes. However, their applicability is limited under atmospheric conditions, under which a thin electrolyte layer

is formed on a metallic surface. This limitation particularly relates to electrochemical methods that require a

conductive connection between the electrodes. Modified electrochemical and non-electrochemical real-time

corrosion monitoring techniques have been developed for use in both indoor and outdoor atmospheres. Such

techniques are designed to meet the requirements of easy measurement and data interpretation, direct corrosion

rate determination, rapid responses to changes in corrosivity and wide applicability in environments with different

influences on corrosivity . In the last decade, these techniques have evolved, but no paper summarizing the

developments has been published.

2. Comparison of Atmospheric Corrosion Monitoring
Techniques

Studies applying the real-time atmospheric corrosion monitoring techniques described in the previous sections are

summarised in Table 1 in terms of environments, sensing materials, ranges of detected corrosion rates and

suitability for localised corrosion detection.

Table 1. Summary of studies applying real-time atmospheric corrosion monitoring.

[3]

Technique Environment * Sensing
Metal **

Range of Measured
Corrosion Rates ***,

[µm·a ]
References

Localised
Corrosion
Detection

ACM 

Outdoor
exposures

Fe 1 × 10 –1 × 10

–

Zn Not calculated

ACTs Fe 1 × 10

Laboratory
tests

Fe 1 × 10 –1 × 10

Zn 1 × 10 –1 × 10

Cu 1 × 10 –1 × 10

Al 1 × 10 –1 × 10

ER

Outdoor
exposures

Fe 1 × 10 –1 × 10

Zn 1 × 10 –1 × 10

Cu 1 × 10 –1 × 10

ACTs Fe 1 × 10 –1 × 10

−1

1

−1 2
[4][5][6][7][8][9]

[10][11][12]

[13]

2 [14]

1 3 [15][16]

1 3 [15][16]

1 3 [15]

1 3 [15]

−1 3 [17][18][19] [3][20][21]

−1 1 [18]

−1 0 [22]

1 3 [2][23][24][18][25]
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Technique Environment * Sensing
Metal **

Range of Measured
Corrosion Rates ***,

[µm·a ]
References

Localised
Corrosion
Detection

Zn 1 × 10 –1 × 10

Cu 1 × 10

Al 1 × 10 –1 × 10

Laboratory
tests

Fe 1 × 10 –1 × 10

Cu 1 × 10 –1 × 10

Ag 1 × 10 –1 × 10

Zn 1 × 10 –1 × 10

Pb 1 × 10 –1 × 10

Indoor
exposures

Cu 1 × 10 –1 × 10

Ag 1 × 10 –1 × 10

Pb 1 × 10 –1 × 10

EIS 

Outdoor
exposures

Fe 1 × 10 –1 × 10

Cu 1 × 10 –1 × 10

ACTs Fe 1 × 10 –1 × 10

Laboratory
tests

Fe 1 × 10 –1 × 10

Zn-
coated
steel

1 × 10 –1 × 10

Zn 1 × 10

Cu 1 × 10 –1 × 10

EN 
Outdoor

exposures

Fe 1 × 10 –1 × 10

Cu 1 × 10 –1 × 10

−1
[26][27]

0 3 [2][23][24]

3 [2]

−1 1 [20]

−3 1 [2][3][28]

−3 −1 [2][29][30][28]

−3 1 [29][30][31]

0 2 [2]

−3 2 [32][33][34]

−3 −1
[29][35][36][37]

[38][39]

−3 −1
[29][35][36][38]

[40]

−2 1 [36][38][41]

2

−1 1 [42][43]

[44][45]

2 3 [22]

2 3 [46]

−1 4
[47][48][49][50]

[51]

0 3 [52][53][54][55]

1 [56]

−1 1 [57][58][22]

3

−1 1 [44][59]

[44][59][45][60]

−2 2 [61][60]
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* Outdoor exposures–field exposures outdoors; ACTs–standardised accelerated corrosion tests; Laboratory tests–

non-standardised tests in laboratories, e.g., wetting/drying cycles, thin electrolyte layers application, increased T

and RH, pre-contamination; Indoor exposures–exposures in real indoor environments. ** Symbols Fe, Al, Zn, Cu

and Mg refer to both pure metals and their alloys. Zn-coated Fe refers to zinc-coated steels. *** For easy

orientation, and as exact values of minimum and maximum detected corrosion rates are often not given in the

studies, they are summarised in orders of magnitude of µm·a  here.  In reference , the lowest detectable Fe

corrosion rate of 7.7 µm a  was calculated.  R  (R ) evolution in time is commonly used as a corrosion

indicator instead of calculated corrosion rate as Tafel slopes are not usually known for systems under investigation,

as, for example, for corrosion monitoring of Fe , Zn and Zn-coated steel , Cu , Al 

 and Sn .  More frequently, R , ECN and/or EPN evolution in time is used as a corrosion indicator instead of

corrosion rate, as, for example, for corrosion monitoring of Fe  and Al .  Mass gain in time is frequently

presented as a direct measurement output instead of thickness loss in time, as, for example, for corrosion

monitoring of Ag , Cu , Pb  and Fe .  For pre-corroded historical iron

artefacts, when the corrosion mechanism is not known, ORR rate cannot be re-calculated to corrosion rate and

oxygen consumption is used as a corrosion indicator .

 

 

 

A comparison of the techniques is given in Table 2. In the first column, current applications are described, whereas

their potential applications are suggested in the second column based on the operation principle. The sensitivity is

defined in general categories for a quick orientation. The number of suppliers of commercial products is an

important indicator of the applicability in service. Finally, main advantages and drawbacks of the techniques are

summarised in the last two columns.

Table 2. Comparison of atmospheric corrosion monitoring techniques.

Technique Environment * Sensing
Metal **

Range of Measured
Corrosion Rates ***,

[µm·a ]
References

Localised
Corrosion
Detection

QCM 

Laboratory
tests

Cu 1 × 10 –1 × 10

–

Ag 1 × 10 –1 × 10

Indoor
exposures

Cu 1 × 10 –1 × 10

Ag 1 × 10 –1 × 10

Co 1 × 10 –1 × 10

RFID

ACTs Fe 1 × 10 –1 × 10

Laboratory
tests

Zn 1 × 10

FOCS  Fe No data for atmospheric corrosion –

Respirometry Laboratory
tests

Fe 1 × 10 –1 × 10

Cu 1 × 10 –1 × 10

Al 1 × 10 –1 × 10

Mg 1 × 10 –1 × 10

−1

4

−1 0 [62]

−3 −2
[63][64][65][66]

[67][68]

−3 −1 [36][69]

−2 −1 [36][40][69]

−2 −1 [69]

2 3 [70][71]

[72][73]

1 [72][74][73]

5

−1 2 [75][76]

[77][78]

−2 −1 [75]

−1 0 [77]

1 3 [77][78]

−1 1 [6]

−1 2
p

−1
ct

−1

[79][80][81][82][83] [84][85] [86][79][87][62] [88]

[89] [53] 3
n

[90][91] [92][45] 4

[69][63][64][65][66][67][68] [69][93][62][94][95] [96][97] [95] 5

[98][99][100][101][102]

Technique Current
Applications

Potential
Fields of

Application

Sensitivity
*

Commercial
Suppliers

Main
Advantages

Main
Drawbacks

Coupons

Indoor and
outdoor

corrosivity
classification
according to
standards

Verification of
other

techniques

Applicable in
any

environment

High at
long

exposure
times,

otherwise
medium

Several

Standardised
technique
Easy data

interpretation

No real-time
data

Time-
consuming

ACM Outdoor
monitoring

TOW
assessment

Outdoor and
indoor at

higher RH

Medium 1 Not sensitive
to

temperature
fluctuations
Suitable for

harsh outdoor
environments

Corrosion
acceleration

due to
galvanic
coupling

Unclear data
interpretation
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Technique Current
Applications

Potential
Fields of

Application

Sensitivity
*

Commercial
Suppliers

Main
Advantages

Main
Drawbacks

during rainfall
Electrolyte
presence
required

EIS

Laboratory
tests at

higher RH
and under

thin
electrolyte

layers
Assessment
of protective

coatings

Outdoor and
indoor at

higher RH
Medium 0

Information
about

corrosion
mechanism

Non-
destructive
assessment
of coatings

Knowledge
about

investigated
system

needed for
correct data

interpretation
Electrolyte
presence
required
Unclear

results under
very thin

electrolyte
layers and in
presence of

thick corrosion
products

EN
Outdoor
corrosion

monitoring

Outdoor and
indoor at

higher RH
Medium 0

Localised
corrosion
detection
Corrosion

mechanism
determination

Complex and
unclear

interpretation
Electrolyte
presence
required

ER

Indoor and
outdoor

corrosion
monitoring,
laboratory

studies
Corrosivity

classification

Applicable in
any

environment
High 4

Universal
technique

High
sensitivity

Easy
operation and

data
interpretation
Optimal for

uniform
corrosion

monitoring

Sensitive to
temperature
fluctuations

Limited
possibilities in
monitoring of
non-uniform

corrosion

QCM Indoor
corrosivity

classification
Laboratory

tests

Indoor at
lower

corrosivity

High 2 High
sensitivity
and short
response

time

Sensitive to
temperature
fluctuations,
moisture and

pollutants
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* Low sensitivity–corrosion detection in high-corrosive outdoor environments. Medium sensitivity–detection of

corrosion rate in an order of 10 µm·a  and higher corresponding to outdoor corrosivity. High sensitivity–detection

of corrosion rate in an order of 1 × 10  µm·a  and higher corresponding to indoor corrosivity.

 

Metallic coupons are used for both indoor and outdoor corrosivity classification according to several standards. The

technique is universal and provides easy-to-interpret results, but the corrosivity assessment using coupons is time-

consuming and does not allow for real-time monitoring.

ACM is suitable for outdoor corrosion monitoring and assessment of time of wetness (TOW). The data have been

used as an input for prediction models. The measurement is not sensitive to temperature fluctuations and showed

a good correlation to mass loss of corrosion coupons. The main disadvantages of the technique are the necessity

for the electrolyte presence to provide connection between electrodes, corrosion acceleration of the less noble

metal caused by galvanic coupling and unclear data interpretation during rainfall and condensation, when the

current output increases steeply. Future development of the technique should aim at the improvement of data

interpretation algorithms, particularly for the rainfall effect correction.

Similarly to ACM, EIS and EN techniques require a continuous layer of electrolyte to connect the electrodes to be

present on the surface. EIS proved to be able to generate useful laboratory or short-term outdoor data in

atmospheric exposure conditions. However, it is not considered to be fit for long-term monitoring due to the

complex signal interpretation and insufficient stability. EN has been tested outdoors. The main advantage of this

method is its potential for localised corrosion detection and corrosion mechanism assessment, but the

interpretation of its data is complex, and there is no generally valid data treatment method allowing for a direct

corrosion rate calculation from the measured EN signal. The further development of the EN data processing

procedure is thus of great importance.

ER is a universal technique that can be recommended for both indoor and outdoor measurements, as a

compromise between sensitivity and lifetime can be found by a correct choice of sensor thickness. Sensors made

of a wide range of metals and alloys are available. The method is suitable for long-term monitoring of uniform

corrosion, providing direct and easy-to-interpret corrosion loss data. The measurement sensitivity to rapid

Technique Current
Applications

Potential
Fields of

Application

Sensitivity
*

Commercial
Suppliers

Main
Advantages

Main
Drawbacks

Electrolyte
presence not

required

presence
Not suitable

for harsh
environments

RFID
Laboratory

tests

Outdoor and
indoor at

higher
corrosivity

Low 0

Compact and
wireless

Electrolyte
presence not

required

Further
development

needed

FOCS
None for

atmospheric
corrosion

Not clear yet,
as the

technique is
at the

development
stage

Not
available

0
Not known for atmospheric

corrosion yet

Respirometry
Laboratory

tests

Not clear yet,
as the

technique is
at the

development
stage

High 0

High
sensitivity

Information
about

corrosion
mechanism
Electrolyte

presence not
required

Sensitivity to
RH,

temperature
and pressure
fluctuations

Further
development

needed

−1

−3 −1
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temperature fluctuations which cannot be fully compensated by the reference part may, however, require additional

data processing. Along with thermal noise elimination and filtering, the ability of the technique to detect localized

corrosion should be considered as beneficial rather than disadvantageous and quantified in future studies.

QCM is an extremely sensitive technique used for corrosivity classification indoors and for laboratory studies of

corrosion mechanisms. Due to its sensitivity to moisture, pollutants’ presence and temperature fluctuations, it is not

suitable for exposures in harsh environments.

RFID is a state-of-the-art technique currently under development. It is probable to be applicable for corrosion

monitoring in service in the future, especially under conditions which require compact wireless solutions. However,

there is no ready-to-use solution available yet, as a number of technical obstacles need to be solved first.

FOCS is a technique potentially feasible for monitoring of atmospheric corrosion, but so far it has been developed

and applied only for corrosion monitoring in concrete.

Respirometry is a highly-sensitive method which can provide information about corrosion rate and mechanisms.

For these purposes, it has been used within laboratory investigations. The technique was tested as an indicator of

historical artefacts’ degradation. It can be difficult to use it for real-time corrosion monitoring due to its sensitivity to

RH, temperature and pressure variations, and the necessity of placing the monitored object into a sealed box, or to

attach a sealed container to the surface.

3. Conclusions

Techniques used for real-time corrosion monitoring of metallic materials have been reviewed and compared

focusing on their use in atmospheric conditions. Based on their key characteristics, such as sensitivity, lifetime,

availability and data interpretation complexity, the following conclusions can be drawn.

Electrochemical EIS, EN and ACM methods can be recommended for the use under outdoor conditions and in

laboratory tests at higher RH when stable electric connection between electrodes in ensured.

QCM is a powerful technique for extremely low corrosion rate detection in indoor environments.

The ER technique is the most universal corrosion monitoring tool, which can be applied both in high and weakly

corrosive environments, depending on the sensor’s thickness.

Further development of the state-of-the art RFID, FOCS and respirometric techniques in the field of

atmospheric corrosion is expected. At the current stage, it is too early to evaluate their application potential.
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