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Unsupervised learning for monocular camera motion and 3D scene understanding has gained popularity over

traditional methods, which rely on epipolar geometry or non-linear optimization. Notably, deep learning can

overcome many issues of monocular vision, such as perceptual aliasing, low-textured areas, scale drift, and

degenerate motions. In addition, concerning supervised learning, researchers can fully leverage video stream data

without the need for depth or motion labels. RAUM-VO is presented here, an approach based on a model-free

epipolar constraint for frame-to-frame motion estimation (F2F) to adjust the rotation during training and online

inference. 

visual odometry  depth estimation  unsupervised learning  deep learning  robotics

1. Introduction

One of the key elements for robot applications is autonomously navigating and planning a trajectory according to

surrounding space obstacles. In the context of navigation systems, self-localization and mapping are pivotal

components, and a wide range of sensors—from exteroceptive ones, such as the Global Positioning System

(GPS), to proprioceptive ones, such as inertial measurement units (IMUs), as well as light detection and ranging

(LiDAR) 3D scanners, and cameras—have been employed in the search for a solution to this task. As humans

experience the rich amount of information coming from vision daily, exploring solutions that rely on a pure imaging

system is particularly intriguing. Besides, relying only on visual clues is desirable as these are easy to interpret,

and cameras are the most common sensor mounted on robots of every kind.

Visual simultaneous localization and mapping (V-SLAM) methods aim to optimize the tasks of motion estimation,

that is, the 6 degrees of freedom (6DoF) transform that relates one camera frame to the subsequent one in 3D

space, and 3D scene geometry (i.e., the depth and structure of the environment), in parallel. Notably, due to the

interdependent nature of the two tasks, an improvement on the solution for one influences the other. On the one

hand, the mapping objective is to maintain global consistency of the locations of the landmarks, that is, selected

points of the 3D world that SLAM tracks. In turn, revisiting a previously mapped place may trigger a loop-closure ,

which activates a global optimization step for reducing the pose residual and smoothing all the past trajectory

errors . On the other hand, visual odometry (VO)  intends to carry out a progressive estimation of the ego-

motion without the aspiration of obtaining a globally optimal path. As such, researchers can define VO as a sub-

component of V-SLAM without the global map optimization routine required to minimize drift . However, even VO

methods construct small local maps composed by the tracked 2D features, to which a depth measurement is
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associated either through triangulation  or probabilistic belief propagation . In turn, these 3D points are

needed to estimate the motion between future frames.

Unsupervised methods have gained popularity for camera motion estimation and 3D geometry understanding in

recent years . Especially regarding monocular VO, approaches such as TwoStreamNet  have shown equally

good or even superior performances compared to traditional methods, such as VISO2  or ORB-SLAM . The

unsupervised training protocol  bears some similarities with the so-called direct methods . Both approaches

synthesize a time-adjacent frame by projecting pixel intensities using the current depth and pose estimations and

minimizing a photometric loss function. However, the learned strategy differs from the traditional one because the

network incrementally incorporates the knowledge of the 3D structure and the possible range of motions into its

weights, giving better hypotheses during later training iterations. Moreover, through learning, researchers can

overcome the typical issues of traditional monocular visual odometry. For example, the support of a large amount

of example data during training can help solve degenerate motions (e.g., pure rotational motion), scale ambiguity

and scale drift, initialization and model selection, low or homogeneously textured areas, and perceptual aliasing .

However, being aware of the solid theory behind the traditional methods  and their more general applicability,

researchers leverage geometrical image alignment to improve the pose estimation.

Therefore, in this work, researchers present RAUM-VO. Researchers' approach, shown in Figure 1, combines

unsupervised pose networks with two-view geometrical motion estimation based on a model-free epipolar

constraint to correct the rotations. Unlike recent works  that train optical flow and use complex or

computationally demanding strategies for selecting the best motion model, researchers' approach is more general

and efficient. First, researchers extract 2D keypoints using Superpoint  from each input frame and match the

detected features from pairs of consecutive frames with Superglue . Subsequently, researchers estimate the

frame-to-frame motion using the solver proposed by Kneip et al. , which researchers name F2F, and use the

rotation to guide the training with an additional self-supervised loss. Finally, RAUM-VO efficiently adjusts the

rotation predictions with F2F during online inference, while retaining the scaled translation vectors from the pose

network.
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Figure 1. RAUM-VO block diagram. The figure shows the flow of information inside RAUM-VO from the input

image sequence to the final estimated pose between each pair of consecutive image frames.

2. Background on SLAM

The difference between SLAM and VO is the absence of a mapping module that performs relocalization and global

optimization of the past poses. Aside from this aspect, researchers can consider contributions in monocular SLAM

works seamlessly with those in the VO literature. A primary type of approach to SLAM is filter-based, either using

extended Kalman filters (EKFs) (as in MonoSLAM ) or particle filters (as in FastSLAM ), and keyframe-based

, referred in robotics to as smoothing . This name entails the main difference between keyframe-based and

filtering. While the first optimizes the poses and the landmarks associated with keyframes (a sparse subset of the

complete history of frames) using batch non-linear least squares or bundle adjustment (BA) , the latter

marginalizes past poses’ states to estimate the last at the cost of accumulating linearization errors . In favor of

bundle adjustment, Strasdat et al.  show that the accuracy of the pose increases when the SLAM system tracks

more features and that the computational cost for filtering is cubic in the number of features’ observations,
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compared to linear for BA. Thus, using BA with an accurate selection of keyframes allows more efficient and robust

implementations of SLAM. Unsupervised methods are more similar to the keyframe-based SLAM. The motion is

not the result of a probabilistic model propagation and a single-step update but of an iterative optimization to align

a batch of image measurements.

Motion estimation approaches fall into either direct or indirect categories based on the information or

measurements included in the optimized error function. The direct method  includes intensity values in a non-

linear energy function representing the photometric difference between pixels’ or patches’ correspondences. These

are found by projecting points from one frame to another using the current motion and depth estimation, which is

optimized either through the Gauss–Newton or Levenberg–Marquardt method. Instead, indirect methods 

leverage epipolar geometry theory  to estimate motion from at least five matched 2D point correspondences, in

the case of calibrated cameras , or eight, in the case of uncalibrated cameras . After initializing a local map

from triangulated points, perspective-n-point (PnP)  can be used with a random sample consensus (RANSAC)

robust iterative fitting scheme  to obtain a more precise relative pose estimation. Subsequently, local BA refines

the motion and the geometrical 3D structure by optimizing the reprojection error of the tracked features.

3. Related Work

Unsupervised Learning of Monocular VO

The pioneering work of Garg et al.  represents a fundamental advancement, because they approached the

problem of depth prediction from a single frame in an unsupervised manner for the first time. Their procedure

consists of synthesizing a camera’s depths in a rectified stereo pair by warping the other using the calibrated

baseline and focal lengths. Godard et al.  use the stereo pair to enforce a consistency term between left and

right synthesized disparities, while adopting the structural similarity (SSIM) metric  as a more informative visual

similarity function than the L1

loss. SfM-Learner  relies entirely on monocular video sequences and proposes the use of a bilinear

differentiable sampler from ST-Nets  to generate the synthesized views.

Because the absolute metric scale is not directly observable from a single camera (without any prior knowledge

about object dimensions), stereo image pairs are also helpful to recover a correct metric scale during training while

maintaining the fundamental nature of a monocular method . Mahjourian et al.  impose the scale

consistency between adjacent frames as a requirement for the depth estimates by aligning the 3D point clouds

using iterative closest point (ICP) and approximating the gradients of the predicted 6DoF transform. Instead, Bian

et al. , arguing that the previous approach ignores second-order effects, show that it is possible to train a

globally consistent scale with a simple constraint over consecutive depth maps, allowing one to reduce drift over

long video sequences. In , a structure-from-motion (SfM) model is created before training and used to infer a

global scale, using the image space distance between projected coordinates and optical flow displacements. More

recently, several approaches  have leveraged learned optical flow dense pixel correspondences to recover
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up-to-scale two-view motion based on epipolar geometry. Therefore, they resolve the scale factor by aligning a

sparse set of points with the estimated depths.

One of the main assumptions of the original unsupervised training formulation is that the world is static. Hence,

many works investigate informing the learning process about moving objects through optical flow 

. The optical flow, which represents dense maps of the pixel coordinates displacement, can be

separated into two components. The first, the rigid flow, is caused by the camera’s motion. The second, the

residual flow, is caused by dynamic objects that move freely in relation to the camera frame. Therefore, these

methods train specific networks to explain the pixel shifts inconsistent with the two-view rigid motion. However,

these methods focus principally on the depth and optical flow maps quality and give few details about the impact of

detecting moving objects on the predicted two-view motion. Notably, they use a single metric to benchmark the

relative pose that is barely informative about the global performance and cannot distinguish the improvements

clearly.

A recent trend is to translate traditional and successful approaches such as SVO , LSD-SLAM , ORB-SLAM

, and DSO  into their learned variants, or to take them as inspiration for creating hybrid approaches, where

the neural networks usually serve as an initialization point for filtering or pose graph optimization (PGO) 

. However, RAUM-VO focuses on improving the predicted two-view motion of the pose network without

introducing excessive computation overhead as required by a PGO backend.

Instead of training expensive optical flow, RAUM-VO leverages a pre-trained Superpoint  network for keypoint

detection and feature description and Superglue  for finding valid correspondences. Unlike optical flow, the

learned features do not depend on the training dataset and generalize to a broader set of scenarios. In addition,

using Superglue, researchers avoid heuristics for selecting good correspondences among the dense optical flow

maps, which researchers claim could be a more robust strategy. However, researchers do not use any information

about moving objects to discard keypoints lying inside these dynamic areas. Finally, differently from other hybrid

approaches , researchers do not entirely discard the pose network output, but researchers look for a solution

that improves its predictions efficiently and sensibly. Thus, the adoption of the model-free epipolar constraint of

Kneip and Lynen  allows researchers to find the best rotation that explains the whole set of input matches

without resorting to various motion models and RANSAC schemes. To the best of researchers' knowledge,

researchers are the first to test such an approach combined with unsupervised monocular visual odometry.
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