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Unsupervised learning for monocular camera motion and 3D scene understanding has gained popularity over traditional

methods, which rely on epipolar geometry or non-linear optimization. Notably, deep learning can overcome many issues

of monocular vision, such as perceptual aliasing, low-textured areas, scale drift, and degenerate motions. In addition,

concerning supervised learning, researchers can fully leverage video stream data without the need for depth or motion

labels. RAUM-VO is presented here, an approach based on a model-free epipolar constraint for frame-to-frame motion

estimation (F2F) to adjust the rotation during training and online inference. 
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1. Introduction

One of the key elements for robot applications is autonomously navigating and planning a trajectory according to

surrounding space obstacles. In the context of navigation systems, self-localization and mapping are pivotal components,

and a wide range of sensors—from exteroceptive ones, such as the Global Positioning System (GPS), to proprioceptive

ones, such as inertial measurement units (IMUs), as well as light detection and ranging (LiDAR) 3D scanners, and

cameras—have been employed in the search for a solution to this task. As humans experience the rich amount of

information coming from vision daily, exploring solutions that rely on a pure imaging system is particularly intriguing.

Besides, relying only on visual clues is desirable as these are easy to interpret, and cameras are the most common

sensor mounted on robots of every kind.

Visual simultaneous localization and mapping (V-SLAM) methods aim to optimize the tasks of motion estimation, that is,

the 6 degrees of freedom (6DoF) transform that relates one camera frame to the subsequent one in 3D space, and 3D

scene geometry (i.e., the depth and structure of the environment), in parallel. Notably, due to the interdependent nature of

the two tasks, an improvement on the solution for one influences the other. On the one hand, the mapping objective is to

maintain global consistency of the locations of the landmarks, that is, selected points of the 3D world that SLAM tracks. In

turn, revisiting a previously mapped place may trigger a loop-closure , which activates a global optimization step for

reducing the pose residual and smoothing all the past trajectory errors . On the other hand, visual odometry (VO) 

intends to carry out a progressive estimation of the ego-motion without the aspiration of obtaining a globally optimal path.

As such, researchers can define VO as a sub-component of V-SLAM without the global map optimization routine required

to minimize drift . However, even VO methods construct small local maps composed by the tracked 2D features, to

which a depth measurement is associated either through triangulation  or probabilistic belief propagation . In turn,

these 3D points are needed to estimate the motion between future frames.

Unsupervised methods have gained popularity for camera motion estimation and 3D geometry understanding in recent

years . Especially regarding monocular VO, approaches such as TwoStreamNet  have shown equally good or even

superior performances compared to traditional methods, such as VISO2  or ORB-SLAM . The unsupervised training

protocol  bears some similarities with the so-called direct methods . Both approaches synthesize a time-adjacent

frame by projecting pixel intensities using the current depth and pose estimations and minimizing a photometric loss

function. However, the learned strategy differs from the traditional one because the network incrementally incorporates the

knowledge of the 3D structure and the possible range of motions into its weights, giving better hypotheses during later

training iterations. Moreover, through learning, researchers can overcome the typical issues of traditional monocular visual

odometry. For example, the support of a large amount of example data during training can help solve degenerate motions

(e.g., pure rotational motion), scale ambiguity and scale drift, initialization and model selection, low or homogeneously

textured areas, and perceptual aliasing . However, being aware of the solid theory behind the traditional methods 

and their more general applicability, researchers leverage geometrical image alignment to improve the pose estimation.

Therefore, in this work, researchers present RAUM-VO. Researchers' approach, shown in Figure 1, combines

unsupervised pose networks with two-view geometrical motion estimation based on a model-free epipolar constraint to
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correct the rotations. Unlike recent works  that train optical flow and use complex or computationally demanding

strategies for selecting the best motion model, researchers' approach is more general and efficient. First, researchers

extract 2D keypoints using Superpoint  from each input frame and match the detected features from pairs of

consecutive frames with Superglue . Subsequently, researchers estimate the frame-to-frame motion using the solver

proposed by Kneip et al. , which researchers name F2F, and use the rotation to guide the training with an additional

self-supervised loss. Finally, RAUM-VO efficiently adjusts the rotation predictions with F2F during online inference, while

retaining the scaled translation vectors from the pose network.

Figure 1. RAUM-VO block diagram. The figure shows the flow of information inside RAUM-VO from the input image

sequence to the final estimated pose between each pair of consecutive image frames.

2. Background on SLAM

The difference between SLAM and VO is the absence of a mapping module that performs relocalization and global

optimization of the past poses. Aside from this aspect, researchers can consider contributions in monocular SLAM works

seamlessly with those in the VO literature. A primary type of approach to SLAM is filter-based, either using extended

Kalman filters (EKFs) (as in MonoSLAM ) or particle filters (as in FastSLAM ), and keyframe-based , referred in

robotics to as smoothing . This name entails the main difference between keyframe-based and filtering. While the first

optimizes the poses and the landmarks associated with keyframes (a sparse subset of the complete history of frames)

using batch non-linear least squares or bundle adjustment (BA) , the latter marginalizes past poses’ states to estimate

the last at the cost of accumulating linearization errors . In favor of bundle adjustment, Strasdat et al.  show that the

accuracy of the pose increases when the SLAM system tracks more features and that the computational cost for filtering

is cubic in the number of features’ observations, compared to linear for BA. Thus, using BA with an accurate selection of

keyframes allows more efficient and robust implementations of SLAM. Unsupervised methods are more similar to the

keyframe-based SLAM. The motion is not the result of a probabilistic model propagation and a single-step update but of

an iterative optimization to align a batch of image measurements.

Motion estimation approaches fall into either direct or indirect categories based on the information or measurements

included in the optimized error function. The direct method  includes intensity values in a non-linear energy function

representing the photometric difference between pixels’ or patches’ correspondences. These are found by projecting

points from one frame to another using the current motion and depth estimation, which is optimized either through the

Gauss–Newton or Levenberg–Marquardt method. Instead, indirect methods  leverage epipolar geometry theory  to

estimate motion from at least five matched 2D point correspondences, in the case of calibrated cameras , or eight, in

the case of uncalibrated cameras . After initializing a local map from triangulated points, perspective-n-point (PnP) 

can be used with a random sample consensus (RANSAC) robust iterative fitting scheme  to obtain a more precise
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relative pose estimation. Subsequently, local BA refines the motion and the geometrical 3D structure by optimizing the

reprojection error of the tracked features.

3. Related Work

Unsupervised Learning of Monocular VO

The pioneering work of Garg et al.  represents a fundamental advancement, because they approached the problem of

depth prediction from a single frame in an unsupervised manner for the first time. Their procedure consists of synthesizing

a camera’s depths in a rectified stereo pair by warping the other using the calibrated baseline and focal lengths. Godard et

al.  use the stereo pair to enforce a consistency term between left and right synthesized disparities, while adopting the

structural similarity (SSIM) metric  as a more informative visual similarity function than the L1

loss. SfM-Learner  relies entirely on monocular video sequences and proposes the use of a bilinear differentiable

sampler from ST-Nets  to generate the synthesized views.

Because the absolute metric scale is not directly observable from a single camera (without any prior knowledge about

object dimensions), stereo image pairs are also helpful to recover a correct metric scale during training while maintaining

the fundamental nature of a monocular method . Mahjourian et al.  impose the scale consistency between

adjacent frames as a requirement for the depth estimates by aligning the 3D point clouds using iterative closest point

(ICP) and approximating the gradients of the predicted 6DoF transform. Instead, Bian et al. , arguing that the previous

approach ignores second-order effects, show that it is possible to train a globally consistent scale with a simple constraint

over consecutive depth maps, allowing one to reduce drift over long video sequences. In , a structure-from-motion

(SfM) model is created before training and used to infer a global scale, using the image space distance between projected

coordinates and optical flow displacements. More recently, several approaches  have leveraged learned optical

flow dense pixel correspondences to recover up-to-scale two-view motion based on epipolar geometry. Therefore, they

resolve the scale factor by aligning a sparse set of points with the estimated depths.

One of the main assumptions of the original unsupervised training formulation is that the world is static. Hence, many

works investigate informing the learning process about moving objects through optical flow 

. The optical flow, which represents dense maps of the pixel coordinates displacement, can be separated into two

components. The first, the rigid flow, is caused by the camera’s motion. The second, the residual flow, is caused by

dynamic objects that move freely in relation to the camera frame. Therefore, these methods train specific networks to

explain the pixel shifts inconsistent with the two-view rigid motion. However, these methods focus principally on the depth

and optical flow maps quality and give few details about the impact of detecting moving objects on the predicted two-view

motion. Notably, they use a single metric to benchmark the relative pose that is barely informative about the global

performance and cannot distinguish the improvements clearly.

A recent trend is to translate traditional and successful approaches such as SVO , LSD-SLAM , ORB-SLAM , and

DSO  into their learned variants, or to take them as inspiration for creating hybrid approaches, where the neural

networks usually serve as an initialization point for filtering or pose graph optimization (PGO) .

However, RAUM-VO focuses on improving the predicted two-view motion of the pose network without introducing

excessive computation overhead as required by a PGO backend.

Instead of training expensive optical flow, RAUM-VO leverages a pre-trained Superpoint  network for keypoint detection

and feature description and Superglue  for finding valid correspondences. Unlike optical flow, the learned features do

not depend on the training dataset and generalize to a broader set of scenarios. In addition, using Superglue, researchers

avoid heuristics for selecting good correspondences among the dense optical flow maps, which researchers claim could

be a more robust strategy. However, researchers do not use any information about moving objects to discard keypoints

lying inside these dynamic areas. Finally, differently from other hybrid approaches , researchers do not entirely

discard the pose network output, but researchers look for a solution that improves its predictions efficiently and sensibly.

Thus, the adoption of the model-free epipolar constraint of Kneip and Lynen  allows researchers to find the best

rotation that explains the whole set of input matches without resorting to various motion models and RANSAC schemes.

To the best of researchers' knowledge, researchers are the first to test such an approach combined with unsupervised

monocular visual odometry.
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