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Perfluorooctanoic acid (PFOA) is a new type of organic pollutant in wastewater that is persistent, toxic, and

accumulates in living organisms. The development of rapid and sensitive analytical methods to detect PFOA in

environmental media is of great importance. Fluorescence detection has the advantages of high efficiency and low

cost, in which fluorescent probes have excellent fluorescence properties, excellent bio-solubility, and remarkable

photostability. 

PFOA  fluorescence detection  fluorescent probe

1. Introduction

The chemical formula of Perfluorooctanoic acid (PFOA) is C HF O  and its structure is shown in Figure 1. PFOA

contains 15 F atoms and 8 C atoms. The C-F bond of PFOA has strong polarity and bond energy. Fluorine

surfactants of it has a higher surface activity, stronger hydrophobicity, and oleophobicity than traditional surfactants.

They are widely used in the chemical, textile, leather, paper making, and cosmetics industries. The fluorinated

surfactants of PFOA have the strongest surface activity and the most extensive application. PFOA is hard to

degrade because of its strong chemical stability and biological inertness, and can withstand strong light, heat,

chemistry, microbial action, and has a high biological metabolism. Therefore, PFOA has bioaccumulation and toxic

effect, which will threaten the ecosystem and human health.

Figure 1. The chemical structure of PFOA.

PFOA is the main active ingredient of waterproof, oil-proof, and stain-proof finishing agents, which were used in the

coatings of various special garments, fabrics, and carpets. Adding PFOA into the coating can improve the
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wettability, the dispersibility, the uniformity of the color carrier, and prevent caking. The most familiar one is the

“Non-stick pan” with a polytetrafluoroethylene (PTFE) surface coating. PFOA is one of the processing aids of PTFE

. Due to the applications of PFOA in many fields, PFOA enters the rivers, lakes, and even into drinking water. Li’s

group  found that PFOA levels in many sewage discharges in Chongqing seriously exceeded the standard and

was extremely difficult to deal with. Wang’s group  found that the contents of PFOA and PFOS in drinking water

in some areas were too high. PFOA is accumulative and transferable, so it can be found in the air, soil, and water

. This will increase the possibility of PFOA entering the body.

The damage of PFOA to the human body is enormous. PFOA can enter the human body through the skin surface

to cause PFOA to accumulate in the body, which may cause cancer. Sun’s group  found that exposure to PFOA

leads to the accumulation of ROS in BRL-3A cells, which ultimately leads to the death of the experimental subject.

In addition, PFOA has an impact on the human stomach, liver, and nervous system, even leading to cognitive

abnormalities . It also affects human sperm .

In 2006, the Environmental Protection Agency (EPA) of the United States proposed a reduction plan for PFOA .

In 2014, the Norwegian Environmental Protection Agency issued a national ban on the use of PFOA products. In

2016, the United States Toxic Substances Control Act (USTSCA) included PFOA on the list of toxic chemicals .

In 2015, China generated large quantities of fluoropolymers, and the consumption of PFOA reached 200 tons 

. Frederick Pontius  analyzed in detail the requirements of PFOA and PFOS of various international

organizations in recent years, and the regulatory agencies of more than 12 countries formulated the consultation of

PFOA in drinking water or groundwater. PFOA was included on the third drinking water contaminant candidate list

(CCL). US-EPA restricted the content of PFOA in healthy drinking water at 70 ng/L. PFOA has attracted worldwide

attention since 2016. The requirements for PFOA content in drinking water in China are still improving .

The detection of PFOA has a great social significance to people’s lives, but the effectiveness of the detection

methods is different. Therefore, the simplest, quickest, and most sensitive methods need to be explored .

2. Method of Detecting PFOA

Traditional methods of detecting PFOA include chromatography, mass spectrometry, and chromatography–mass

spectrometry. These methods often need to use expensive instruments to detect due to the unique properties of

PFOA . The fluorescence detection method is a new way to detect trace elements, and PFOA as a

trace element can be detected by it.

2.1. Liquid Chromatography-Mass Spectrometry

2.1.1. High Performance Liquid Chromatography–Tandem Mass Spectrometry (HPLC–MS/MS)

High performance liquid chromatography (HPLC) has the advantages of high accuracy, a wide separation range,

and low destruction to the material structure. Figure 2 shows the detection flow chart of HPLC. The sensitivity of
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mass spectrometry (MS) is better than any other analytical method, it is more accurate in characterizing the

structure of unknown compounds. Mass separation–mass spectra Characterization (MS–MS) allows further

cleavage of the parent atom to obtain information on the cleavage process and molecular structure, often called as

tandem mass spectrometry. HPLC–MS/MS combines the advantages of both. The chromatography can be used as

a sampling system for the mass spectrometry, and the mass spectrometry as an identifier for the chromatography.

HPLC–MS/MS has certain advantages in terms of selectivity and sensitivity .

Figure 2. Detection flow chart of HPLC.

2.1.2. High Performance Liquid Chromatography–Quadrupole-Time of Flight-Mass
Spectrometry (HPLC–Q-TOF-MS)

The mass analyzer used for HPLC–MS/MS is a low-resolution mass spectrometer, it cannot effectively distinguish

the interference when analyzing complex samples. Time of flight-mass spectrometry (TOF/MS) has certain

advantages in terms of mass range and resolution, and it has a high mass accuracy and a fast analysis speed.

Unlike low-resolution mass spectrometry, TOF/MS greatly improves the anti-interference ability in complex

backgrounds and makes the detection results more accurate and reliable . Therefore, HPLCQ–TOF-MS has a

certain optimization to analyze samples when in a complex environment, increasing the correctness of detection

.

In 2009, USEPA issued Method 537 to analyze 14 PFAS in drinking water. This method needs to use solid-phase

extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS) . However, this method needs

skilled analysts and expensive instruments to get effective results.

2.2. Gas Chromatography–Mass Spectrometry

2.2.1. GC-MS
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Because the partition coefficient of the sample in the chromatographic is different when it is in the gas or solid

phase state. Therefore, GC–MS uses this principle to complete detection by multiple distributions of the sample. In

GC–MS, the gas chromatography is used as the sampling system of mass spectrometry, while the mass

spectrometer is used for gas chromatography detection. However, the GC–MS detection process is more

cumbersome and therefore less used in applied methods .

2.2.2. Pre-Column Derivatization–Gas Chromatography

Pre-column Derivatization–Gas chromatography is an improvement on the shortcomings of GC–MS. The

derivatization technology can reduce the temperature of the target analyte and improve the signal required to

detect the target, which reduces the cost of the detection instrument and can effectively detect PFOA , such as

silanization, esterification, and acylation .

2.3. Fluorescence Detection

Traditional methods of detecting PFOA have certain advantages, but still have the shortcomings of high cost and

low universality. Fluorescence detection is the latest in current detection methods, which can detect target

substances conveniently and quickly. Zheng’s group  sensitively detected perfluorinated pollutants through

fluorescence detection.

The fluorescent probe uses fluorescent substances as indicators, and under the excitation of a certain wavelength

of light, the indicator produces fluorescence. Then, the change of fluorescent strength is detected to achieve a

qualitative or quantitative analysis of the detected substances. The signal emitted by the reporter fluorophore is

absorbed by the quenching fluorophore when the probe is intact, but the two are separated when the probe detects

the substance. In other words, the luminescent substance at the top of the fluorescent probe will specifically bind to

the detection target when the fluorescent probe reacts with the detection substance, which can cause a

fluorescence quenching reaction.

The probe can be divided into a Beacon probe and a FRET (fluorescence resonance energy transfer) probe.

Beacon mode depends on the molecular beacon accumulating fluorescence in the presence of enzymatic digestion

and cannot show the detection status in time, as shown in Figure 3a. However, the detection signal of the FRET

mode is a real-time signal, which can display the detection status in time, as in Figure 3b. Therefore, the FRET

mode will be selected when detecting trace elements. The FRET probe includes fluorescein probes, inorganic ion

fluorescent probes, fluorescent quantum dots, and molecular beacons .

[31]

[32]

[33][34]

[35]

[36]



Method of Detecting Perfluorooctanoic Acid | Encyclopedia.pub

https://encyclopedia.pub/entry/40598 5/14

Figure 3. (a) Detection principle of Beacon probe (b) Detection principle of FRET probe.

Fluorescence quenching can lower the intensity of emitted light from fluorescent molecules. Fluorescence

quenching can cause some changes including fluorescence intensity, related excitation peak changes, and

fluorescence peak position changes. The substances react with fluorescent materials causing these changes and

these processes are called fluorescence quenchers. For example, electron acceptors are fluorescence quenchers

in photosynthesis.

Fluorescence quenching can be divided into dynamic quenching and static quenching. Dynamic quenching occurs

when the fluorescence quenching between the excited state fluorescent molecule and the quencher will cause an

energy transfer or physical collision. However, for the excited state molecule, it is not necessary to complete the

direct contact between the two acting molecules. They can create optical collision effects directly. Static quenching

refers to the formation of a compound between the ground state fluorescent molecule and the quencher through

weak binding, and the compound will completely quench the fluorescence.

The principle of fluorescence quenching is the result of fluorescence resonance energy transfer (FRET) .

As shown in Figure 4, FRET is a non-radiative process formed by the interaction between dipoles and dipoles, and

the energy will be generated when donor and acceptor close to each other.
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Figure 4. Fluorescence resonance energy transfer (FRET).

A small molecule fluorescent probe is widely used to detect trace elements. It has the advantages of low cost,

simplicity of handling, and a high detection sensitivity. A fluorescent probe made of fluorescent materials has the

advantages of good hydrophilicity and multifunctional integration. It plays a significant role in detecting trace

elements. A detailed comparison can be seen in Table 1.

Table 1. Comparison table of fluorescent probes.

Category Advantages Detection
Limit

References

Small molecule
fluorescent

probes

Small molecule fluorescent probes have significant
advantages such as high sensitivity, good membrane

permeability, real-time in situ analysis, minimal biological
damage, and easy handling.

1.05 ×
10 ~5.8 ×
10  mol/L

Polymeric
fluorescent

probes

It has a long fluorescence lifetime, good biocompatibility,
and high quantum yield. It can also enhance

intramolecular electron transport and increase the
sensitivity of the probe.

0.17~2.3
μg/mL

Fluorescent
probes based on

nanomaterials

Compared with traditional fluorescent dyes, fluorescent
nanomaterials not only have high fluorescence intensity
and good light stability, but also have the characteristics
of small size effect, quantum effect, and surface effect

6.4 ×
10 ~1.225 ×

10  mol/L

−8
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Fluorescent sensors use materials that have a fluorescence effect to label the detectors and detect substances

through changes in the fluorescence signal. Fluorescent sensors have the advantages of high sensitivity and

specificity. Kelsey L. Rodriguez’s group  analyzed in detail the various drawbacks of the conventional detection

of PFASs such as GS–MS and so on, and analyzed the ability of various sensors to detect PFAs. Table 2 is a

summary of the sensors involved in it. The advantages and disadvantages of HPLC–MS/MS, HPLC–Q-TOF-MS,

GC–MS, and Pre-column Derivatization GC are also compared in Table 2.

Table 2. Advantages and disadvantages of detection methods.

Category Advantages Detection
Limit

References

that are unique to nanomaterials, which can make up for
the shortcomings of traditional fluorescent dyes.

[46]

Category Advantages Detection Limit References

Electrochemical
Sensors

Electrochemical sensors can be used to
detect chemical and biological compounds.

Molecularly imprinted polymers (MIPs)
functionalized sensors are effective in
detecting PFASs, but may have the

disadvantage of long detection times and
high costs, as well as the inability to

differentiate between similar molecules.

0.07~1.0 µg/L

Fluorescence
Sensors

Fluorescent sensors occurred fluorescence
quenching because of electron transfer
between fluorescent dyes and PFASs,

which can easily be detected using
fluorescence spectrophotometers.

However, this method can increase costs
and cause environmental hazards

2.5 ppt~120 ppb

Optical Sensors/
Colorimetric

sensors

Optical sensors/ Colorimetric sensors
usually use organic dyes and can be

detected by the naked eye based on visible
color changes. Although it is not overly

dependent on fluorescence
spectrophotometry, co-existing atoms can
interfere with the sensor. In addition, they
require a good platform to improve sensor

availability.

1 ppb~5 ppt

HPLC–MS/MS

HPLC–MS/MS is based on the principle of
using liquid chromatography monopole
mass spectrometry or multistage mass

spectrometry as the separation and
detection system. It has the advantages of

low detection limits, high resistance to
matrix effect interference, convenience, and

rapid detection. The detection limit is
approximately 0.07~0.15 μg/kg.

The method is expensive,
costly, and highly specialized
and requires a high level of

operator expertise
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After comparing the detection methods, it was finally found that the fluorescence detection method was the most

convenient and efficient, and the fluorescence probe method was more suitable to detect PFOA in wastewater.

As can be seen from Table 2, the detection effect of HPLC–MS/MS, HPLC–Q-TOF-MS, and GC–MS are not ideal

and the cost is high. The detection effect of fluorescent sensors and other methods is good, in which the optical

sensor is simple to operate, but the detection performance of rare earth up-conversion fluorescent probes is better.
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