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Microbial conjugation studies of licochalcones (1–4) and xanthohumol (5) were performed by using the fungi Mucor

hiemalis and Absidia coerulea. As a result, one new glucosylated metabolite was produced by M. hiemalis whereas

four new and three known sulfated metabolites were obtained by transformation with A. coerulea. Chemical

structures of all the metabolites were elucidated on the basis of 1D-, 2D-NMR and mass spectroscopic data

analyses. These results could contribute to a better understanding of the metabolic fates of licochalcones and

xanthohumol in mammalian systems. Although licochalcone A 4′-sulfate (7) showed less cytotoxic activity against

human cancer cell lines compared to its substrate licochalcone A, its activity was fairly retained with the IC50

values in the range of 27.35–43.07 μM.

licochalcones  xanthohumol  sulfation  microbial conjugation

1. Introduction

The licorice root, known as “Radix Glycyrrhizae”, has been used in traditional Chinese medicines for centuries to

treat respiratory infections, gastritis, tremors, and peptic ulcers . At present, there are hundreds of compounds

isolated from licorice, including flavonoids, triterpene saponins, and alkaloids which are responsible for antidiabetic,

neuroprotective, anti-inflammatory, and other bioactive effects . Licochalcones, the significant components of

licorice flavonoids, including licochalcone A (LCA, 1), licochalcone B (LCB, 2), licochalcone C (LCC, 3), and so on,

were reported to exhibit a variety of bioactivities, and can be used in food and cosmetic industries . In recent

years, licochalcones have attracted more attention from research communities due to their anticancer potential

against different kinds of cancers, such as breast, lung, and gastric cancers . Although the pharmacological

activities of licochalcones have been extensively investigated, the metabolic pathway of licochalcones in mammals

remains largely unknown. It has been reported that LCA can undergo both phase I and phase II metabolic

processes in vitro, with the formation of oxygenated and glucuronidated metabolites , and the in vivo

metabolism studies of LCA led to the determination of glucuronidated, N-acetyl-l-cysteine conjugated, and sulfated

metabolites .

In comparison to licochalcones, metabolism of xanthohumol (XN, 5) (Figure 1), a prenylated chalcone from hops,

was quite extensively examined and both in vitro and in vivo studies have been conducted. The studies using

human and rat liver microsomes resulted in the identification of hydroxylated, cyclized, and glucuronidated

metabolites . In addition, sulfate conjugated metabolites of XN were observed after using sulfotransferases

and detected in rats after administration of hop extract . However, it seems impossible to identify the
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conjugation position of the sulfate group by using the LC/MS analysis method without a respective reference

compound. It was reported that the phase II enzymes UDP-glucuronosyltransferases and sulfotransferases were

not only found in liver but also in other tissues , suggesting that LCA and XN could be also metabolized by other

organs and tissues.

Figure 1. Chemical structures of licochalcones A–C (1–3), H (4) and xanthohumol (5).

LCA and XN undergo complex biotransformation processes in mammalian systems and they are mainly

metabolized by phase II enzymes, although their interactions with cytochrome P450 enzymes cannot be excluded.

Polyphenolic substances are easy targets for conjugation reactions and these are indeed the major

biotransformation pathways of licochalcones . Therefore, it is more relevant to investigate the effects of

metabolically conjugated derivatives on human health rather than their parent compounds . Generally, sulfate

conjugation is considered as a detoxification pathway for endogenous and exogenous phenolic compounds, as the

conjugated derivatives are polar and water-soluble, which facilitates their elimination from the body .

Nevertheless, it is clear today that detoxification is not the only function of sulfation, and the biological activities of

compounds after sulfation can be retained, lowered, abolished, or even increased . For instance,

mangostin 3-sulfate exhibited stronger anti-mycobacterial activity against  Mycobacterium tuberculosis  than α-

mangostin . However, compared to the glucuronidated and methylated conjugates, the biological properties and

cellular activities of sulfated conjugates were least studied . It is important to expand the structural diversity of

sulfated derivatives via chemical or biological methods for biological studies.

2. Microbial Transformation of Licochalcone A and
Xanthohumol by M. hiemalis
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During our previous study, it was observed that licochalcones B, C, H could be  O-glucosylated by using the

fungus M. hiemalis  . Here, the same process was performed with LCA and XN, which led to the isolation of a

new compound licochalcone A 4-O-β-D-glucopyranoside (6) together with a known compound xanthohumol 4′-O-β-

D-glucopyranoside . Yin and colleagues discovered a phenolic glycosyltransferase MhGT1 from M. hiemalis and

applied the enzymatic approach to obtain a series of glycosylated phenolic compounds . Likewise, the  O-

glucosylation process observed here was speculated to be catalyzed by the enzyme glycosyltransferase formed

by M. hiemalis.

Compound  6  was isolated as an orange amorphous powder. HRESIMS of  6  exhibited a quasi-molecular ion

at  m/z  523.1943 [M+Na]   (calcd. for C27H32O9Na, 523.1944), suggesting the molecular formula of  6  as

C27H32O9, which was one glucose unit higher than that of 1. The presence of sugar moiety was further confirmed

by comparison of its NMR spectra with those of 1, which showed an anomeric proton signal at δH 5.01 (1H, d, J =

7.0 Hz) in  H-NMR spectrum and a hexose carbon signals at δC (100.5, 73.8, 77.8, 70.7, 78, and 61.4) in  C-

NMR. The significant downfield-shifted proton signal of H-3 in ring B indicated that the glucose moiety was

attached to 4-OH. HMBC correlation from the anomeric proton signal at δH 5.01 (H-1′′′) to the carbon signal at

δC 159.4 (C-4) confirmed the assignment of glycosylation at C-4 (Figure 2). The resonances of the glucose moiety

were assigned by HSQC and HMBC experiments (See  Supplementary Materials). TLC comparison with the

authentic sample after acid hydrolysis of 6  led to the elucidation of the glucose moiety to be d-form . The

aglycone part of the  H- and  C-NMR spectra of 6 revealed two sets of signals in the integral ratio of around 1:1.3.

Based on the two pairs of H-α and H-β proton signals at δH 7.67 (1H, d, J = 15.7 Hz) and 7.92 (1H, d, J = 15.7 Hz),

together with δH 6.44 (1H, d, J = 12.8 Hz) and 7.03 (1H, d, J = 12.8 Hz), 6 was clearly assigned as a mixture

of  trans-  and  cis-isomers. Based on the above data and extensive 2D NMR experiments, structure of the

compound 6 was assigned as licochalcone A 4-O-β-D-glucopyranoside.

Figure 2. Microbial transformation of 1 by M. hiemalis. Selected HMBC correlations ( H→ C) of metabolite 6 are

indicated by arrows.

3. Microbial Transformation of Licochalcones A, B, C, H, and
Xanthohumol by A. coerulea

Screening of licochalcones and XN (1–5) with several microorganisms showed that only A. coerulea was able to

produce the highly polar metabolites, more polar than the metabolites transformed by  M. hiemalis. During the

screening procedures, it was also observed that by using more sulfate-containing media, the yield of sulfate-
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conjugated metabolites could be increased. Thus, instead of using the original incubation medium suggested by

KCTC, the scale-up fermentation process was performed by using a modified Czapek Dox media (dextrose 10 g/L,

sodium nitrate 2 g/L, dipotassium phosphate 1 g/L, magnesium sulfate 0.5 g/L, potassium chloride 0.5 g/L, ferrous

sulfate 0.02 g/L). Isolation of the metabolites from large-scale fermentations was processed successfully by using

EtOAc as extraction solvent.

Metabolite 7 was isolated as a yellow amorphous powder. The UV spectrum showed maximum absorption bands

at 266 and 387 nm, similar to those of substrate 1. The HRESIMS spectra of 7 displayed a molecular ion peak

at m/z 417.1024 [M-H]  and a fragment ion peak at m/z 337.1449 [M-H-80] , suggesting the presence of a sulfate

group. In addition, the isotopic mass peak at m/z 419.1087 [M-H+2]  indicated the presence of a sulfur atom in the

compound. The IR spectrum of 7 showed the presence of two strong bands corresponding to the S=O (1251 cm )

and C-O-S (1050 cm ), supporting the presence of a sulfate group . The presence of the sulfate group was

further supported by the formation of white precipitate after treating the aqueous layer of acid-hydrolyzed 7 with

BaCl2  . Comparison of the  H- and  C-NMR spectroscopic data of 7 with 1  revealed the resonance signals

being almost identical in both compounds, except for the downfield shift of H-3′/5′, C-1′, C-3′/5′ (0.44, 4.0, and 4.7

ppm, respectively) and the upfield shift of C-4′ (4.4 ppm), implying that the sulfate moiety was conjugated with 4′-

OH. These shifts were consistent with naringenin 4′-sulfate, a transformed product of naringenin, because the

carbon directly attached to the sulfate ester and the carbons in the  meta-position are upfield-shifted, and the

protons and carbons in  ortho-  and  para-positions to the sulfate group are downfield-shifted . The sulfate

position at C-4′ was further confirmed by HMBC correlations of H-3′/5′ with C-1′ and C-4′ (Figure 3). Therefore, the

structure of 7 was identified as licochalcone A 4′-sulfate.

Figure 3. Microbial transformation of 1 by A. coerulea. Selected HMBC correlations ( H→ C) of metabolite 7 are

indicated by arrows.

Metabolite  8  was obtained as a mixture with  7. In the  H-NMR spectrum of  8, the significant downfield-shifted

signal at δH 7.51 (H-3) was observed, indicating that the sulfate group was attached to 4-OH. Two sets of proton

resonance signals were observed for  8, which is similar to the glucosylated metabolite  6. Thus, the structure

of 8 was identified as trans- and cis-isomers of licochalcone A 4-sulfate.
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Metabolite  9  was obtained as a yellow solid. The HRESIMS spectra of  9  exhibited a molecular ion peak

at m/z 365.0336 [M-H]  and a fragment ion peak at m/z 285.0767 [M-H-80] , suggesting the presence of a sulfate

group. The  H-NMR data of 9 were similar to 2, except for the H-6 signal, which was downfield-shifted by 0.33

ppm. Comparison of  C-NMR data of 9  and substrate 2  showed that the C-3 signal was upfield-shifted by 5.7

ppm, and the signals of C-2, C-4, and C-6 were downfield-shifted by 4.1, 3.2, and 5.0 ppm, respectively . All of

these suggested that the sulfate group was attached to 3-OH, and this was further confirmed by the HMBC

correlations between H-5 and C-1/3 (Figure 4). Thus, the structure of 9 was identified as licochalcone B 3-sulfate.

Figure 4.  Microbial transformation of  2  by  A.  coerulea. Selected HMBC correlations ( H→ C) of

metabolites 9 and 10 are indicated by arrows.

Metabolite 10 was obtained as a mixture with 9. In the  H-NMR spectrum of 10, the significant downfield-shifted

signal at δH 7.22 (H-5) was observed, indicating that the sulfate group was attached to 4-OH. This was supported

by the deshielding of C-3 and C-5 carbons, which are ortho to the sulfate site, compared to those of substrate 2 in

the  C NMR of 10 by 3.0 and 5.2 ppm, respectively. Furthermore, the para carbon at C-1 in 10 was deshielded by

4.0 ppm, while the  ipso  carbon at C-4 position was shielded by 7.7 ppm . Based on the above analysis, the

structure of  10  was identified as licochalcone B 4-sulfate. The resonances of  10  were completely assigned by

HSQC and HMBC spectra (See Supplementary Materials).

Metabolite  11  was obtained as a yellow solid. The HRESIMS spectra of  11  exhibited a molecular ion peak

at m/z 417.1010 [M-H]  and a fragment ion peak at m/z 337.1438 [M-H-80] , suggesting the presence of a sulfate

group. Two sets of signals in the integral ratio of around 1:1.1 were observed in the  H- and  C-NMR spectra

of 11. It was assigned as a mixture of  trans- and cis-isomers according to the two pairs of H-α and H-β proton

signals at δH 7.73 (1H, d, J = 15.9 Hz) and 8.01 (1H, d, J = 15.9 Hz), together with δH 6.65 (1H, d, J = 12.9 Hz)

and 7.10 (1H, d,  J  = 12.9 Hz). Comparison of the  H-NMR spectrum of LCC sulfate  11  with the parent

compound 3 clearly showed a strong difference in the chemical shift for H-5 in ring B, whereas the chemical shifts

of protons in ring A were only slightly changed, suggesting that the sulfate moiety was attached to 4-OH. This was

supported by the significant upfield-shifted signal of C-4 and downfield-shifted signals of C-1, C-3, and C-5 in

the  C-NMR spectra of 11 compared with those of 3  . The HMBC correlations between H-6 and C-4, C-2 further

confirmed the attachment at C4-OH (Figure 5). Thus, the structure of 11 was identified as licochalcone C 4-sulfate.
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Figure 5.  Microbial transformation of  3–5  by  A.  coerulea. Selected HMBC correlations ( H→ C) of

metabolites 11 and 12 are indicated by arrows.

Metabolite  12  was obtained as a yellow solid. The HRESIMS spectra of  12  exhibited a molecular ion peak

at m/z 417.0974 [M-H]  and a fragment ion peak at m/z 96.9881, suggesting the presence of a sulfate group. Two

sets of signals in the integral ratio of around 1:1.2 were observed in the  H- and  C-NMR spectra of 12. It was

assigned as a mixture of  trans- and  cis-isomers, according to the two pairs of H-α and H-β proton signals at

δH 7.68 (1H, d, J = 15.8 Hz) and 7.98 (1H, d, J = 15.8 Hz), together with δH 6.43 (1H, d, J = 12.8 Hz) and 7.12

(1H, d, J = 12.8 Hz). Comparison of the  H-NMR spectrum of LCH sulfate 12 with the parent compound 4 clearly

showed a strong difference in the chemical shift for H-3 in ring B, whereas the chemical shifts of protons in ring A

were only slightly changed, suggesting that the sulfate moiety was attached to 4-OH. This was supported by the

significant upfield-shifted signal of C-4 and downfield-shifted signals of C-1, C-3, and C-5 in the  C-NMR spectra

of  12  compared with those of  4  . Thus, the structure of  12  was identified as licochalcone H 4-sulfate. The

resonances of 12 were completely assigned by HSQC and HMBC spectra (See Supplementary Materials).

Metabolite 13 was isolated as a yellow amorphous powder. The HRESIMS spectra of 13 displayed a molecular ion

peak at m/z 433.1092 [M-H]  and a fragment ion peak at m/z 353.1355 [M-H-80] , suggesting the presence of a

sulfate group. Comparison of the  H- and  C-NMR spectroscopic data of  13  with  5  indicated almost identical

resonances for both compounds, except for the downfield-shift of H-5′, C-1′, C-3′, C-5′ (0.88, 3.2, 6.0, and 4.7 ppm,

respectively) and the upfield-shift of C-4′ (5.8 ppm), implying that the sulfate moiety was conjugated with 4′-OH .

Therefore, the structure of 13 was identified as xanthohumol 4′-sulfate.

It has been reported that chalcones can undergo  trans  to  cis  transformation in solution when light exposure is

available. The presence of a free hydroxyl group at the C-4 position of chalcones inhibits photoisomerization

between the  trans- and cis-isomers, as the hydroxyl group at C-4 position enables keto-enol tautomerization and
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free rotation around the α,β-bond, which allows the rapid conversion of cis chalcones to the stable trans-isomers

. The electron-donating group at C-4 position is expected to weaken the α,β-double bond of chalcones through

electron-delocalization effects (Figure 6), thus the electron-withdrawing effects carried out by the glucose and

sulfate moieties of  6,  8,  11,  and  12  may quench the electron-donating capacity of the  O-atom at C-4 . As a

result, glucosylation and sulfation of C4-OH raise the barrier and make the cis-trans chalcone isomerization a slow

kinetically distinct process . As demonstrated with the isolated metabolites  6,  11, and  12, the ratio

of cis-  to trans-isomers was found to be >1 in the NMR solvent, suggesting that the cis  isomer produced here is

structurally stable under the observed conditions . Such observations are quite remarkable in this case as it is

commonly known that trans chalcones are more stable than their cis-isomers.

Figure 6. The proposed mechanism of trans-cis isomerization.

The conjugation reactions are widely known as major metabolic pathways for the detoxification of xenobiotic

compounds . The conjugated derivatives are more polar and water-soluble and therefore more easily excreted

from the body through urine or feces . However, an increasing amount of evidence suggests that

detoxification is not the only role of sulfation in the organisms. Sulfation might change the biological activities of

numerous compounds, and some of the sulfated compounds work therapeutically against cancer, diabetes, and

various metabolic diseases . A demonstration of parallelism between mammalian and microbial systems,

conjugation reaction is of considerable importance for the drug metabolism investigations. However, sulfation in

microbial systems is rare and reports on this topic are limited. So far, in addition to the list of microorganisms

reported by Khan , several fungi including  Absidia coerulea  ,  Colletotrichum

gloeosporioides  ,  Cunninghamella elegans  ,  Gliocladium deliquescens  ,  Mucor hiemalis  ,  Mucor  sp.

,  Neosartorya spathulata  ,  Streptomyces fulvissimus,  Syncephalastrum racemosum  , and  Trichothecium

roseum   were reported to perform sulfation of some phenolic compounds.

Unlike the complicated sulfation procedure of 8-prenylnaringein, which requires a two-step process with the use of

a phosphate buffer , we obtained the sulfated metabolites of licochalcones and xanthohumol (7–13) by directly
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using the cultures of A. coerulea. The metabolite 7 was previously identified as a phase II sulfate conjugate of LCA

during the metabolism studies using human hepatocytes . Results obtained from this study showed that  A.

coerulea is capable of sulfation of chalcones and exhibits parallels between microbial and mammalian metabolism

not only in phase I but also in phase II metabolism . It is widely known that the phase II sulfation reactions are

mediated by the enzyme sulfotransferases, which catalyze the transfer of sulfonate group from the active sulfate to

the substrates containing hydroxyl groups . Thus, the sulfate metabolites of licochalcones and xanthohumol

were supposed to be produced by the enzyme sulfotransferase from A. coeralea.

To demonstrate the biological activity of compounds 7, 13 and their aglycones (1, 5), the cytotoxic activities against

three different human cancer cell lines were evaluated by using MTT assay (Table 1). Although, as expected, the

sulfated metabolites were less active than their aglycones, they still exhibited moderate cytotoxic activities. The

glucosylated metabolites displayed weak cytotoxic activity with IC50 > 100 μM. From the results obtained (Table

1 and Table S1), it was observed that all of the test compounds, except LCC, exhibited higher cytotoxic activities

against A375P cells than MCF-7 and A549 cells. LCC showed stronger activity against MCF-7 cells than A549

cells, which was supported by the result reported by Zheng and colleagues . Zheng and colleagues observed

that LCB (2) exhibited weak cytotoxic activity against MCF-7 cells with IC50 > 80 μM after 24 and 48 h treatment

, which was similar to our result (Supporting  Table S1). All the compounds tested displayed much stronger

cytotoxic activities than LCB, indicating that the prenyl group plays a significant role in the cytotoxic activity of these

compounds against the tested cancer cell lines. However, Shim and colleagues have reported that LCB exhibited

moderate activities against A375 and A431 skin cancer cells (IC50  13.7 and 19.1 μM, respectively) , and

showed stronger cytotoxic activity against HSC4 oral squamous cell carcinoma cells (IC50  13 μM) than LCA

(IC50 20.42 μM), LCC (IC50 27.1 μM), and LCH (IC50 14.4 μM) after 48 h treatment . Though LCA and

XN exhibited good activity in most cases, they were found to show low cytotoxic and apoptotic activity against

LNCaP prostate cancer cells . Thus, the cytotoxic activity of compounds against different types of cancer cell

lines should be evaluated on a case-by-case basis.

Table 1. Cytotoxic activities of compounds against cancer cell lines.

 Used as positive control.
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Compound Cell Lines (IC50, μM)
A375P MCF-7 A549

1 12.86 ± 3.42 19.16 ± 0.65 18.14 ± 1.26

5 11.02 ± 2.09 23.11 ± 1.36 26.93 ± 1.56

7 27.35 ± 1.44 30.85 ± 4.58 43.07 ± 1.63

13 41.04 ± 1.61 81.27 ± 3.05 99.40 ± 1.99

DZ  9.86 ± 0.57 5.12 ± 0.44 4.01 ± 0.781

1
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