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Involvement of the central nervous system (CNS) in childhood leukemias remains a major cause of treatment

failures. Analysis of the cerebrospinal fluid constitutes the most important diagnostic pillar in the detection of CNS

leukemia and relies primarily on cytological and flow-cytometry studies. With increasing survival rates, it has

become clear that treatments for pediatric leukemias pose a toll on the developing brain, as they may cause acute

toxicities and persistent neurocognitive deficits. Preclinical research has demonstrated that established and newer

therapies can injure and even destroy neuronal and glial cells in the brain. Both passive and active cell death forms

can result from DNA damage, oxidative stress, cytokine release, and acceleration of cell aging. In addition,

chemotherapy agents may impair neurogenesis as well as the function, formation, and plasticity of synapses.

Clinical studies show that neurocognitive toxicity of chemotherapy is greatest in younger children.

central nervous system  CNS leukemia  neurotoxicity

1. CSF Biomarkers Reflecting CNS Disease in Pediatric
Patients with Leukemia

Central nervous system involvement in childhood leukemia is rare at initial presentation (3–5%)  but

much more frequent at relapse with approximately 30–40% of those cases demonstrating CNS disease .

Advances in cancer treatment have minimized relapses outside the CNS, in particular testicular and extramedullary

locations. Nevertheless, CNS relapse still occurs in 3–8% of children with acute lymphoblastic leukemia (ALL) or

acute myeloblastic leukemia (AML) . The endothelial blood–brain barrier (BBB), the blood–leptomeningeal barrier

(BLMB), and the blood–CSF barrier (BCSFB) are considered most relevant to the migration of leukemic cells into

the CNS . A fourth newly identified route is the CNS lymphatic system, which runs within the meninges and along

the dural sinuses . Studies in mice suggest that the BLMB and the BCSFB may be the entry zones for

leukemic cells in early stages of the disease . It has also been proposed that leukemia cells may utilize a

shortcut along the surface of bridging veins to enter the subarachnoid space . Blast spread within the CNS

occurs primarily in the meninges, may persist as focal lesions in the subarachnoid space between arachnoid and

pia, and remain undetected by lumbar puncture .

Historically, with the improved success in controlling systemic disease, CNS involvement, which underlies the

propensity of leukemias to relapse, has moved to the frontline . Predisposing factors of CNS leukemia include

high leucocyte counts, T-cell immunophenotype, translocations t(1;19) or t(9;22), and mixed lineage leukemia

(MLL  or  KMT2A)-rearranged cytogenetics . In a study by van der Veldenand and colleagues , it was

shown that CNS leukemic cells have a unique protein expression profile, which differs from that of bone marrow
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leukemic cells and consists of Stearoyl-CoA desaturase (SCD) positivity and increased secreted phosphoprotein 1

or osteopontin (SPP1) expression. The presence of this subpopulation of B cell precursor-ALL cells with a “CNS

protein profile” in bone marrow aspirates at diagnosis is strongly associated with isolated CNS relapse. Multiple

adhesion molecules, chemokines and their receptors, interleukins and their receptors, protein kinases, and growth

factors have been implicated in migration, adhesion, and survival of leukemic cells in the CNS .

The gold standard technology used to evaluate for CNS disease is the detection of leukemic cells in the

cerebrospinal fluid (CSF) after lumbar puncture by means of routine cytology . However, there are multiple

factors that hamper the detection of blasts within the CNS, including the small number of cells present in most CSF

samples, the presence of contaminating peripheral blood cells, and difficulties in interpreting individual CSF cell

morphology in cytospin preparation .

The crucial observation that most CNS relapses occur in patients initially diagnosed as CNS-negative highlights the

urgent need for more sensitive diagnostic and surveillance approaches . Novel strategies aiming to improve

sensitivity of CSF diagnosis via qPCR, flow cytometry, analysis of soluble immunological markers, and detection of

micro RNAs are being utilized at the preclinical level with promising results (Table 1). These technologies have not

yet been adopted in clinical practice, due to methodological challenges and the lack of validation . It

should be kept in mind that leukemic blasts may enter the CNS after initiation of treatment. Thus, novel strategies

to increase detection sensitivity of cytology will not fully eliminate CNS relapses.

Table 1. CSF biomarkers reflecting CNS disease in pediatric patients with leukemia.

Biomarker Methodology Significance for CNS
Disease References

Tdt Immunocytochemistry
Unknown significance
for detection of CNS

leukemia

B and T cell markers
Multicolor flow cytometry

(FCM)

FCM positive status
correlated with CNS
disease and shorter

overall survival in some
studies

Gene derangements, i.e., IgH and TCR
PCR with

homo/heteroduplex
analysis

Clonal IG and/or TCR
gene rearrangement in
CSF results indicative

of minimal residual
disease were detected

in 46.8% of children
with normal CSF

cytology

mi-R-181c-5p qPCR mi-R-181a is highly
expressed in the CSF
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Biomarker Methodology Significance for CNS
Disease References

of patients with CNS
leukemia

Soluble L-selectin (sl-selectin); cell
adhesion molecule ELISA

Elevations are found in
CNS leukemia

Soluble interleukin-2 Receptor-α (sIL2-
Rα); binds interleukin 2 ELISA

Elevation of sIL2- Rα
correlated with CNS

disease

Interleukin 7 receptor (IL7R); binds ILR7 Western blot
IL7R is highly

expressed in CNS
leukemia

monocyte chemotactic protein
(CCL2); promotes chemotaxis ELISA

Unknown significance
for detection of CNS

leukemia

Soluble Vascular endothelial growth
factor receptor 1&2

(sVEGFR 1 & 2); Binds VEGFR 1/ 2
ELISA

Reduction of sVEGFR 2
and sVEGFR2/VEGF
ratio was associated
with CNS metastasis

Osteopontin; matricellular protein
expressed in bone marrow ELISA

High CSF osteopontin
levels correlated with

CNS disease

Matrix metalloproteinase 9
(MMP9); degrades extracellular matrix LUMINEX technology

Higher sMMP-9 levels
were found in patients
who developed CNS

leukemia

Soluble vascular cell adhesion molecule-
1 (sVCAM-1); adhesion molecule LUMINEX technology

Unknown significance
for detection of CNS

leukemia

Interferon-γ (IFN-γ);cytokine LUMINEX technology
Unknown significance
for detection of CNS

leukemia

Inducible protein 10; chemokine LUMINEX technology
Unknown significance
for detection of CNS

leukemia

Differentially expressed proteins (n = 51)
related to cell adhesion, negative

regulation of endopeptidase activity,
platelet degranulation, signal

transduction, receptor-mediated
endocytosis, regulation of complement

Proteomics technology
utilizing label free

strategy, mass
spectrometry and
pathway analysis

Unknown significance
for detection of CNS

leukemia
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Biomarker Methodology Significance for CNS
Disease References

activation, CNS development, regulation
of cell growth, complement activation,
classical pathway, and axon guidance

Omans and colleagues  used terminal deoxynucleotidyl transferase (TdT) and TdT/CD10 for the staining of CSF

cytospin preparations of pediatric patients with ALL. In this study the authors reported that blasts were present in

8% of examined CSF samples, while 33% contained increased numbers of CD10 positive cells but had normal

CSF morphology. Thirty-six percent of CSF samples in that study were also examined for the simultaneous

presence of nuclear terminal deoxynucleotidy1 transferase (TdT) and demonstrated higher numbers of positive

cells for both TdT and CD10. The authors concluded that a large proportion of children with ALL and negative CSF

cytology may have CNS disease consistent with the presence of occult leukemic involvement, which can be

detected with CD10/TdT staining .

The yield for detecting leukemic cells within the CSF increases with the use of multi-color flow cytometry utilizing B-

and T-cell markers, as demonstrated by several groups of investigators . The detection of subclinical

CNS disease by flow cytometry during maintenance correlates with significantly lower 3-year relapse-free survival

and 3-year overall survival . It has been suggested that a sensitive methodology like multicolor flow cytometry

can be applied for a close follow-up of the levels of leukemic cells in CSF samples, and may identify a group of

patients at high risk for relapse.

Using polymerase chain reaction (PCR) with homo/heteroduplex analysis utilizing consensus primers

for  IgH and TCR genes, minimal residual disease (MRD) was detected in the CSF in 46.8% of children with ALL

with no puncture accident of morphological CNS involvement . All patients included in this study had

confirmed IgH/TCR gene derangements in bone marrow aspirates. In patients with CNS MRD treated with a less

intensive protocol (GBTLI-ALL-93), significantly lower 5-year event-free survival was demonstrated. Similar findings

were reported by Scridelli and colleagues . In this study, cytomorphology and IgH/T-cell receptor clonal gene

rearrangements, detected by PCR homo/heteroduplex analysis and direct sequencing, were evaluated in CSF free

of red blood cells at diagnosis of 37 children with ALL. Molecular CSF involvement was greater as detected by

molecular analysis than observed by morphologic criteria (45.9% vs. 5.4%). The 4-year event-free survival was

lower in the group with molecularly detected CSF involvement. Next-generation sequencing might offer the

potential of even greater sensitivity to detect CNS disease than PCR .

MicroRNAs (miRs) are highly conserved small non-coding RNAs that are involved in orchestration of proliferation,

differentiation, and survival . Altered expression patterns of miRs may be associated with progression of

leukemias and other neoplasms . In childhood leukemias, miRs can act as oncogenes (miR-29a, miR-125b,

miR-143-p3, mir-155, miR-181, miR-183, miR-196b, miR-223) or tumor suppressors (let-7b, miR-29a, miR-99, mir-

100, miR-155, miR-181) . They can serve as diagnostic and prognostic biomarkers, which can be used to

monitor response to therapy (miR-125b, miR-146b, miR-181c, miR-4786), classification of subgroups (let-7b, miR-

98, miR-100, miR-128b, miR-223), and development of new therapeutic agents (mir-10, miR-125b, miR-203, miR-
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210, miR-335). Favorable prognostic miRNA markers of pediatric leukemias include miR-7, miR-16, miR-33, miR-

100, miR-130b, miR-181, miR-215, miR-216, miR-369-5p, miR-496, miR-518d, miR-599, and miR-708.

Unfavorable factors include miR-10a, miR-23a, miR-27a, miR-128b, miR-134, miR-150, miR-191, miR-214, miR-

223, miR-342, miR-484, miR-486, miR-487, miR-572, miR-580, miR-627, miR-624, let-7g, and let-7i. For a

comprehensive review, see reference .

miRs in childhood leukemias have mainly been studied in blood or bone marrow aspirates. Studies analyzing miRs

in the CSF of children with leukemia are scarce. Egyed and colleagues  hypothesized that miRs could identify

undiagnosed CNS leukemia cases and unravel treatment response in this important compartment. These authors

explored miR expression and extracellular vesicle characteristics in CSF of children with acute leukemias. They

identified a role of the miR-181 family in clustering CNS-positive and CNS-negative samples and validated miR-

181c-5p expression differences between CNS-positive and CNS-negative cases in CSF and bone marrow. The

sensitivity of miR-181a measurement in the CSF in childhood ALL highly exceeded those of conventional cytospin

in the initial diagnosis of CNS leukemia. Interestingly, measuring miR-181-family levels in peripheral blood samples

led to no benefit in diagnosing CNS disease. There was, however, a correlation between bone marrow miR-181a-

5p levels and CNS status in patients with precursor B-cell ALL. The investigators concluded that miR-based

technologies might provide novel tools to monitor CNS disease in pediatric ALL .

Other leukemia-associated factors released into the extracellular space and present in the CSF include soluble L-

selectin (sL-selectin) , interleukin-2 receptor-α (sIL2-Rα) , the chemokine CXCL13 , interleukin 7 receptor

(IL7R) , the chemokine receptor CCR7 , monocyte chemotactic protein (CCL2), vascular endothelial growth

factor 1 and 2 (VEGF 1 and 2) , and osteopontin .

sIL2Rα is released along with interleukin-2 from activated T-cells. In a study of 77 pediatric patients with ALL, Lee

and coinvestigators analyzed both CSF and serum samples . The group reported that discrimination power of

CSF sIL2-R for the presence of leukemic blasts was better than that obtained by established cytology techniques.

The sensitivity of CSF sIL2-R for detecting CNS disease was 89.5%, and the specificity was 89.6%, whereas the

sensitivity and specificity of cytology were 47.4% and 63.2%, respectively. There was no correlation between

serum and CSF sIL2-R levels, indicating that sIL2R did not simply diffuse into the CSF compartment from the

blood, but rather originated from the leukemic blasts within that compartment. CSF sIL2-R level might therefore be

a useful biomarker for CNS leukemia in ALL, especially when combined with conventional cytology and the CSF

leukocyte count.

Vascular endothelial growth factor A (VEGF-A) is highly expressed in solid tumors. It binds to its soluble membrane

receptors sVEGFR1 and sVEGFR2. sVEGFRs block tumor promoting activities of VEGF-A. Tang and colleagues

investigated sVEGFR1 and R2 as biomarkers in CNS leukemia in CSF and serum samples of 35 patients with ALL

with or without CNS disease . sVEGFR1 and sVEGFR2 levels in the CSF of patients with CNS leukemia were

33% higher than in the group without CNS disease. Cox regression analysis showed that CSF levels of sVEGFR2

had a positive effect on event-free survival. Serum levels of sVEGFR1 in the control group were higher than in the

CNS-leukemia and non-CNS-leukemia groups, but no difference was found between CNS-leukemia and non-CNS-
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leukemia patients. Further data analysis suggested that sVEGFR2 CSF levels may be a good predictor for the

outcome of leukemia patients .

Another potentially interesting biomarker for CNS leukemia is osteopontin, a protein secreted by many cells,

including activated T-cells, natural killer cells, and tumor cells. Osteopontin, also known as early T-cell activation

gene-1 (SPP1 or ETA-1), is a matricellular protein expressed primarily in the bone marrow. It is produced by

osteoblasts, osteoclasts, and other malignant and non-malignant cells and is found as a full-length molecule of

transcriptionally processed variants (for a comprehensive review, see ). It binds to arginine–glycine–aspartate

(RGD) and interacts with integrins. It also interacts with CD44 through non-RGD-mediated mechanisms. By doing

so, osteopontin and its transcriptionally processed variants modulate many cellular functions of normal and tumor

cells such as adhesion, differentiation, migration, apoptosis, osteogenesis, angiogenesis, tumor growth, dormancy,

and extramedullary invasion, including invasion into the CNS. In hematologic malignancies, including pediatric

leukemias, osteopontin is generally overexpressed and can serve as a diagnostic and prognostic marker .

The relationship between CSF osteopontin levels and CNS leukemia was evaluated in 62 pediatric patients with

acute leukemia and 16 controls . CSF osteopontin levels were higher in patients with leukemia but the difference

was not statistically significant. Within the leukemia group, CSF osteopontin levels were higher in the those with

CNS disease, but again the difference was not statistically significant. Interestingly, at the time of CNS relapse

(detected during follow up), CSF osteopontin levels were significantly higher than in the group with CNS

involvement at initial presentation .

Evaluation of multiplexed biomarkers for assessment of CSF infiltration in pediatric ALL has been attempted for

matrix metalloproteinase 9 (MMP-9), monocyte chemotactic protein (CCL-2), soluble vascular cell adhesion

molecule-1 (sVCAM-1), interferon gamma (IFN-γ), and inducible protein 10 . An association was found between

CNS leukemia, higher sMMP-9, and lower sCCL2 levels in the CSF. In this study, serum biomarker levels were

also measured, but no significant differences were found between the groups with and without CNS leukemia.

In addition to the above hypothesis-driven studies, recent advances in proteomics technologies have stimulated

interest in the application of mass spectrometry (MS) in qualitative and quantitative analysis of the CSF proteome,

in an attempt to better trace the development of CNS leukemia in children and its response to treatment.

Advancements in the resolution, mass accuracy, sensitivity and scan rate of mass spectrometers for protein

analysis, including label-free and stable isotope labeling approaches, have enabled these types of studies. The

label-free strategy injects individual samples directly into the mass spectrometer and quantifies the relative

abundance of peptides . Utilizing comparative proteomic profiling using label-free liquid chromatography–

tandem mass spectrometry, Guo and colleagues  studied CSF samples from six patients with ALL and six

healthy controls. The authors detected 51 differentially expressed proteins, among them two core clusters,

including 10 proteins that might be crucial for tumorigenesis and progression of ALL and might potentially be

valuable indicators of CNS leukemia. Gene ontology analysis of quantified proteins showed that 47 differentially

expressed genes were related to 57 terms in the category of “biological process.” These include cell adhesion,

negative regulation of endopeptidase activity, platelet degranulation, signal transduction, receptor-mediated
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endocytosis, regulation of complement activation, CNS development, regulation of cell growth, complement

activation, classical pathway, and axon guidance .

REACTOME pathway analysis revealed that the differentially expressed genes were associated with a total of 189

pathways (Figure 1). The authors commented that the immune system, cell growth, and platelet function might be

essential for pediatric ALL infiltration of the CNS. They also concluded that further analysis of the CSF proteome in

ALL could be beneficial in understanding the potential role of selected protein species and biological pathways in

the evolution of CNS disease .

Figure 1.  Gene ontology (GO) and REACTOME pathway analysis of quantified proteins. (A) Top 10 biological

processes obtained from GO analysis of all differentially expressed proteins. (B) Top 10 pathways obtained from

REACTOME pathway analysis of all differentially expressed proteins. (C) Biological processes obtained from GO

analysis of cluster 1 proteins. (D) Top 10 pathways obtained from REACTOME pathway analysis of cluster 1

proteins. Figure reproduced from Reference  with permission from Dove Medical Press, the original publisher.

2. Childhood Leukemia Treatment and Brain Toxicity

Neurocognitive morbidity is frequent in childhood cancer survivors . Although neurologic

toxicity in childhood leukemias has decreased considerably, mainly due to replacement of cranial irradiation with

intrathecal chemotherapy, intellectual development of affected children receiving polychemotherapy can still be

compromised .

Lower performance IQ scores compared to controls are most often detected if polychemotherapy is initiated prior to

the sixth year of life . Leukoencephalopathies can occur in B-cell ALL survivors many years after the end of

successful therapy. Verbal and performance IQs in affected subjects have been reported to lie below 86 .

Furthermore, there is a clear correlation between intensity of chemotherapy and neurocognitive deficits , which
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affect visual processing, visual-motor function, attention, concentration, working memory, and executive functions

.

With the help of preclinical and clinical translational research, knowledge of how chemotherapy impacts the

pediatric brain has made significant progress, yet many gaps remain. Modern neuroimaging techniques have

helped discover the presence of white (WM) and grey matter (GM) changes, some of which may be reversible and

others may persist . WM pathologies captured include leukoencephalopathies, volume loss,

and reduced fractional anisotropy of white matter tracts within the hippocampus, thalamus, temporal, and frontal

lobes , which are associated with lower IQ . The result can be atypical connectome

organization, hub connectivity, and reduced cognitive reserve .

Furthermore, adult survivors of ALL were shown to have smaller volumes of grey matter, in particular in the

hippocampus, amygdala, thalamus, and nucleus accumbens, which interestingly correlated with lower hippocampal

memory performance  and smaller surface area in cortical regions, which is associated with problems in

executive functioning . Factors that increase the risk for neurotoxicity include young diagnosis age and higher

exposure levels to systemic high doses and intrathecal methotrexate .

3. CSF Biomarkers Reflecting Impact of Treatment for
Childhood Leukemia on the Central Nervous System

In an attempt to understand how chemotherapy affects the brain and which, if any, CSF biomarkers might help

prognosticate neurocognitive outcomes, researchers have used both hypothesis-driven approaches and, more

recently, proteomics platforms. Interestingly, changes of selected CSF biomarkers during chemotherapy have been

found to correlate with future neurocognitive outcomes (Table 2).

Table 2. CSF biomarkers reflecting CNS toxicity of treatment in childhood leukemia.

[58][59][60][61][62][63][64]

[65][66][67][68][69][70][71][72]

[69][70] [71][72][73][74][75]

[76][77]

[67]

[78]

[79][80]

Biomarker Methodology
Significance for CNS

toxicity of treatment for
leukemia

References

Neuron specific enolase (NSE)
Neuronal marker, neuronal injury

ELISA,
radioimmunoassay

Elevations seen during
chemotherapy treatment,
unknown significance for
long term neurocognitive

outcome

GFAP
Astroglial marker, astrogliosis,

astroglial injury

ELISA Higher CSF levels during
chemotherapy associated

with higher risk for
leukoencephalopathy and
higher apparent diffusion
coefficient in frontal lobe

WM, 5 years after
diagnosis.
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Biomarker Methodology
Significance for CNS

toxicity of treatment for
leukemia

References

CSF elevations correlate
with severity of ICANS-

related neurologic
symptoms

S100 calcium binding protein B
Peptide localized in astrocytes,

astrocyte injury
Magnetic bead assay

Elevated levels correlate
with acute neurologic

dysfunction
CSF elevations correlate
with severity of ICANS-

related neurologic
symptoms

Neurofilament protein light chain (Nfl)
Neuronal/axonal marker,
neuronal/axonal injury

ELISA

Elevations of CSF levels
detected during treatment.
Unknown significance for
neurocognitive outcome

Nerve growth factor
(NGF); neurotrophin ELISA

Elevations of CSF levels
detected during treatment.
Unknown significance for
neurocognitive outcome

Brain derived neurotrophic factor
(BDNF); neurotrophin ELISA

Elevations of CSF levels
detected during treatment.
Unknown significance for
neurocognitive outcome

Beta-glucuronidase
Cellular enzyme, cellular injury

Enzyme activity
measurement

Elevations of CSF levels
correlate with serum MTX

levels
Unclear significance for
neurocognitive outcome

Tau; microtubule-
associated protein expressed in

neurons;
Axonal/neuronal injury

ELISA

Elevation of CSF levels
correlated inversely with IQ

performance.
Higher CSF levels during
chemotherapy associated

with higher risk for
leukoencephalopathy and
higher apparent diffusion
coefficient in frontal lobe

WM, 5 years after diagnosis

Phospho-tau; phosphorylated tau
Axonal/neuronal injury ELISA

Elevations of CSF levels
detected during treatment.
Unknown significance for
neurocognitive outcome
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Biomarker Methodology
Significance for CNS

toxicity of treatment for
leukemia

References

Neuromodulin; CNS protein involved in
axonal growth ELISA

Elevations of CSF levels
detected during treatment.
Unknown significance for
neurocognitive outcome

Oxidized phospholipids; marker for
oxidative stress

High performance
liquid chromatography

Elevations of CSF levels
during treatment correlated
with cognitive dysfunction

assessed 2 years later

Folate; cell metabolite; folate
physiology

Radioligand binding
assay

Reduction in CSF levels
correlated with cognitive

dysfunction

Homocysteine; accumulates in folate
deficiency

High performance
liquid chromatography

Elevations of CSF levels
correlated with cognitive

dysfunction

F2 isoprostane; oxidative stress High performance
liquid chromatography

Elevations of CSF levels
seen in cases of

leukoencephalopathy

Caspase 3/7; executioner caspases;
marker for apoptosis Luminescence assay

Elevations of CSF levels
correlated with cognitive

dysfunction

Myelin basic protein; marker for
oligodendrocytes; myelin injury ELISA

Higher CSF levels during
chemotherapy associated

with higher risk for
leukoencephalopathy and
higher apparent diffusion
coefficient in frontal lobe
white matter 5 years after

diagnosis

Chitotriosidase; enzyme, marks
macrophage activation

Measurement of
enzymatic activity

Elevations of CSF levels
detected during treatment.
Unknown significance for
neurocognitive outcome

Caspase 8 and 9; initiator caspases Luminescence assay

Elevations of CSF levels
detected during treatment.
Unknown significance for
neurocognitive outcome

reduced: oxidized glutathione
GSH:GSSG; reduction marks oxidative

stress

Luminescence assay Reductions detected in CSF
during treatment.
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Oesterlundh and colleagues analyzed neurochemical markers of brain injury in CSF during induction treatment for

acute ALL in children and reported significant increases in the levels of the neuronal marker neuron-specific-

enolase (NSE), the astroglial marker glial fibrillary acidic protein (GFAP), and the axonal marker neurofilament

protein light chain (Nfl; marker for axonal injury) . An increase in CSF levels of NSE was already evident during

the induction and persisted through the consolidation phase. Others detected elevation of NSE, nerve growth factor

(NGF), and brain derived neurotrophic factor (BDNF) in the CSF, proposed to be reflective of neuronal injury .

In the context of high dose systemic methotrexate treatment in children with ALL, plasma methotrexate levels

correlated with increase in the CSF activity of beta-glucuronidase, which could have resulted from leakage of this

enzyme from injured or degenerating brain cells .

Induction chemotherapy may lead to elevated CSF levels of tau, phospho-tau, and neuromodulin. Of these

proteins, tau concentrations were found to inversely correlate with future IQ performance . CSF tau

concentrations were highest in patients who developed leukoencephalopathies . Based on these studies, tau

has been proposed as a potential predictive CSF biomarker, which may help identify those ALL survivors with

impaired neurocognitive performance .

Markers of oxidative stress in the CNS, in particular high concentrations of oxidized CSF phospholipids, were also

found to correlate with neurobehavioral problems (aggression, anxiety, somatization, withdrawal, conduct

problems, impaired social and leadership skills)  and cognitive dysfunction , as did folate reductions,

homocysteine elevation , and increased levels of F2 isoprostanes  and caspase 3/7 (apoptosis markers) in

patients undergoing intrathecal and high dose systemic methotrexate chemotherapy . In the study by Cole and

colleagues , serum and erythrocyte folate and homocysteine at initial diagnosis and at the end of each therapy

cycle were measured. Higher concentrations of folate were detected in the CSF compared to serum samples.

There was a non-significant trend towards lower folate and higher homocysteine levels at diagnosis in both serum

and CSF in patients with high risk leukemia relapse compared to those with standard risk. In all patients, CSF

folate decreased significantly during induction and throughout the duration of therapy, while CSF homocysteine

increased during consolidation phase. A negative correlation was observed between CSF (but not serum)

homocysteine at initial diagnosis and the Wechsler Performance IQ during the first month of therapy .

In a large study by Cheung and coinvestigators , 235 patient CSF samples were assayed at five points, from

diagnosis to reinduction, for biomarkers of myelin degradation (myelin basic protein, MBP), neuronal damage

Biomarker Methodology
Significance for CNS

toxicity of treatment for
leukemia

References

Unknown significance for
neurocognitive outcome

Interferon-γ (IFNγ); cytokine Magnetic bead assay
Elevations are detected in

the CSF during ICANS

interleukin (IL)-6; cytokine Magnetic bead assay
Elevations are detected in

the CSF during ICANS

Interleukin 10 (IL-10); cytokine Magnetic bead assay
Elevations are detected in

the CSF during ICANS

Granzyme B (GzB); serine protease Magnetic bead assay
Elevations are detected in

the CSF during ICANS

Differentially expressed proteins (n =
63) involved in regulation of neuronal

death, neuroinflammation, suppression
of neurogenesis, microglial activation,

neurofibrillary tangle assembly,
regulation of endopeptidase activity
and suppression of neurogenesis

Proteomics technology
utilizing a 4-plex N,N

dimethyl leucine
(DiLeu) isobaric

labeling strategy and
mass spectroscopy

Unknown significance for
neurocognitive outcome

Differentially expressed metabolites
detected in patients with cancer related

fatigue syndrome: gamma-
glutamylglutamine peptide, 3-

methoxytyrosine, dimethylglycine,
asparagine, allantoin, myoinositol,

ribitol and dimethylmalonic acid

Gas chromatography-
Mass spectrometry

(MS) and liquid
chromatography-

MS/MS

Unknown significance for
neurocognitive outcome
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(nerve growth factor and total phosphorylated tau protein), astrogliosis (glial fibrillary acidic protein, GFAP), and

neuroinflammation (chitotriosidase). MBP and GFAP CSF levels were elevated at baseline and through

consolidation. The number of intrathecal injections positively correlated with NGF level increase at consolidation.

Increases in GFAP, MBP, and total tau levels were associated with a higher risk for leukoencephalopathy and

higher apparent diffusion coefficient in frontal lobe WM 5 years after diagnosis.

Moore and colleagues  analyzed CSF samples from 71 children with ALL, collected at diagnosis and during

intrathecal chemotherapy administration. Apoptosis was measured by activity of initiator caspases 8 and 9 and

execution caspases 3 and 7. Oxidative stress was assessed by measurements of reduced glutathione (GSH) and

oxidized glutathione (GSSG). Low GSH/GSSG ratio was measured and interpreted as indicative of oxidized

extracellular environment. The investigators further reported that caspase enzyme activity increased significantly

during chemotherapy, and caspases 3 and 7 activity inversely correlated with measures of cognitive abilities,

assessed 3 years after ALL diagnosis.

These hypothesis-driven research studies have demonstrated that cellular injury, oxidative stress, and

inflammation occur in the CNS in the context of chemotherapy for childhood leukemias and that CSF biomarkers

reflecting these processes may be useful in identifying individuals at risk for worse neurologic outcomes.

In an attempt to discover novel biomarkers that may help trace further pathomechanisms of chemotherapy effects

on the brain, proteomics platforms have been utilized.

Yu and colleagues  attempted to globally quantify proteins in CSF of children with B-cell ALL undergoing

systemic and CNS directed chemotherapy without irradiation. In a longitudinal study, the researchers implemented

a 4-plex N,Ndimethyl leucine (DiLeu) isobaric labeling strategy to investigate protein dynamics. They analyzed CSF

samples obtained at weeks 5, 10–14, and 24–28 of chemotherapy. Several differentially expressed proteins were

identified. Among them, changes in CSF levels were detected for neural cell adhesion molecule, neuronal growth

regulator 1, and secretogranin-3. Interestingly, these three proteins have been associated with the pathophysiology

of neurodegenerative diseases. In addition, there was a total of 63 proteins found to be altered at all investigated

time points. With the goal to identify potentially modulated biological processes, these proteins were subjected to

gene ontology analysis. This analysis revealed involvement of altered proteins in regulation of neuronal death,

neuroinflammation, suppression of neurogenesis, microglial activation, neurofibrillary tangle assembly, regulation of

endopeptidase activity, and suppression of neurogenesis (Figure 2). Marked elevation of CSF levels of

apolipoprotein E (APOE) and clusterin (CLU) were found in the CSF of children receiving chemotherapy for B-cell

ALL. Remarkably, these two proteins have also been implicated in the pathogenesis of neurodegenerative

dementias .
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Figure 2. Protein to biological pathway linkages for proteins in two clusters, (A) cluster 1 and (B) cluster 2, based

on hierarchical clustering analysis. The significantly altered proteins (ANOVA, adjusted p value < 0.1) are linked to

pathways as color-coded ribbons. Green-to-red rectangles next to the altered proteins indicate the magnitude of

the log2 fold change (FC), where the inner layer represents the FC of week 1 in comparison with week 5, the

middle layer represents the FC of week 1 in comparison with weeks 10−14, and the outer layer represents the FC

of week 1 in comparison with weeks 24−28. Figure is reprinted from Yu et al., Isobaric Labeling Strategy Utilizing 4-

Plex N, N-Dimethyl Leucine (DiLeu) Tags Reveals Proteomic Changes Induced by Chemotherapy in Cerebrospinal

Fluid of Children with B-Cell Acute Lymphoblastic Leukemia. J. Proteome Res. 2020, 19, 2606–2616 . Copyright

(2020) American Chemical Society.

Discovering a relationship between identified protein changes in the CSF and pathways that mediate neurotoxic

effects of treatment for ALL is a very challenging task. Given that the blood–brain barrier, the blood–CSF barrier

and the blood–leptomeningeal barrier can be compromised during cancer chemotherapy and systemic proteins

may be allowed to enter the CSF space, alterations measured in the CSF are most likely multifactorial and may

reflect consequences of (1) the demise of CNS leukemic cells, (2) the demise of systemic leukemic cells, (3)

toxicity of treatment on organs other than the CNS, and (4) toxicity of treatment on the CNS itself. In an attempt to

select candidate biomarkers indicative of CNS toxicity, Yu and colleagues identified those proteins that are highly

expressed in the brain. Of those, neural cell adhesion molecule 2 (NCAM2) and neuronal cell adhesion molecule

(NRCAM), both of which are critical for neural cell adhesion, cell–cell interactions during synaptogenesis, and

plasticity , increased significantly during intensive chemotherapy (Figure 3). NCAM has been found to be

elevated in the CSF from patients with mood disorders . Thus, it is possible that chemotherapy in children with

ALL may compromise synapse formation and plasticity of neuronal networks.
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Figure 3. Box plot of the distribution of (A) neural cell adhesion molecule 2, (B) neuronal cell adhesion molecule,

(C) neuronal growth regulator 1, and (D) secretogranin-3 in CSF in different stages of chemotherapy. Whiskers

extend to data points that are less than 1.5* interquartile range away from the first and third quartiles, respectively.

The horizontal line shows the median (*, adjusted p value < 0.1; ** adjusted p value < 0.05, Student’s t test). Figure

is reprinted from Yu et al., Isobaric Labeling Strategy Utilizing 4-Plex N, N-Dimethyl Leucine (DiLeu) Tags Reveals

Proteomic Changes Induced by Chemotherapy in Cerebrospinal Fluid of Children with B-Cell Acute Lymphoblastic

Leukemia. J. Proteome Res. 2020, 19, 2606–2616 . Copyright (2020) American Chemical Society.

Neuronal growth regulator 1 (NEGR1) and secretogranin-3 (SCG-3) were also significantly elevated at week 5 and

weeks 10–14 respectively. NEGR1 controls neuronal cell growth and differentiation , and SCG3 regulates

neurotransmitter storage. SCG3 has also been shown to influence apoptosis of dopaminergic neurons .

Thus, this proteomics approach helped identify interesting protein species that suggest impaired synaptogenesis

and synaptic plasticity as new potential mechanisms of chemotherapy-related CNS toxicity. Whether these proteins

might represent biomarkers for long-term neurocognitive outcomes will need to be investigated in further studies,

which will correlate CSF protein alterations with the results of neuropsychological assessments.

Brown and colleagues  utilized metabolomics technology to explore pathomechanisms of cancer-related fatigue

syndrome (CRF). CRF refers to a state of physical and mental exhaustion, which complicates mainly the acute

treatment of children with leukemia but can also persist in survivors. The one factor consistently found to be

associated with chronic fatigue syndrome in pediatric ALL is exposure to corticosteroids. The pathomechanisms of

CRF are poorly understood. During post-induction chemotherapy for ALL, CSF samples were collected from 171

[78]

[104]

[105]

[93]



Biomarkers in Childhood Leukemias | Encyclopedia.pub

https://encyclopedia.pub/entry/8610 15/26

pediatric patients six months after diagnosis. CSF metabolomic profiling was performed using gas

chromatography–mass spectrometry (MS) and liquid chromatography–MS/MS. Associations between metabolite

abundance and CRF were determined by means of Kendall’s rank correlation. The investigators reported that eight

metabolites were significantly associated with fatigue in the discovery cohort. These included gamma-

glutamylglutamine peptide, 3-methoxytyrosine, dimethylglycine, asparagine, allantoin, myoinositol, ribitol, and

dimethylmalonic acid. These metabolites have been implicated in neurotransmitter transport and glutathione

recycling. The authors concluded that impairment of glutamatergic pathways and oxidative stress may contribute to

ALL-associated CRF .

4. Neurotoxicity of Novel Immunotherapies in Childhood
Leukemias

CD19-directed chimeric antigen receptor (CAR)-T cell therapy has recently been adopted in the treatment of

childhood leukemias . After the insertion of a CAR transgene into T-cells in vitro, these cells undergo

expansion and are subsequently infused into the patient. The CAR binds to the cancer surface antigen and elicits a

cytotoxic cascade, which destroys the malignant cells . Implementation of this novel immunotherapy has

revolutionized cancer treatment. However, it has also become increasingly evident that CAR-T-cell treatment can

trigger cytokine release syndrome (CRS), a process characterized by profound systemic inflammation and a

multitude of neurologic symptoms of variable, potentially life-threatening severity in approximately 40% of patients

. The American Society of Bone Marrow Transplantation coined the term immune effector cell-associated

neurotoxicity syndrome (ICANS)  for this condition, which comprises all neurological toxicities that occur with

cell-based immunotherapies. The pathophysiology of ICANS involves disruption of the blood–brain barrier due to

the overwhelming systemic inflammation during CAR-T-cell expansion , whereby monocyte-derived

cytokines mediate the development of toxicity . Gust and colleagues  reported that CAR-T-cell-mediated

neurotoxicity correlated with severity of cytokine release syndrome, abnormal past brain magnetic resonance

imaging (MRI), and CAR-T-cell numbers in the blood. Elevation of CSF levels of S100 calcium binding protein B

and glial fibrillary acidic protein (GFAP), both astrocytic markers, were detected, suggesting that disruption or

destruction of astroglial structure and function underlies the evolution of neurologic symptoms. In this study,

corresponding serum GFAP levels did not differ between patients with and without neurotoxicity, and results on

serum S100 levels were not presented. CSF white blood cells, total protein levels, interferon-γ (IFNγ), interleukin

(IL)-6, IL-10, and granzyme B (GzB) increased in the CSF and correlated with serum levels of IFNγ, IL-10, GzB,

granulocyte macrophage colony-stimulating factor, macrophage inflammatory protein 1 alpha, and tumor necrosis

factor alpha. Disruption of the neurovascular unit and astrocytic injury were postulated as the mechanism

underlying neurologic manifestations of ICANS .
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