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Unmanned aerial vehicle (UAV) routing is transitioning from an emerging topic to a growing research area as the
3D flexible utilization of airspace, promogulated by UAVSs, is a potential game-changer in solving the urban air
mobility challenge by allowing to reshape transportation and logistics in the future. This has revealed a need to
classify different types of research and examine the general characteristics of the research area. This research
aims to assist in identifying the main topics and emerging research streams and provides a published overview of
the current state and contributions to the area of the UAV routing problem (UAVRP) and a general categorization of
the vehicle routing problem (VRP) followed by a UAVRP classification with a graphical taxonomy based on the
analysis of UAVRP current status. To achieve this, an analysis of the existing research contributions promulgated in
this domain is conducted. This analysis is used to identify the current state of UAVRP and the gaps related to the
UAVs' flight dynamics and weather conditions, which significantly influence the fuel consumption of the UAV when
modeling the UAVRP.

unmanned aerial vehicles UAV routing and scheduling UAV routing vehicle routing problem

| 1. Introduction

Unmanned aerial vehicles (UAVs) have been the subject of immense interest in recent years and have developed
into a mature technology applied in areas such as defense, search and rescue, agriculture, manufacturing, and
environmental surveillance R2IBIA without any required alterations to the existing infrastructure, for example,
deployment stations on the wall or guiding lines on the floor, UAVs are capable of covering flexible wider areas in
the field 2. However, this advantage comes at a price. To utilize this flexible resource efficiently, there is a need to
establish a coordination and monitoring system for the UAV or fleet of UAVs to determine their environment-based
route and schedule in a safe, collision-free, and a time-efficient manner B,

While the most common models of UAVs can be identified as quadcopters and the hexacopters, the most common
types of UAVs are multi-rotors, fixed-wing, flapping wing, and hybrid systems, where the multi-rotor system is the
most popular type of UAVs because it is used for versatile applications and the number of rotors can be in the
range of 1 to 12 . The fixed-wing UAV is used inaccurate mapping and monitoring applications due to its long
flight endurance and high-altitude operability, which allows covering long distances and carrying equipment such as
cameras and sensors . Flapping-wing UAVs are often referred to as Ornithopter that simulates the mechanics of
flying birds and insects to generate lift by using semi-rigid articulated wings. These UAVs are mainly used for
research purposes due to the improved maneuverability and high flight efficiency when compared to both the

multirotor and fixed-wing systems. The hybrid UAVs system is a combination of the multi-rotor and fixed-wing
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UAVs, and the combination of these two models has boosted its capabilities to allow vertical take-off and landing
8],

Following recent advancements in UAV technology, Amazon, DHL, Federal Express, and other large companies
with an interest in package delivery have begun investigating the viability of incorporating UAV-based delivery into
their commercial services B8, UAVs have the potential to significantly reduce the cost and time required to deliver
materials as, in general, they are less expensive to maintain than traditional delivery vehicles such as trucks and
can lower labor costs by performing tasks autonomously LIRLIZIASI14] To support this emerging area, a new
problem category arises, the UAV routing problem (UAVRP). Despite the increasing focus on UAVs and the field’s
status as an emerging technology, there is no comprehensive overview of the current state available in terms of the

UAVRP characteristics and the methods used to solve UAVRP in the current state.

The main objectives of this paper are to identify the unique characteristics of the UAVRP and present the first
overview of the current state of research. This is achieved by analyzing the existing research contributions
promulgated in this domain. Based on the analysis, we identify the current state of UAVRP and the challenges in
the current state of the general vehicle routing to address the specific nature of the UAVRP. Simultaneously, this
paper also provides a published overview of the current state and contributions to the area of the UAVRP. The
remainder of the paper is structured as follows: First, a general categorization of the vehicle routing problem (VRP)

is presented. An overview of UAVRP based on the analysis of UAVRP current state follows next.

2. UAV Routing with an Emphasis on the Problem Type,
Transportation Mode, and Degree of Automation

The basis of all routing literature is the VRP, which is a well-studied field and still very much applicable for the
advancement of new technology 12131141 vRPs have been applied to solve delivery problems 12 which could
appear similar to the UAV routing as a VRP attempts to find the optimal routes for one or more vehicles to deliver
commodities to a set of locations 8. We identify three main dimensions that seem particularly relevant to apply
when addressing the UAVRP:

1. The problem type: When classifying routing literature, it can be segregated based on the problem type with an
emphasis on the VRP, which has given the major research contributions in the domain of vehicle routing 22171 and

is used as an input for all the routing problems in general.

2. The transportation mode: Routing literature can be partitioned according to the categories of transportation
mode, as the characteristics of the modes (such as land, sea, and air) affect the routing methods. Transportation
modes have different characteristics in terms of cost, transit time, accessibility, and environmental performance (18],
Compared to other transportation modes, UAVs can be a competitive alternative for delivery and pickup of time-

sensitive items, regardless of the ground-level road conditions 12!,
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3. The degree of automation: The degree of automation in the transportation systems is a dimension as automated
systems are discussed in dynamic vehicle routing 29211 generalized vehicle routing 21, and real-time vehicle
routing 22, Technological advances in the area of UAV have been impressive, and this leads to an increased
degree of automation of these systems [23. In production systems, the majority of research has been focused on
automated guided vehicles (AGVs) 24, mobile robot routing [25]281271[28][29][30[31][32][33][34] ' or six degrees of

freedom aerial robots 34 which are UAVs.

2.1. Different Types of Vehicle Routing Problems

In its simplest form, the VRP addresses the routing of a fleet of homogeneous vehicles to deliver identical
packages from a depot to customer locations while minimizing the total travel cost 3. The VRP definition is that a

set of vehicles initially located at a depot are to deliver discrete quantities of goods to a set of customers

determining the optimal route used by the set of vehicles when serving the set of customers [3I[15][35][36](37][38](39]
The objective is to minimize the overall transportation cost, and the solution of the classical VRP problem is a set of
routes that all begin and end in the depot, which satisfies the constraint that all the customers are served only once
(13)15135]  The transportation cost can be improved by reducing the total traveled distance and by reducing the
number of required vehicles [12137][38][39][401[41][42][43][44] ' Several sub-categories of VRP exist, addressing a specific
set of routing problems [22[251(36]:

Capacitated VRP (CVRP): Every vehicle has a limited capacity 3728l CVRP is important when using UAVs with

limited capacities in delivering goods.

+ VRP with time windows (VRPTW): Every customer has to be supplied within a certain time window B2, VRPTW

is important when referencing using UAVs to deliver perishable goods.

« Multiple Depot (MDVRP) VRP: The vendor uses many depots to supply the customers 2%, MDVRP is important

when using UAVs with multiple depots to transport materials to customers.

« VRP with Pick-Up and Delivering (VRPPD): Customers may return some goods to the depot 2439 VRPPD is

important when using UAVs with multiple pick up and deliveries of goods.

« Split Delivery VRP (SDVRP): Customers may be served by more than one vehicle 1. SDVRP is important
when using UAVs to delivering goods to customers where one vehicle can visit many customers and one

customer can be visited by many UAVSs.

» Stochastic VRP (SVRP): Some parameters (like the number of customers, their demands, serve time, or travel

time) are random 2431, SVRP is important when using UAVs in delivering goods to satisfy stochastic demands.

» Time-dependent VRP with path flexibility (TDVRP-PF): Any arc between two customer nodes has multiple

corresponding paths in the road network 241,
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» VRP with trailers and transshipments (VRPTT): In addition to depot and customer locations, this introduces
transshipment locations 42, VRPTT is important when using UAVs along with a fleet of trucks in delivering

goods and in last-mile deliveries.

» VRP with profits: A profit is associated with each customer that makes such a customer more or less attractive.
Unlike to the most classical VRPs, in VRP with profits, the set of customers to serve is not given and different
decisions have to be taken on which customers to serve and how to cluster the customers to be served in

different routes and order the visits in each route 48l47],

These relate to the UAVRP as the different categories of VRP inspire the existing work in UAV routing. In solving
the UAVRP, certain studies have used different VRP approaches.

2.2. Based on Modes of Transport

When studying routing literature, it is also apparent that it can be partitioned according to the transportation mode
such as land-based, maritime, and air transport. However, the application of VRP is mainly visible in land-based
and maritime-based transportation modes as described below, and the UAV routing falls under the domain of air

transport along with typical airplanes used in airline industry.

2.2.1. Land-Based Transportation Modes (Vehicle Routing)

Trucks, delivery vehicles, AGVs, and other land-based transportation modes fall under this category, and much
research has been carried out regarding route optimization 849 The VRP can, in this context, typically be
described as the problem of designing optimal delivery or collection routes from one or several depots to any
number of geographically scattered cities or customers, subject to side constraints 8. VRP plays a central role in

the fields of physical distribution and logistics 2. In this field, fuel models are seldom considered.

2.2.2. Maritime-Based Transportation (Vessel Routing)

The other relatively well-researched transportation mode is the vessel routing or maritime routing problems 42, In
maritime routing, in contrast to land-based modes of transportation, one generally must consider non-linear fuel-
consumption models. The main concern with non-linear fuel-consumption models is that they make the solution of
relevant models complicated 429, |n this area, one also often encounters network design problems 21 where the
aim is to set up cyclical plans 2. The same is often seen when designing, for example, airline flight schedules 2,
The focus of these is not dynamic routing such as covered by the traditional VRP and of particular relevance to the
UAVRP.

2.3. Degree of Automation

This paper also considers the degree of automation of transportation as automation and autonomy play a large role
in practical applications of the UAVRP [B4I33I56] Fyrthermore, they play an increasing role in various modes of

transport. Driverless trains are already in operation; the degree of automation in cars is continuously rising, and
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even the air transport sector is discussing the use of pilotless aircraft B8, It is observed that certain modes of
transportation are fully automated and certain modes are semi-automated 3857 Automated guided transport
(AGT) systems and AGVs fall under the fully automated modes of transportation and have been subjected to
intense study in literature [24125)(27I[58](59)[60I(61][62] |n maritime transport, automated vessel routing has been

introduced and unmanned vessels will be the future of maritime transportation 62,

As UAVs flight and navigation tasks are increasingly automated to gain economies-of-scale and speed of
operations and support the large-scale operations, UAV routing and execution are evolving from teams of
operators managing a single UAV to a single operator managing multiple UAVs as illustrated in Figure 1. The
increasing degree of autonomy and automation has created a continuous push for developing methods for
managing complex UAV operations. Such systems will naturally require the development of advanced prediction,
routing, and scheduling methods and implementation of various systems to support decision-makers in handling
the complexity of operations LUMILUMA2MIS] |t js also worth noting that most contributions focus on the VRP
characteristics, specific or multimodal transportation modes, and to some degree, on the VRP for automated land-
based transportation (typically indoor robotic solutions such as AGVs, mobile robots). While the classical VRP is
well-studied, the methods and approaches found within this domain are still very much applicable for the

advancement of new technology in the area of UAV operations 12,
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Figure 1. Transitioning from teams of operators managing a single unmanned aerial vehicle (UAV) to a single

operator managing multiple UAVs 131,

2.4. Significance of UAVRP

UAV routing problems involve a huge amount of stochastic information in contrast to VRPs in general, as UAVs
should be able to change, adapt, modify, and optimize their routes in real-time. In contrast to general routing
problems, several individual objective functions can be used in UAV routing such as reducing individual UAV costs,
enhancing its profit, increasing safety in operations, reducing lead time, and increasing the load capacity of the

entire system [631[64],

Influencing parameters for UAV routing includes numerous parameters and constraints in contrast to traditional
VRP problems. UAVSs' nature is routing and scheduling in 3D environment 83, whereas land- and maritime-based
transportation are 2D 68l and in UAV routing, changing weather conditions (wind speed, wind direction, air density)
should be considered in solutions. Moreover, UAVs specifications, energy consumption affected by weather

conditions, carrying payload of UAVs, and collision avoidance with respect to moving/fixed objects adds more
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complexity in finding solutions in the domain of UAV routing. All these elements emphasize the significance of UAV

routing as it is challenging to develop models considering all the influencing aspects together.

Unlike the traditional routing problems, the UAV routing should address different decision layers in the system
architecture (Figure 2), which includes the fleet level where the fleet is managed to provide delivery services using
the UAV fleet and the platform level where it focuses on the individual functioning of the UAVs 13, The current
state of research is fragmented as shown in the layers illustrated in Figure 1 and neglects that different types of

decisions are addressed at different abstraction levels L3I,

' | | )
Fleet Level Y Delivery service ® g
*i‘* _*';F‘_._ _'i" A flaet of platiorms ® & - -E
=@ s
® 3 H E
® H H E
Individual task o E BH E
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W A set of assets configured for a delivery o ® E = = c
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Elament leval --. m One delivery to a customer ®
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Legend : @ - existing literature ([N - Features to be addressed by the problem

Figure 2. Overall hierarchical representation of the systems related to the UAV routing problem (UAVRP) (23],

| 3. UAVRP Current State

Limited contributions have been presented B468I69 i the area of UAV routing in 3D environments. What has been
accomplished in the field has focused on UAV routing for transporting materials and surveillance 19 without
considering the stochastic conditions in weather and non-linear fuel consumption models 2. Table 1 shows the top
seven subject areas in UAV routing literature, where the majority of contributions are seen in engineering and

computer science domains.

Table 1. Top seven subject areas.

Subject Area No of Papers
Engineering 173
Computer Science 83
Mathematics 41
Physics and Astronomy 25
Social Sciences 24
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Subject Area No of Papers
Materials Science 18
Decision Sciences 14

A literature review aims to map and evaluate the body of literature and identify potential research gaps highlighting
the limitations of knowledge Y97, The search was conducted for the context keyword “UAV routing,” using the
“article title, abstract, keywords” search in the Scopus database. Through the exhaustive search, we initially
identified 396 papers published in UAV routing, and these papers were analyzed to identify the areas covered in
addressing the UAV routing problem.

The first published research we were able to identify on the topic stems from 1998, and this work contains a
Reactive Tabu Search (RTS) heuristic within a discrete-event simulation to solve routing problems for unmanned
aerial vehicles (UAVs) 22, The next contribution was in 1999 and proposes a variation of standard VRP that arises
in routing UAVs in the presence of terrain obscuration, thus introducing visibility-constrained routing of UAVs 28],
From the timeline presented in Figure 3, it is apparent that the UAV routing theme is gaining increasing attention,
especially from 2005 and onward, with a steadily increasing number of publications per year. After the year 2000,
an increasing trend is visible with a focus on wireless sensor networking and ad-hoc sensor networking. The top
journals and conferences contributing to UAV routing are identified in Figure 4 where publication sources with more
than three contributions are included. From Figure 3, The International Society for Optical Engineering
Conferences, IEEE Military Communications Conferences, and Journal of Intelligent and Robotic Systems have

topped the list with the majority of contributions.
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Figure 3. The publishing trend in UAV routing as identified using Scopus 1479,
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Top Contributiens in the area of UAY routing

Figure 4. Top journals/conferences contributing to the area of UAV routing 24!,

To limit the detailed study of the literature to understand the current state of UAV routing, we chose to focus on all
the relevant published journals and the top 10% cited conference papers. This list includes 51 journal papers and
21 conference papers and indicates that the clear majority (70%) of contributions on UAV routing to date have

been disseminated through conferences rather than journals.

For the identified 72 main contributions, the keywords have been recorded, and Figure 3 shows a rich image of
these and their prevalence. The illustration of the keywords presents the different areas of technologies, industries,
and research areas linked to UAV routing. Most commonly used keywords are presented in larger fonts and we can
see the various areas linked with UAV routing in Figure 5.
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Figure 5. Analysis of keyword frequency in UAV routing.
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4. Approaches and Domains in UAV Routing in Existing
Literature

When considering the published literature both in terms of sources and keywords, it becomes clear that various
approaches are used in addressing UAV routing. The contributions’ approaches are inspired primarily by different
Iaﬁmtmm%eling salesman problem (TSP). The difference between TSP and VRP is that TSP

considers finding the shortest path that connects an arbitrary number of nodes whose pairwise distances are
L%gﬁﬁ%ﬂf@f routing is a novel topic. There has been a very limited number of research contributions published

on UAV routing compared to the VRP and vessel routing. This paper identifies different VRP approaches to solve

PAY hesdingagiediorrsopdhgRICeRRI BOvrkrERRf YRR anddifestesdanesrTeidesiaaieRigd v ensienps bhY
SIS dHEENY NIk S0 9saIs6R! thathgeakiral P U IBUSE e UAVERPaABLRIPIHES and Ah Ao EbIRECACHRY
BeYRNEh puitaRAR @ TYRARAP e P HES BB thESFRIESRG LAY FRttiNEbNY NG AEBRIAHAS RFEBIRMT WK dHNY
fOLTING JBIiERIE DT tHRIWEKSIT hen oW ARSI OEiIAAN RN A Er SRIBRFONSHEIRTIAE NRVCOamMPRvatHIUeR ST HIA
HigcAttHrR B ieRIeaR dna tirxepRibive BPRYRThiRRPd PeeliRPBRiSe distance 8. This is relevant in UAV routing if

one particular considers sense-and-avoid 22, where the objective is to move to the nearest safe point in a collision-

e Gl aRbthg, NGTARIEG D oS- Ik e DRSS A S AR AISS S A b s BY Sl atisinanics B
DSHESEY QTPUBRIHS IR OB Witk WAHRATND LA AN S PRECLBIGE SRR BN G8 0¥ thG
nglé)gpoga{?e%aé{yéngeg %pgéggtdtgl&% grqugrsg_ and the weather conditions in which it is operating. Both significantly
influence the fuel consumption of the UAV and, thus, they must be included when modeling the UAVRP. Such

maseisoniiHeash i sAMAYIRSiARAbngIRERSIvR: foymplainne Aite RSB d t8fisHERRALIPLRVENBER ISsgldRIBe@sRaTaY
doreray v heipreosneaus. firss sl WaYsspemdotn anmriaxityandbarmaionty of hrexisingierakkadacysearme
2 baregenres RdemtatYRAThiRsables s8elldbeclvengndadvenpyThe Rejoinpasityshitbe tuebcappsknpties
gredek gBAdEF\AES WRTEMIOUEPINAR BRifxiRtROWIRIBlIEe HRES PN EitHIRPNALSe to stochastic conditions. Thus,

modeling energy consumption must be further investigated by giving more focus to the literature. These models
and their Tatbbraidvistrithei aAviRR EEemwiike gardcutarkarelesattnamsieEspod dohes ussdadrch Avidalgirgjopment of
efficient frameworks for solving UAVRPs addressing the challenges presented in this study need to be answered.

ArealApproach No of Papers
Wireless networks 24
Scheduling 8
VRP 18 )
12019,
TSP 9
Other 13 .
_ outing

under weather forecast and energy consumption constraints. IFAC-PapersOnLine 2019, 52, 820—

Begdes (\GHbGlerBelkbsr] (GrdiyRiefp review also identified various other approaches. Chief among these

approaches ifabfméldﬂn?rmAﬁ)oéMawlaﬁgasmm Gokamd (EHR) 4ppesache ainseekivieM\bf @aingbutions in the
. Khosiawan, Y.; Nielsen, 1. A system of UA a%,o ication in indoor environment. Prod. Manuf. Res.

literature that utilize the VRP and TSP approaches used in UAV routing. Several contributions use a combination of

Author Approach Objective Experimental Data
(241 Oberlin, Heterogeneous, Minimize the total cost of 6 UAVs with a minimum turning radius
Rathinam, Multiple Depot, traveling for the vary uniformly from 100 to 200 meters
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Author Approach
and Darbha, Multiple TSP
2009 (HMDMTSP)

7 Ljy,
L) TSP
Guang, and
Song, 2013
The curvature-
(951 Babel,
2016 constrained TSP
with obstacles
[96]
Manyam et Asymmetric TSP
al., 2016
7 Furini, Time-Dependent
Persiani, TSP in Controlled
and Toth, Airspace
2016 (TDTSPPCA)
|'9_8] .
dEnrlght Dynamic Traveling
Ieil?azzoli Repairperson
’ Problem (DTRP
1 2005 (DTRP)
[l Ryan,
Bailey, and VRPTL-VRP
Moore, with Temporal
Loagic
Frazzoill, SO
1 2008 Specifications
[86] K|ein et
al.. 2013 Dynamic VRP
1 Multi-vehicle
2013 TSP
and .
Dynamic VRP
Frazzoli, y
1 2008
1 B8 'Murray  VRP+ Flying
and Chu, Sidekick TSP
2015

Objective
heterogeneous fleet of UAVs

Minimize the total traveling
time for the homogeneous
fleet of UAVs

Minimize the total tour length

Minimize the total traveling
time for homogeneous fleet of
UAVs

Minimize the total traveling
time and the holding time
over mission waypoints for
homogeneous fleet of UAVs

Minimize the expected
waiting time between the
appearance of a target, and
the time it is visited

Minimize the relative risk
for using a
homoaeneous fleet of
UAVs in the mission.

Minimize the time
required to determine the
location of the source

Maximize the expected target
coverage

appearance of a target
point and the time it is
visited by one of the
agents

Minimize the latest time
at which either the truck

Experimental Data

and uniformly generated targets 249 jn

a square of area 5 x 5 km?

6 UAV having cruise speed 100 km/h

and maximum distance 200 km

One aerial vehicle with a cruise speed
of 100 m/s covering an operational area

of size 20 km x 20 km

2 UAVs in a zone of size 30 x 30 units
where targets are located randomly and
50 instances for each problem size with

10-40 targets

5 scenarios 10—40 mission waypoints,

randomly selected among the

navigation points located within a circle
having center in Milano Linate and ray

of 80 NM

Simulated with a Single UAV with
randomly generated targets

A scenario with three UAVs, one launch
site, two landing sites, and five targets

Have conducted a pair of flight tests where

they deploy 6 sensors over a 1 km? region

and localize acoustic sources within the
21-day simulation of the Sisson’s (1997)
[190Inptional Nari dataset

10 or 20 customers, such that 80%-90% of
customers are UAV-eligible according to
weight, while the truck and UAV speeds

rial
r fleets

nf.

117, 20,

)16.

reather
le

work
ational
Berlin,

rame
\W-
tember

2m on
2rlin,

jomain of
Neaihiern
esents an
with VRP

Jlems are
very

1hdrkssoglverB. ro/usal AW iReig man SA. ddneairehicteinaitting roplpntid) iadanomigingVieye fegmimtiod
(101210 @0 981G 0807 PPN MBI Y HIBISHRBa T i rassiRefapers related to UAV routing in various

wireless networks are presented in Figure 6. These systems can integrate information from ground with WSN, in
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1 Author Approach Objective Experimental Data ane have
or the UAV returns to the  were fixed at 25 miles/h, with the UAV .
depot having a flight endurance of 30 min aefincies

s Mg

[89] K i ick-
= Kinney,  VRP with Pick To find the shortest tour 56 test problems comprising the standard ?b' ities in
Hill, and Up and . . e
L. visiting all of the test set of Solomon were used in the
Moore, Delivering customers testin ange and
1 2005 (VRPPD) + TSP 9 RAMER
[74] [116][117][118][119][120]
1 Guerrero TSP+ Minimizes the sum of Have considered three 2D and two 3D
and Capacitated travel time among example scenarios with different k
Bestaoui, VRP (CVRP) waypoints waypoints and home waypoints ar|
2013
I'g_o] P -
2 Wen, . Mlnlmlze the to?al travel Have considered nine instances according 143—
Zhang, Capacitated time and fleet size of the . .
to different proportions between hot water
and Wong, VRP (CVRP) homogeneous fleet of and blood
2016 UAVs
2
[z5] J
Capacitated - The simulation tests are conducted using
Savuran - Maximize the total
and Mobile Depot number of taraets visited 16 of bench-mark problems from
2 Karakaya VRP (C- by the UAV 9 Heidelberg TSP Library (of Heidelberg oncepts,
2016 MoDVRP) 1995)
Maximize the overall
effectiveness of the
2 mission. minimize Test problems are created for a
B Murra 2 inati i initi
g VRP with Time  changes to the initial combination of dlffer(-::nt |n|?|al tasks, e,
and . .. L. resources, pop-ups, time window scales,
windows mission plan, minimize . . =\ -
Karwan, - loiter times, and payloads for a ‘E): Los
(VRPTW) total travel time, and . .
2013 L battlespace area of size (~unif(50,400)) x
minimize the use of (~unif(50,400)) -
resources, payloads, and ’ efficiently
P [121][1 2% wrnim3A] bases luring the
[92] duler (122
[12 AAPSINE25] VRP with Time  Minimizing cost and risk Three-element target packages are created d
2 . . : . _ ) Dfehartl
Slear, and Windows generally associated with  along wit of tea Mrld terrain and i
. - - literature
Melendez, (VRPTW) a three-dimensional VRP  a realistic threat lay down
2007 2duling is
[67] L
2 _ Mlnlmlze the total manned
Guerriero, distances traveled by the
Surace, VRP with Soft homogeneous fleet of Fleet of 6 homogeneous UAVs in a field of
Loscri, Time Windows  UAVs, maximize the 110 x 80 m? with different parameters for a ’0—22
and (VRP-STW) customer satisfaction sport event
Natalizio, and minimize the number
2014 of used UAVs )
2 mobile
1291 Kim, Multi-Depot Minimizing the operating  Have considered 9 candidate sites for ogle
Lim, Cho, VRP (MDVRP) cost of a heterogeneous centers and 40 patients to be served by
28. Dang, Q.-V.; Nielsen, I. Simultaneous scheduling of machines and mobile robots. e-Bus.
Telecommun. Netw. 2013, 365, 118-128. [Google Scholar] [CrossRef]
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2 Author Approach Objective Experimental Data yrontine
and Coté, fleet of UAVs and to find two types of UAVs
2017 the optimal number of
UAV center locations
3 ng
(93] Habib, Minimize the total Have considered 12 instances with T'éﬂ”al
Jamal, and Multiple-Depot  distances traveled by a different combinations of fleet size and
Khan, VRP (MDVRP) homogeneous fleet of targets (Max fleet size of 5 homogeneous ‘!
2013 UAVs fleets of UAVs and max targets of 101)
3 l. Res},
2000, 38, 4357-4367. [Google Scholar] [CrossRef] 4
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