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Remote sensing aircraft object detection is crucial in various applications. In civil aviation and the aerospace industry, it

helps identify other aircraft, drones, or obstacles around an aircraft to prevent collisions and enhance aviation safety. It

also aids in the real-time monitoring and tracking of civil aviation flights, cargo planes, and private aircrafts to ensure their

flight path and status.

Keywords: deep learning ; lightweight network ; YOLOv5n ; Shufflenet v2

1. Introduction

Remote sensing aircraft object detection is crucial in various applications. In civil aviation and the aerospace industry, it

helps identify other aircraft, drones, or obstacles around an aircraft to prevent collisions and enhance aviation safety. It

also aids in the real-time monitoring and tracking of civil aviation flights, cargo planes, and private aircrafts to ensure their

flight path and status. In the military domain, it identifies and tracks enemy aircraft, performs aerial reconnaissance,

gathers intelligence, and supports aerial strikes and combat. In emergencies like aircraft disappearance or deviation from

course, it assists in search and rescue operations to locate the aircraft and passengers.

The breadth of application domains in remote sensing object detection corresponds to the complexity of target data

sources. Particularly for remote sensing targets, completing object detection tasks depends not only on the algorithm but

also on the data source. Factors affecting detection effectiveness include not only the reliability of artificial intelligence

algorithms but also that of remote sensing data sources. From acquiring raw data to inputting them into the network,

considerations extend beyond complex scenes to factors like imaging conditions, resolution, and storage processes.

During imaging, sensor size, atmospheric conditions, observation time, and lighting affect results. For instance, adverse

weather like rain and fog significantly degrade imaging quality, necessitating image dehazing during processing.

Additionally, image denoising is crucial in preprocessing due to signal transmission, dark current, and random noise

effects.

For algorithms, considerations during training involve sample quantity, scene types, target categories, and annotation

quality to select high-quality datasets. Enhancing recognition involves designing new network structures, adjusting training

strategies, and selecting parameters. Since algorithms often deploy on hardware with low computing power and memory,

compressing network volume and parameter size is vital. Given these considerations, selecting a suitable algorithm

framework and dataset is paramount.

Currently, remote sensing object detection faces several challenges. Firstly, it suffers from a single detection perspective,

limiting the useful information gathered from an overhead view. Secondly, remote sensing targets tend to be small in size

with minimal differences between types, making fine-grained identification challenging. Most significantly, the vast range of

object detection on remote sensing images leads to substantial computing power consumption and inefficient detection

processes. To address these challenges, various algorithms with exceptional performance have emerged in remote

sensing object detection, such as the R-CNN series , YOLO series , and DETR . Nonetheless, deploying

these algorithms on mobile hardware platforms with constrained computing and memory resources presents significant

challenges due to their large network size and complex structures. In high-altitude environments where real-time imaging

and object detection are crucial, available memory and computational resources are severely limited. Addressing actual

memory usage, after training these algorithms on the same dataset, the resulting model files typically range from a few

megabytes to hundreds of megabytes. Some exceed even hundreds of megabytes, which is unacceptable to a certain

extent. From a computational perspective, existing remote sensing aircraft object detection networks prioritize

performance metrics, often leading to increased network depth and width. While this may improve performance, it also

substantially increases resource consumption in terms of memory and computation. For instance, the actual FLOPs of
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YOLOv5n can reach as high as 4.3 G, rendering existing algorithms impractical for deployment on some actual mobile

hardware platforms.

In response, several lightweight object detection networks have been proposed. Examples include the MobileNet series

, Ghost-Net series , PP-LCNet series , and Shufflenet series . However, each of these algorithms has

shortcomings in terms of detection performance, network size, and resource consumption. They fail to strike a balance

between detection performance and memory and computational resource utilization. For example, Ghost-Net and Mobile-

Net have excessively large network parameter sizes, while PP-LCNet exhibits slightly inferior detection performance. This

makes it challenging to meet practical application requirements. Therefore, while ensuring detection performance remains

unchanged or slightly decreased, the focus should be on significantly reducing network parameters and computational

load to achieve a perfect balance between detection performance and resource consumption.

2. Remote Sensing Object Detection Based on Deep Learning

Around 2014, deep learning-based approaches began to dominate the field of object detection, subsequently extending

their influence to the entire domain of remote sensing object detection. Object detection algorithms based on deep

learning are typically categorized into two types: single-stage object detection algorithms and two-stage object detection

algorithms.  Two-stage algorithms mainly include Region-CNN (R-CNN) , Fast R-CNN , Faster R-CNN , and

others. They typically start by using a Region Proposal Network (RPN)  to generate candidate boxes based on the

texture, color, and size features associated with the objects. These candidate boxes undergo a filtering process to reduce

their number before being sent to a deep learning network, typically utilizing a Convolutional Neural Network (CNN)  for

feature extraction. The obtained feature vectors are compared with predefined target categories to confirm the presence

of a target and perform target classification. Simultaneously, each candidate box undergoes position regression to obtain

corresponding position coordinate information. Due to its excellent detection speed and relatively small resource

consumption, single-stage networks have gained dominance in recent years. The most prevalent network among single-

stage networks is the YOLO series algorithm, known for its fast detection speed and high accuracy, particularly suitable

for real-time scenarios. The single-stage algorithm mainly includes the YOLO series and the Single Shot MultiBox

Detector (SSD)  series. They generally pass the entire image as input to the CNN, skipping the step of generating

candidate boxes. The CNN directly outputs category and location information of the target. Single-stage networks typically

use-predefined anchor boxes with different scale sizes and aspect ratios to process targets, judging the presence of a

target in each anchor box and predicting its location and category for object detection. With ongoing research, the

detection accuracy of single-stage networks continues to improve. With superior detection speed, they have gradually

replaced two-stage algorithms in many engineering practices, becoming the mainstream in practical applications.

Traditional methods for object detection in remote sensing images have limited representation power. Recently, many

deep learning-based networks specifically for remote sensing images have emerged. Reference  proposed a method

that redesigns the feature extractor, utilizes a multi-scale object proposal network (MS-OPN) for object-like region

generation, and employs an accurate object detection network (AODN) for object detection based on fused feature maps.

 Reference  introduced the CSand-Glass module to replace the residual module in the backbone feature extraction

network of YOLOv5, achieving higher accuracy and speed in remote sensing images. Liu et al. proposed the YOLO-

extract algorithm , which optimizes the model structure of YOLOv5 in two main ways. Firstly, it integrates a new feature

extractor with stronger feature extraction ability. Secondly, it incorporates Coordinate Attention into the network.

In recent years, the Transformer  has had a profound impact on deep learning. In the field of object detection,

Facebook introduced the end-to-end object detection network called DEtection Transformer (DETR) , which is based on

the Transformer architecture. DETR can be viewed as a transformation process from an image sequence to a set

sequence. This is due to the inherent nature of the Transformer as a sequence-to-sequence transformer. The approach

taken by DETR involves unfolding the pixels of the output feature map from the backbone into a one-dimensional

sequence, treating it as the sequence length, while maintaining the definitions of batch and channel. Consequently, DETR

is capable of computing the correlations between each pixel of the feature map and all other pixels, unlike in CNNs, where

this is achieved through the receptive field. The Transformer demonstrates the ability to capture a larger perceptual range

than CNNs.

In addition to the previously mentioned methods for remote sensing object detection, there is a particular significance in

introducing arbitrary-oriented remote sensing object detection methods. From a training perspective, the primary

distinction between arbitrary-oriented object detection and regular object detection is in how object bounding boxes are

represented in the dataset. Convolutional neural networks struggle to capture variations in scale and orientation of objects

in remote sensing images. This struggle arises from the limited generalization ability of convolutional operations to target
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rotation and scale changes. As a result, the detection performance of convolutional neural networks tends to decrease,

especially when dealing with dense objects and remote sensing targets with centrally symmetric features.

Optimizing the loss function for representing object bounding boxes is currently a focus of research. The early work of

DRBox  has significantly advanced arbitrary-oriented remote sensing object detection. DRBox identified various

challenges in this field and introduced three different models along with their parameters tailored for cars, ships, and

aircraft, encompassing a wide range of differently sized targets and distinguishing their heads and tails. R3det  adopts

single-stage object detection and suggests re-encoding the position information of refined bounding boxes into

corresponding feature points. This process reconstructs the entire feature map to achieve feature alignment. The ROI-

Transformer  introduces a module named RoI Transformer, which detects directed and dense objects using supervised

RRoI learning and position-sensitive alignment-based feature extraction within a two-stage framework. The innovative

application of polar coordinates in the P-RSDet  reduces parameter volume and introduces a novel loss function, Polar

Ring Area Loss, leading to enhanced detection performance.

3. Lightweight Methods for Object Detection Networks Based on Deep
Learning

Deep learning methods have demonstrated significant advancements in remote sensing object detection in recent years.

As previously mentioned, the wide scope of object detection in remote sensing images leads to substantial computational

overhead and significantly lowers detector efficiency. Consequently, lightweighting network models has become a focal

point in current research. The primary goal of lightweighting network models is to reduce model complexity and decrease

the number of model parameters. Four primary technical approaches exist for lightweighting network models:

compressing pre-trained large models, redesigning lightweight models, accelerating numerical operations, and hardware

acceleration.

In current practice, the first three technical approaches are widely employed. Knowledge distillation and model pruning are

both well-established methods for compressing models. Knowledge distillation, a common method for model

compression, reduces model volume and parameter count by transferring the knowledge of a complex model to a

lightweight one. The literature points out that this method extracts the knowledge contained in the complex “teacher”

model that has been trained into another lightweight model, the “student” model. In addition, model pruning is also a

common method. Model pruning reduces model size by removing unimportant weights or neurons. It can be categorized

into structured pruning and unstructured pruning based on different methods. Furthermore, adjusting the number and size

of the network’s convolution kernels can achieve model lightweighting. Generally, a larger convolution kernel size can

enhance feature extraction. However, the literature indicates that large convolution kernels increase computational

requirements and the number of parameters, leading to unstable gradients. Therefore, scholars often employ multiple

small convolution kernels instead of a single large one to compress models, as seen in the Visual Geometry Group (VGG)

network proposed in .

Lightweight networks find extensive applications in remote sensing image processing. The design of lightweight network

architecture originated with SqueezeNet  in 2016 and MobileNet  in 2017. Subsequently, new and improved

networks, such as SqueezeNext  and MobileNetV2 , have emerged. MobileNetV1 can essentially be viewed as

replacing the standard convolutional layer in VGG with depthwise separable convolution . MobileNetV2  introduces

shortcut connections and replaces part of ReLU with a linear activation function. They employ pointwise convolution to

increase the dimension prior to depth convolution, extract features through depth convolution, reduce the dimension, and

add the input and output to form the residual structure. SqueezeNet proposed the Fire module, which replaces the 3 × 3

convolution kernel with a 1 × 1 convolution kernel. By adjusting the number of 1 × 1 convolutions, the number of channels

in each layer in the convolution operation can be flexibly controlled, thereby reducing the amount of model calculations.

The Shufflenet v1  network, proposed at the same time, is one of the relatively mature lightweight networks. This article

uses the improved Shufflenet v2  to initially achieve network lightweighting. In addition to network simplification,

numerical calculations have also become a new focus area, with numerical quantification being a typical representative.

Quantization is the process of converting a model’s weights and activations from floating-point numbers to lower bit-width

integers or fixed-point numbers. Quantization can reduce the memory footprint and computational requirements of a

model. The literature indicates that model parameters are the primary memory access objects in CNNs; thus, parameter

quantization is an effective means of reducing memory access and power consumption. Hardware acceleration involves

utilizing specialized hardware accelerators to expedite the inference process of deep learning models, consequently

alleviating the computational load on the model.
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4. Attention Mechanism

The attention mechanism, originating from the study of human visual cognition characteristics, represents a significant

breakthrough in neural network development. In human visual information processing, due to input information

characteristics and human brain processing limitations, it is essential to selectively focus on certain information while

ignoring redundant data. For example, in images, focus is on vibrant colors and distinct textures, while in text, attention is

on sentence beginnings, endings, and specific keywords. In remote sensing, the attention mechanism adjusts the

network’s focus on different targets. Moreover, addressing the scarcity of remote sensing datasets, the attention

mechanism enriches data, aiding the network in learning more valuable information. Additionally, for multi-source remote

sensing images, it integrates diverse information efficiently, enhancing network performance. Therefore, attention

mechanisms prioritize which input information to focus on and optimize resource allocation for information processing.

In existing object detection algorithms, the Squeeze-and-Excitation (SE)  attention mechanism is widely used in mobile

networks. By employing SE modules, the network evaluates relationships between feature channels, determining the

importance of each channel through the learning process. It then enhances crucial features for the current task while

suppressing less important ones. However, this approach only considers inter-channel information and disregards

positional information. Subsequent efforts, like BAM BAM  and CBAM , aim to incorporate positional information, but

convolutional operations capture only local relationships, failing to model crucial long-distance dependencies for visual

tasks. To address these limitations and achieve multidimensional information integration, attention mechanisms like

Coordinate Attention (CA) and Efficient Channel Attention (ECA)  have emerged. Besides focusing on channel and

positional information, researchers have explored new approaches, such as evaluating neuron weights and subsequently

suppressing or focusing on them based on evaluation results, thus achieving more efficient computations. Representative

examples include NAM Attention  and SimAM . Furthermore, numerous efficient attention algorithms continue to

emerge, including Sequential Attention , which emphasizes logical attention, Co-attention , which focuses on spatial

attention, and the prevalent Transformer based on self-attention.
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