3D Graphene-Based Toxic Gas Sensors | Encyclopedia.pub

3D Graphene-Based Toxic Gas Sensors

Subjects: Others
Contributor: Zengyong Chu

Air pollution is becoming an increasingly important global issue. Toxic gases such as ammonia, nitrogen dioxide,
and volatile organic compounds (VOCs) like phenol are very common air pollutants. To date, various sensing
methods have been proposed to detect these toxic gases. Researchers are trying their best to build sensors with
the lowest detection limit, the highest sensitivity, and the best selectivity. As a 2D material, graphene is very
sensitive to many gases and so can be used for gas sensors. Recent studies have shown that graphene with a 3D
structure can increase the gas sensitivity of the sensors. The limit of detection (LOD) of the sensors can be

upgraded from ppm level to several ppb level.

graphene graphene hydrogel graphene aerogel gas sensor

| 1. Introduction

There is a huge demand for the development of simple and reliable gas sensors . In many fields, such as
agriculture, medical diagnosis, and industrial waste, especially in environmental monitoring, it is necessary to
detect NO, (especially NO,), ammonia (NH3), and volatile organic compounds (VOCs), because of their possible
toxicity and related risks to the ecosystem [l In many countries, air pollution is a major environmental problem
caused by rapid industrialization. A large amount of NO, is emitted into the environment every year due to the
industrial combustions and automobile emissions . Therefore, the detection of NO, has aroused widespread
concerns, because it is harmful to the plants and respiratory systems of people and animals 2. Additionally, NO,
can cause acid rain and photochemical smog B, Therefore, the United States Environmental Protection Agency
(EPA) defines NO, as a typical air pollutant, and the exposure limit is only 53 ppb . Ammonia (NH3) is also a
common dangerous air pollutant, which is produced by the industrial process, agricultural production, and
manufacturing process I, Specifically, any overexposure to the high concentrations of NHz (>30 ppm, 10 min)
can irritate the human eye, skin, and respiratory system 11213 vOCs are the hydrocarbons that exist as gases
or vapor at room temperature, which can be emitted from numerous products and activities, e.g., detergents,
paints, solvents, tools, clothes, toys, cleaning, and cooking 4. Aldehyde, aromatic, aliphatic, halogenated, and
terpenoid compounds are the VOCs commonly detected in commercial buildings 2413, Toxic VOCs that have
been previously detected in air by any type of sensors include formaldehyde, acetaldehyde, benzene, toluene,
xylenes, phenol, pyridine, acetone, acetic anhydride, carbon disulfide, dihydroxybenzene, and so on [24I[15][16][17]18]
(291 For example, phenol is a toxic VOC occurring both naturally but also from industrial processes, which can be
rapidly absorbed through the skin and cause skin and eye burns upon contact 2%, |t is considered as a serious
pollutant because of the toxicity and persistence in the environment. The short-term exposure limit of phenol is 10

ppm, 60 min [21 Because of the serious environmental pollution, phenol monitoring becomes an urgent problem.
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Therefore, with the monitoring development of air pollution, the demand for gas sensors will increase rapidly in the

future.

As a 2D material, graphene has many advantages, such as large conjugated structure, high specific surface area,
high conductivity, easy to be synthesized, sensitive to the gas molecules, and so on. It has been proven to be a
promising high-performance gas detection material [22. Graphene surface can easily absorb some molecules, such
as NO,, NH3, CO,, and so on. Moreover, the conductivity of graphene will change after adsorption of target gas
molecules. The concentration of target gas in the environment can be detected by monitoring the change of
conductivity. There have been many reports on the application of graphene in gas sensors, including pure
graphene (23124251261 gngd graphene composite materials (2728129301811 There are many factors affecting
graphene-based sensors, including: synthetic method [B2I33134] chemical structure B2IB8IE interlaminar structure
[34138] testing environment BALAALE2  and surface properties 4314414511461147] Dye to the 71-rr accumulation and
Van Der Waals force binding between graphene, the 2D graphene nanocomposites tend to agglomerate, resulting
in the reduction of specific surface area 4849501 |n order to make full use of the characteristics of graphene, 2D
graphene is usually assembled into a three-dimensional (3D) framework state by a series of methods. In contrast,
due to the combination of 3D porous structure and the inherent characteristics of graphene, 3D graphene provides
more space and larger surface area to transport and store electrons. 3D graphene has good conductivity, large
specific surface area, and versatile gas adsorption sites. Furthermore, the defects and edge positions on the 3D
porous graphene play an important role in promoting gas adsorption 28l In recent years, compared with 2D
graphene structures, 3D porous graphene structures such as graphene hydrogels, graphene aerogels, and
graphene foams have been used as high-performance gas sensors (2. Although 3D graphene has broad
prospects in the field of gas sensors with the super high sensitivity, the selectivity is not satisfactory. Different gas
molecules may adsorb on the same 3D graphene sheets and lead to the total change of the resistance BABL |t js
difficult to quantitatively distinguish one target gas from a gas mixture. To improve the selectivity, defect
engineering is generally needed to modulate graphene 22,

Several reviews have presented the main development of graphene-based gas sensors. For example, in 2015,
Meng et al. 49 reviewed the graphene-based hybrids for chemi-resistive gas sensors. They focused on the sensing
principles and synthesis processes of the graphene-based hybrids with noble metals, metal oxides, and conducting
polymers. In 2018, Xia et al. BY summarized the 3D structure graphene/metal oxide hybrids for gas sensors. They
concluded a variety of logical strategies to design the 3D nanohybrids of RGO and MOx. In 2020, llnicka et al. 1]
summarized the graphene-based hydrogen gas sensors, a special case of gas sensitivity to H,. However, the
above reviews did not reflect the whole progress of graphene gas sensors, especially for the air pollution
monitoring applications. This paper aims to summarize the recent progress of the gas sensors based on 3D

graphene frameworks in the detection of air pollutants.

| 2. Synthesis of 3D Graphene Frameworks

Graphene oxide (GO) and reduced graphene oxide (RGO) have a 2D conjugated structure with single-atom

thickness and residual oxygen-containing groups, which can be regarded as 2D conjugated macromolecules,
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structurally. They have rich chemical activities, which are helpful for 3D self-assembly through a series of chemical

modification methods to regulate the interaction between the layers [34138],

Graphene hydrogel is one of the major 3D assemblies. Chemically modified graphene (CMG) hydrogels prepared
from GO or RGO can be used for large-scale production. As shown in Figure 1, RGO hydrogels (RGOHSs) can be

obtained by the following methods:

2D Graphene oxide

® Hydrothermal reduction

® Chemical reduction

® Electrochemical reduction
® Vacuum filtration

® Organic synthesis

v
3D Graphene hydrogel

® F[reeze drying
® Supercritical drying

3D Graphene aerogel

Figure 1. Synthesis methods of 3D graphene frameworks.

(1) Hydrothermal reduction, which is simple, fast, and free of impurities. At present, the commonly used
hydrothermal method is to prepare RGO dispersion by hydrothermal treatment at 180 °C [531(54155],

(2) Chemical reduction, which is beneficial for large-scale production, and various reducing agents can be selected
[56][571[58][59][60][61][62][63][64][65]

(3) Electrochemical reduction (6867681 The hydrogel prepared by this method is applied to the electrode surface

and can be directly applied to the electrode materials of electrochemical instruments.
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(4) Vacuum filtration. A simple vacuum filtration method was developed to prepare RGO hydrogels with high

conductivity, anisotropy, and responsive stimuli 2170,

In addition to the 3D self-assembly of graphene in a water system, the assembly of the graphene in an organic

system can also be achieved by thermal solvent reduction [LZ2I73],

Graphene aerogel composites are usually prepared by supercritical drying or freeze-drying of hydrogel precursors
7475 For example, highly compressible RGO aerogels can be obtained by freeze-drying and microwave
treatment. Directional freezing is a well-known processing technology of porous materials. This technology can
also be used for the preparation of graphene aerogels 8. Moreover, the controllable heat treatment technology
can also reduce GO to RGO and restore conductivity. The regulation of the chemical structure of GO can adjust the
morphology and elasticity of aerogels, for example, the oxygen functional groups in GO have a significant effect on

the morphology and elasticity of the gels 22,
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