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A battery management system (BMS) plays a crucial role to ensure the safety, efficiency, and reliability of a rechargeable

Li-ion battery pack. State of charge (SOC) estimation is an important operation within a BMS. Estimated SOC is required

in several BMS operations, such as remaining power and mileage estimation, battery capacity estimation, charge

termination, and cell balancing. The open circuit voltage (OCV) model needs to be stored within the battery management

system for real-time SOC estimation. The selection, storage, and processing of OCV models involve several design

constraints.
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1. Introduction

Li-ion batteries first entered the commercial market as portable batteries for consumer electronics. Today, the use of

battery-operated rechargeable systems is envisioned to be the most promising alternative for hazardous emissions due to

the use of fossil fuels . Moreover, passenger electric vehicles will continue to see the dominant use of Li-ion batteries .

In recent times, it has become customary to constantly monitor and manage a battery using a battery management

system (BMS)  to ensures the safe, efficient, and reliable operation of the battery. BMSs are usually made of the

following three components: a battery fuel gauge (BFG), an optimal charging algorithm (OCA), and cell balancing circuitry

(CBC). The BFG is the most important element of a BMS, and it estimates several important states and parameters of the

battery, including the state of charge (SOC). The CBC ensures safety by preventing cell imbalance between batteries in a

battery pack. The OCA allows faster charging during usage without affecting the battery’s health. It is important to note

that accurate SOC estimation by the BFG is crucial for efficient BMS operation, as both CBC and OCA depend on it.

Furthermore, the effect of error in the SOC estimation can also lead to compounded problems such as the reduced

lifespan of batteries, over-charging/over-discharging, inefficiency, safety, and reliability issues . Thus, research on

accurate SOC estimation has intensified over the past decade, and several approaches have been studied for application

in BMS.

2. Open-circuit Voltage (OCV) and State of Charge (SOC)

Open-circuit voltage (OCV) is the measure of the electromotive force of the battery. The OCV of a battery is shown to

possess a monotonically increasing relationship with the SOC of a battery. Thus, several approaches and models based

on the OCV–SOC characterization have been studied for SOC estimation. For this, an OCV–SOC characterization is

conducted in a laboratory setting using a scientific-grade battery cycler that is able to maintain precise voltage and current

values across the battery terminals. The data collection for the OCV characterization is designed in a way that the effects

of the hysteresis and relaxation phenomenons of the battery can be nullified in the obtained OCV model. Depending on

the OCV modeling approach, the data collection may also vary. In , a slow-rate data collection approach is

demonstrated on various existing OCV–SOC models for parameter estimation. In this approach, a fully charged battery is

very slowly discharged (typically at a C/30 rate) using a constant current until it becomes empty. Then, it is charged back

to full charge using the same amount of constant current. This entire discharge–charge process takes 60 h. Constant

current ensures that the capacitances of the equivalent circuit model remain saturated; a very low magnitude of current

assures that the hysteresis effect can be approximated as an equivalent resistance. By measuring the voltage and current

values during this entire discharge/charge process, the OCV–SOC parameters are obtained. It is preferred that these data

are free of measurement noise and bias. High-precision battery cyclers can maintain constant currents with very little

variation and can measure and store voltage and current with very little measurement noise.
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3. Different OCV Models

Different OCV–SOC models exist in the literature to adequately represent the OCV curve in the entire span of SOC (0–

100%). Several reasons can be stated as to why many variations in the parametric expression for different models exist.

Each model approximates the OCV curve differently for the lower (≈0–30%) and higher (≈80–100%) ranges of SOC. For

example, the OCV–SOC relationship is quite approximately a straight line between 30% and 80% of the SOC. The

straight-line model is the most simplistic approach to OCV–SOC characterization, needing just two parameters; however,

the accuracy of the model is compromised at very low and very high SOC regions. In order to improve the accuracy of

representation, higher-order empirical models utilizing special functions, such as the polynomial , trigonometric ,

logarithmic , and exponential functions , are used. The estimated parameters using these special functions

often need to be represented up to their nth decimal digit for the precise estimation of SOC (for example, in combined+3

model , n  needs to be as high as six to preserve the modeling accuracy). This directly translates to using a large

number of bits to completely represent, store, and process these parameters. However, many practical applications (see

examples form Texas Instruments  and Maxim Integrated ) only allow low-bit processing for BFGs, requiring the

traditional OCV–SOC parameters to be rounded. Rounding has been shown to significantly alter the model

representation, resulting in poor SOC estimation accuracy . To be able to represent the OCV–SOC curve in low-

computing environments precisely, tabular models can be used . Finally, variations in battery chemistries are also a

driving factor for varied OCV–SOC representations.

4. Selection of OCV–SOC Model

Different OCV–SOC models vary in their formulation, in the methods of estimation of their parameters, and eventually in

the resulting SOC estimation error. While accurate SOC estimation is crucial, selecting a model solely based on the

accuracy of estimation may not be suitable in many applications. For example, in high-power restrictive medical

equipment, such as an implantable cardiac pacemaker, reducing computational complexity is crucial , while the

accuracy of SOC estimation is also important. In the case of electric vehicles (EV), for example, drivers are found to

experience range anxiety . Here, the accuracy of SOC estimation is crucial, and the computational requirement for

SOC estimation is not a concern. These examples illustrate that BMS designers need to take multiple constraints before

selecting an OCV–SOC model. There needs to be a systematic approach to selecting a particular OCV–SOC model from

the numerous models presented in the literature for a specific application.

The selection of the OCV–SOC model in practical situations is based on requirements that are specific to the application.

For example, if high SOC estimation accuracy is required, then models with the lowest error metrics will be selected. This

would imply that the computational and memory requirements are high. Most practical situations demand more than one

constraint in model selection. The Borda count is an intuitive method for combining different selection criteria for a

compromised selection. The Borda count was originally a voting method in which each voter gives a complete ranking of

all possible alternatives. Table 1 ranks the OCV models presented based on all the selection criteria discussed.

Table 1. Model selection metrics rankings.

Model BF R2 ME RMSE AIC AIC2 FPE BIC MDL KL CosD C SR Rank

(65) 1 1 1 1 1 1 1 1 1 4 4 4 1 1

(14) 3 3 4 3 3 3 3 3 3 3 1 1 14 2

(6) 2 2 2 2 2 2 2 2 2 13 2 2 13 3

(10) 4 4 3 4 4 4 4 4 4 10 3 3 12 4

(7) 5 5 5 5 6 6 6 6 6 5 5 5 6 5

(5) 6 6 7 6 7 7 7 7 7 11 6 6 10 6

(11) 8 8 9 8 8 8 8 8 8 6 7 7 7 7

(8) 7 7 8 7 5 5 5 5 5 14 14 14 11 8

(4) 9 9 11 9 9 9 9 9 9 8 8 8 5 9

(12) 10 10 10 10 10 10 10 10 10 7 9 9 8 10

(13) 11 11 12 11 11 11 11 11 11 9 10 10 9 11

(15) 12 12 13 12 12 12 12 12 12 12 11 11 3 12

[6] [7]

[8][9][10][11] [12][13]

[11]

[14] [15]

[16]

[16]

[17]

[18]



Model BF R2 ME RMSE AIC AIC2 FPE BIC MDL KL CosD C SR Rank

(2) 13 13 14 13 13 13 13 13 13 1 13 13 2 13

(3) 14 14 6 14 14 14 14 14 14 2 12 12 4 14
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