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The theory of Markov chains is a smart combination of Linear Algebra and Probability theory offering ideal conditions for

modelling situations depending on random variables. Markov chains have found important applications to many sectors of

the human activity. In this work a finite Markov chain is introduced representing mathematically the teaching process

which is based on the ideas of constructivism for learning. Interesting conclusions are derived and a measure is obtained

for the teaching effectiveness. An example on teaching the derivative to fresher university students is also presented

illustrating our results.
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1. Introduction

Constructivism is a philosophical framework for learning based on Piaget’s theory and formally introduced by von

Clasersfeld during the 1970’s. Constructivism argues that knowledge is not passively received from the environment, but

is actively constructed by the learner through a process of adaptation based on and constantly modified by the learner’s

experience of the world . The application of the ideas of constructivism in the teaching process has become very

popular during the last decades, especially in school education. The steps of a typical framework for teaching which is

based on those ideas are the following:

Orientation (S ): This is the starting step which connects the past with the present learning experiences and focuses

student thinking on the learning outcomes of the current activities.

Exploration (S ): In this step students explore their environment to create a common base of experiences by identifying

and developing concepts, processes and skills.

Formalization (S ): Here students explain and verbalize the concepts that have been explored and the instructor has

the opportunity to introduce formal terms, definitions and explanations for the new concepts and processes and

demonstrate new skills.

Assimilation (S ): In that step students develop a deeper and broader conceptual understanding and obtain more

information about areas of interest by practicing on their new skills and behaviors.

Assessment (S ): This is the final step of the teaching process, where learners are encouraged to assess their

understanding and abilities and teachers evaluate student skills on the new knowledge.

Depending on the student reactions in the classroom, there are forward or backward transitions between the three

intermediate steps (S , S  and S ) of this framework during the teaching process, the flow-diagram of which is shown in

Figure 1.

Figure 1: The flow-diagram of the teaching process

In this article a Markov chain is introduced on the steps of the teaching process and through it interesting conclusions are

derived for the teaching effectiveness.
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2. Markov Chains

Roughly speaking a Markov chain (MC) is a stochastic process that moves in a sequence of steps (phases) through a set

of states and has a one-step memory. In other words, the probability of entering a certain state in a certain step depends

on the state occupied in the previous step and not in earlier steps. This is known as the Markov property. However, for

being able to model as many real life situations as possible by using MCs, one could accept in practice that the probability

of entering a certain state in a certain step, although it may not be completely independent of previous steps, it mainly

depends on the state occupied in the previous step .

The basic concepts of MCs were introduced by Andrey Markov (Figure 2) in 1907 on coding literal texts.

Figure 2: A. Markov (1856-1922).

Since then the MC theory was developed by a number of leading mathematicians, such as A. Kolmogorov, W. Feller, etc.

However, only from the 1960’s the importance of this theory to the natural, social and applied sciences has been

recognized .

2.1 Finite Markov Chains

When the set of states of a MC is a finite set, then we speak about a finite MC. For general facts on finite MCs we refer to

Chapter 2 of the book .

Let us consider a finite MC with n states, say S , S , …, S , where n is a nonnegative integer, n 2. Denote by p  the

transition probability from state S  to state S , i, j = 1, 2,…, n ; then the matrix A= [p ] is called the transition matrix of the

MC. Since the transition from a state to any other state (including its self) is the certain event, we have that

p  + p  + . + p , i = 1, 2,., n            (1)

The row-matrix P = [p  p … p ], known as the probability vector of the MC, gives the probabilities p  for the MC to

be in state i at step k , for i = 1, 2,…., n and k = 0, 1, 2,…. Obviously we have again that

Using conditional probabilities on can show ([9], Chapter 2, Proposition 1) that for all nonnegative integers k is

P = P A (3).

Then, a straightforward induction on k gives that

P  =P  A   (4) .

Equations (3) and (4) enable one to make short run forecasts for the evolution of the various situations that can be

represented by a finite MC. In practical applications we usually distinguish between two types of finite MCs, the absorbing
MCs (AMCs) and the ergodic MCs (EMCs).

2.2. Absorbing Markov Chains

A state of a MC is called absorbing if, once entered, it cannot be left. Further a MC is said to be an AMC if it has at least

one absorbing state and if from every state it is possible to reach an absorbing state, not necessarily in one step.

Working with an AMC with k absorbing states, 1 k < n, one brings its transition matrix A to its canonical (or standard) form
A by listing the absorbing states first and then makes a partition of A to sub-matrices as follows
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In the above partition of A*, I  denotes the unitary k X k matrix, O is a zero matrix, R is the (n – k) X k transition matrix

from the non-absorbing to the absorbing states and Q is the (n – k) X (n – k) transition matrix between the non-absorbing

states.

It can be shown ( , Section 2) that the square matrix I - Q, where I  denotes the unitary n-k X n-k matrix is always

an invertible matrix. The fundamental matrix N of the AMC is defined to be the inverse matrix of I – Q. Therefore ( ,

Section 2.4). 

 (6)

In equation (6) D (I  – Q) and adj (I  – Q) denote the determinant and the adjoin of the matrix I  – Q respectively It

is recalled that the adjoin of a matrix M is the matrix of the algebraic complements of the transpose matrix M  of M, which

is obtained by turning the rows of M to columns and vice versa. It is also recalled that the algebraic complement m ΄of an

element m of M is calculated by the equation

m ΄ = (-1) D (7)

In equation (7) D  denotes the determinant of the matrix obtained by deleting the i-th row and the j-th column of M.

It is well known ( , Chapter 3) that the element n  of the fundamental matrix N gives the mean number of times in state S

before the absorption, when the starting state of the AMC is S , where S and S are non-absorbing states.

2.3. Ergodic Markov Chains

A MC is said to be an EMC, if it is possible to go between any two states, not necessarily in one step. It is well known ( ,

Theorem 5.1.1) that, as the number of its steps tends to infinity (long run), an EMC tends to an equilibrium situation, in

which the probability vector P  takes a constant price P = [p  p  …. p ], called the limiting probability vector of the EMC.

Therefore, as a direct consequence of equation (3), the equilibrium situation is characterized by the equation

P = PA, with p + p + ….+ p = 1      (8)

The entries of P express the probabilities of the EMC to be in each of its states in the long run, or in other words the

importance (gravity) of each state of the EMC.

Let us now demote with m  the mean number of times in state S  between two successive occurrences of the state S , i, j =

1, 2, …., n. It is well known ( , Theorem 6.2.3) then that

3. A Markov Chain Model for the Teaching Process

3.1. The Model

Here we introduce a finite MC having as states S , i = 1, 2,…, 5, the corresponding steps of the teaching framework

described in our Introduction. From the flow-diagram of Figure 1 it becomes evident that this chain is an AMC with S

being its starting state and S  being its unique absorbing state. The minimum number of steps before the absorption is 4

and this happens when we have no backward transitions between the three middle states S , S  and S  of the chain.

Denote by p the transition probability of the MC from state Si to state Sj, for i, j =1, 2,…,5. Then the transition matrix A of

the chain and its canonical form A* are the following:

k
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Denote by I  the 4X4 unitary matrix. Then the fundamental matrix of the AMC is

Therefore, since S is the starting state of the above AMC, it becomes evident that the mean number of steps before the

absorption is given by the sum

    (10)

It becomes evident too that the bigger is T, the more are the student difficulties during the teaching process. Another factor

of the student difficulties is the total time spent for the completion of the teaching process. However, the time is usually

fixed in a formal teaching procedure in the classroom, which means that in this case T is the unique measure of the

student difficulties.

3.2. A Classroom Application

The present application took place at the Graduate Technological Educational Institute of Western Greece for teaching the

concept of the derivative to a group of fresher students of engineering. The instructor used the teaching framework that

has been described in our Introduction as follows:

Orientation: The student attention was turned to the fact that the definition of the tangent of a circle as a straight line

having a unique common point with its circumference does not hold for other curves (e.g. for the parabola). Therefore,

there is a need to search for a definition of the tangent covering all cases and in particular of the tangent at a point of the

graph of a given function.

Exploration: The discussion in the class led to the conclusion that the tangent at a point A of the graph of a given function

y=f(x) can be considered as the limit position of the secant line of the graph through the points Α(a, f(a)) and Β(b, f(b)),
when the point Β is moving approaching to Α either from the left, or from the right (Figure 3). But the slope of the secant
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line AB is equal to , therefore the slope of the tangent of the graph at A is equal to the limit of the above

ratio when b tends to a.

Figure 3: Tangent at a point of the graph of a given function

Formalization: Based on what it has been discussed at the step of exploration, the instructor presented the formal

definition of the derivative number f΄(a) at a point Α(a, f(a)) of a given function y=f(x) as the limit (if there exists) of

 when , and of the tangent of the graph of y=f(x) at A as the straight line through A with slope f΄(a).

Some examples followed of calculating the derivative at a given point of a function and the tangent of its graph at this

point. Then the definition of the derivative function y΄ = f΄(x) of the function y=f(x) was given and suitable examples were

presented to show that its domain is a subset of the domain of y=f(x).

Assimilation: Here the fact that the derivative y΄ = f΄(x) expresses the rate of change of the function y=f(x) with respect to x

was emphasized and its physical meaning was also presented connected to the speed and the acceleration at a moment

of time of a moving object under the action of a steady force. The fundamental properties of the derivatives followed (sum,

product, composite function, etc.) as well as a list of formulas calculating the derivatives of the basic functions and

applications of them.

It has been observed that the student reactions during the teaching process led to 2 transitions of the discussion from

state S  (formalization) back to state S  (exploration). Therefore, since from state S  the chain moves always to S (Figure

1), we had 3 in total transitions from S  to S . The instructor also observed 3 transitions from S  (assimilation) back to S .

Therefore, since from state S  the chain moves always to state S (Figure 1), we had 4 in total transitions from S  to S . In

other words we had 3+3 = 6 in total “arrivals” to S , 2 “departures” from S  to S  and 4 “departures” from S  to S .

Therefore p  = 2/6 and p  = 4/6. In the same way one finds that p  = 3/4 and p  = 1/4. Replacing the above values of

the transition probabilities to equation (10) one finds that the mean number T of steps before the absorption of the MC is

equal to 14. Consequently, since the minimum number of steps before the absorption is 4, the students faced significant

difficulties during the teaching process. This means that the instructor should find ways to improve his teaching procedure

of the same subject in future.

3.3. An Important Remark

In certain cases it is possible to develop either an AMC or an EMC model for representing the same situation. In case of

the teaching process, for example, the flow diagram of Figure 1 could be revised by assuming that, when the teaching

process of a subject matter is integrated, then a new process starts by the instructor for teaching the next subject of the

course. That means that the teaching process is transferred back from step S  to S  to be repeated from the beginning

again. The revised flow diagram of the teaching process, therefore, takes the form of Figure 4.

Figure 4: Revised flow diagram of the teaching process

In this case the resulting MC on the steps of the teaching process is obviously an EMC.  Since S  is the starting state of

the EMC it becomes evident that the sum m=m +m +m +m  calculates the mean number of steps of the EMC

between two successive occurrences of the state S . Therefore, the mean number of steps for the completion of the
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teaching process will be m+1, since it includes also the step S . With the help of equation (9) one finds that

 (11)

The value of the limiting probability p is calculated with the help of the matrix equation (8). In this equation the transition

matrix of the EMC differs from the corresponding matrix A of the AMC of section 3.1only with respect to the last row,

where 1 is transferred from the fifth to the first column and its other entries are 0. Performing the necessary calculations,

equation (8) leads to a linear system of five equations with respect to the p ’s, i = 1, 2, 3, 4, 5. Adding by members the first

four of those equations one finds the fifth one. Thus, replacing the fifth equation with the equation p +p +p +p +p  = 1

and solving the resulting 5X5 linear system one finds the required value of p and with the help of equation (11) calculates

m (for more details see , pp. 62-63). It becomes evident that, the greater is the value of m the more the student

difficulties during the teaching process. Concerning the classroom application of section 3.2 , after performing all the

necessary calculations one finds that m+1 = T.

4. Conclusion

In the paper at hands a mathematical representation of the teaching process based on the principles of constructivism for

learning was developed with the help of the theory of MCs. This representation enables the instructor to evaluate the

student difficulties during the teaching process, which is very useful for reorganizing the plans for teaching the same

subject in future. Although the theoretical development of the MC model is quite laborious, its final application in practice

is too easy and straightforward. It requires only to count the backward movements   among the three middle steps S , S

and S  of the teaching process. The theory of MCs can be used for several other applications in Education (e.g. see

Chapter 3 of ) and this is one of the main targets of our future research.
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