Metformin and Female Reproduction | Encyclopedia.pub

Metformin and Female Reproduction

Subjects: Cell Biology
Contributor: Alexander Shpakov

Metformin (MF), a first-line drug to treat type 2 diabetes mellitus (T2DM), alone and in combination with other
drugs, restores the ovarian function in women with polycystic ovary syndrome (PCOS) and improves fetal
development, pregnancy outcomes and offspring health in gestational diabetes mellitus (GDM) and T2DM. MF
treatment is demonstrated to improve the efficiency of in vitro fertilization and is considered a supplementary drug
in assisted reproductive technologies. MF lacks teratogenic effects and has positive health effect in newborns. The
entry is focused on use of MF therapy for restoration of female reproductive functions and improvement of

pregnancy outcomes in metabolic and endocrine disorders.

: metformin diabetes mellitus

| 1. Introduction

The signaling pathways of metformin (MF) in cells are still not fully understood, they seem to be dependent on

species and cell type, as well as doses and routes of administration, along with metabolic and hormonal status of
subjects LI2IEH4IEI6]

The molecule of MF, a small hydrophilic cation, is transported from the extracellular space to the cytoplasm of the
target cell through organic cation transporters-1 and -2 (OCT1, OCT2), multidrug and toxin extrusion transporters
(MATE), and ATM (ataxia telangiectasia mutated) transporter, and OCT1 and OCT2 are considered as the main
functional units of MF transmembrane transportlZ. The transfer of MF across the placental barrier during
pregnancy is largely dependent on the transporter OCT3El. The ultimate intracellular target for MF is the 5'-
adenosine monophosphate-activated protein kinase (AMPK), the key energy sensor of the cell, although MF does
not interact directly with the enzymelll BILAILL | pathological conditions, like type 2 diabetes mellitus (T2DM) and
metabolic syndrome (MetS), the activity of AMPK is reduced. MF’s action increases the activity of AMPK, and
consequently normalizes the energy metabolism of the target cell. The AMPK consists of a catalytic a-subunit and
the regulatory [3- and y-subunits that form a functionally active apy-heterotrimeric complex, and is widely distributed
in all subcellular compartments (cytoplasmic, lysosomal, mitochondrial, and nuclear). AMPK is activated by
increasing levels of AMP, a positive allosteric regulator of the enzymel2QLLI213] The interaction of AMP with the
adenine nucleotides-binding sites located in the y subunit leads to stabilization of the afly heterotrimeric complex
and enables phosphorylation of the a-subunit by liver kinase B1 (LKB1), which leads to the increase in AMPK
activity L2104 (Figure 1). Activating phosphorylation of AMPK may be also mediated by Ca?*-calmodulin-
dependent protein kinase kinase 2 (CaMKK2)[22l18] and transforming growth factor B activated kinase-1 (TAK1) L7
(18][19]120] 'pyt LKB1 is most important for AMPK activation2d[23121]1221[23] ' A|osteric binding of AMP and ADP to y-
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subunit of AMPK increases the ability of LKB1 and CaMKK2 to phosphorylate AMPK a-subunit at the Thrl72 [24125]
(28] |n the lysosomes, the “non-canonical” pathway of LKB1-mediated AMPK activation is carried out through
dissociation of fructose 1,6-bisphosphate from aldolase. At the lysosomal surface, free aldolase promotes the
formation of a multiprotein complex, including the vacuolar H*-ATPase and the scaffold protein AXIN, and this
complex ensures the effective binding between AMPK and LKB1, thereby activating AMPK[ZZ28] A negative
regulator of AMPK is the protein phosphatase 2C (PP2C), which dephosphorylates and inactivates the a-subunit of
AMPK, causing the dissociation of the afy-heterotrimeric complex. Elevated levels of AMP lead to an inhibition of
PP2C activity, which allows AMPK to remain stable in the active Thrl72-phosphorylated state[281[29],
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Figure 1. The cellular mechanisms of metformin action which are carried out by activation of the AMP-activated
protein kinase and inhibition of the mitochondrial electron transport chain complex |. Abbreviations: AC, adenylyl
cyclase; ACC1/2, acetyl-CoA carboxylases 1 and 2; AMPD, AMP deaminase; AMPK, the heterotrimeric AMP-
activated protein kinase consisting of the a1/2 (the target for activation phosphorylation at the Thrl’?), B1/2 and
y1/2/3 subunits; CREB, cAMP-activated transcription factor (CAMP response element-binding protein); ETC
complex I, the mitochondrial NADH-dehydrogenase complex, the first complex of the respiratory electron transport
chain; FA, fatty acids; LKB1, liver kinase B1l;, mG3PDH, mitochondrial glycerol-3-phosphate dehydrogenase;
MTORCZ2, the mTOR complex 2; NFkB, nuclear factor kB; OCT1/2, the organic cations transporters 1 and 2; pCBP,
the Ser*36-phosphorylated form of CREB-binding protein with acetyltransferase activity, a co-activator of the factor
CREB; PDE4B, cAMP-specific 3',5'-cyclic phosphodiesterase 4B; PKA, cAMP-dependent protein kinase; PP2C,
protein phosphatase 2C; ROS, reactive oxygen species.

MF penetrates into the mitochondria through intracellular space and accumulates in them. While in the
mitochondria, MF inhibits the mitochondrial ETC complex |, which leads to decrease in ATP production and
increase in the [AMP]/[ATP]; and [ADPJ/[ATP]; ratiosBUEBUBE2I83]  Moreover, MF decreases the activity of the
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enzyme AMP-deaminase (AMPD), which converts AMP to inosine monophosphate, inducing the accumulation of
AMP within the cell B4, The MF-induced increase in the intracellular AMP level leads to the activation of AMPK as
described abovel2l33] The MF effect on AMPK activity is observed at drug concentrations below 80 uM, which are
achieved with oral administration of therapeutic doses of MF [57]. The MF-induced activation of AMPK results in
the stimulation of energy-producing catabolic pathways that mediate the increased glucose uptake by cells, the
increased expression and activity of the membrane glucose transporters, the activated metabolic processes such
as glycolysis and oxidative phosphorylation, and the normalization of mitochondrial biogenesis28IBIB7I38] The MF-
induced AMPK stimulation leads to phosphorylation of types 1 and 2 acetyl-CoA carboxylases (ACC1 and ACC2),
inducing an inhibition of lipogenesis and stimulation of the B-oxidation of free fatty acids B4 (Figure 1). The
ultimate results of this metabolic cascade is the decrease of T2DM- and MetS-produced dyslipidemia, and the
normalization of lipid metabolism. In addition, the AMPK activation induces a plethora of cellular events, including
regulation of autophagy and apoptotic processes, a decrease in the activity of inflammatory factors, including
nuclear factor kB (NF-kB) and interleukin 13, an inhibition of the ROS production, a decrease in the ER stress, as

well as a decrease in insulin/IGF-1-induced activation of the mTORC1/2 complexes and a decrease in the protein
synthesis[42/411[43][44][45][46]

The MF is a functional antagonist of cAMP-dependent signaling cascades, which are stimulated by hormones,
glucagon in particular, through the Gg protein-coupled receptors and the membrane-bound forms of adenylyl
cyclase (AC)4Z(48l The stimulation of AC results in an increase in the intracellular cAMP level and the activation of
the protein kinase A (PKA) and the cAMP-activated transcription factor CREB (CAMP response element-binding
protein). The MF-induced activation of AMPK promotes phosphorylation and activation of cAMP-specific 3',5'-cyclic
phosphodiesterase 4B (PDE4B), thereby reducing the intracellular level of cAMP8 Moreover, MF causes an
increase in the intracellular level of AMP, a negative regulator of the catalytic site of AC, which leads to inhibition of
AC activity and a decrease in cAMP production. An increase in the level of AMP can be the result of both inhibition
of the mitochondrial ETC complex |, and suppression of the activity of AMP deaminase 2449 (Figure 1). A
decrease in the activity of cAMP-dependent pathways in the liver, like activation of AMPK, leads to the inhibition of
glucose synthesis in hepatocytes. Furthermore, MF-induced AMPK activation induces the protein kinase I/A-
mediated phosphorylation of cyclic AMP response element binding (CREB)-binding protein (CBP or CREBBP) at
the Ser*3%, which leads to the inability of the phospho-CBP to form a functionally active complex with the factor
CREB and thereby inhibits the cAMP-dependent gene transcription2%

Along with AMPK-dependent, there are also AMPK-independent pathways of MF action on the intracellular effector
systems and gene expression. High-dose MF inhibits the activity of the mitochondrial glycerol-3-phosphate
dehydrogenase (mG3PDH)BL. The inhibition of mMG3PDH leads to an increase in NADH levels and decreases
NAD™ levels, and this causes a deficiency in NAD™*, which is involved in the conversion of lactate to pyruvate
(Eigure 1). Since a decrease in mG3PDH activity inhibits the conversion of lactate to glucose, the result of impaired
gluconeogenesis in hepatocytes is an accumulation of lactate, which can cause lactic acidosis in the conditions of
high-dose MF treatmentLl52], Another target of MF is the enzyme H3K27me3-demethylase KDM6A/UTX, which is

responsible for the transcriptional activity of a large number of genes(22!,
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The antidiabetic effects of MF may be due to the changes in the gut microbiota, due to stimulation of the growth of
bacteria that produce short-chain fatty acids4. By modulating the composition of the microbiota in rodents with
T2DM and MetS, MF reduces the levels of bacterial lipopolysaccharides in the blood®, and activates AMPK-

dependent pathways in the mucosal layer of the intestine, reducing glucose absorption28],

The most important mechanism of action of MF on target cells is the enhancement of the insulin signaling
pathways and the decrease in insulin resistance (IR). This may be due to inhibition of hyperactivated nuclear factor
kKB (NF-kB), a transcription factor that provokes the development of IR, as well as a decrease in the expression of
the phosphatase and tensin homolog (PTEN), which dephosphorylates phosphatidylinositol-3,4,5-triphosphate and
thereby prevents insulin-induced stimulation of Akt kinase, a key effector component in the 3-phosphoinositide
signaling pathway. The inhibitory effect of MF on the activity of NF-kB-dependent signaling pathways is carried out
mainly through the stimulation of AMPK[34IB7EE] - Since NF-kB plays a key role in inflammatory reactions, its
inhibition by MF promotes the weakening of inflammation and increases the cell survival, and these effects of MF
are prevented by AMPK inhibitors24159160],

| 2. Metformin and Polycystic Ovary Syndrome
2.1. Pathophysiology of Polycystic Ovary Syndrome

The polycystic ovary syndrome (PCOS) occurs in average from 9% to 18% of women of reproductive age and
includes a number of metabolic and endocrine dysfunctions®. Some of them are: (i) the ovarian dysfunction,
characterized by irregular or no ovulation (oligo- or amenorrhea), the increased secretion of androgens
(hyperandrogenism, HA) and estrogens, the endometrial hyperplasia and the increased size of the ovaries, (i) the
pancreatic dysfunction leading to insulin hypersecretion and, as a result, to insulin resistance (IR) development, (iii)
the adrenal dysfunction, which leads to hyperproduction of androgens, and (iv) the functional changes in the
hypothalamic and pituitary links of the female hypothalamic-pituitary-gonadal (HPG) axis[®2I63I64165]  Since these
dysfunctions and changes are usually associated with obesity, MetS and T2DM, the PCOS is much more common
in women with these metabolic disorders (on average in 30% of cases), with a significant proportion of PCOS
patients having IR with accompanying compensatory hyperinsulinemial88IEZ68I6IA0I7L]  According to the
Rotterdam criteria (2003), the main diagnostic criteria for PCOS are clinical or biochemical HA, oligo- or
amenorrhea associated with chronic anovulation, and morphological features of PCOS, which include 12 or more
follicles (2 to 9 mm) in each ovary and/or an increase in ovarian volume over 10 mLI2Z3I74] 1t should be noted

that about 80% of women with anovulatory infertility have typical signs of PCOS[E1l,

The etiology and clinical manifestations of PCOS depend on many factors, as well as combinations and
interactions between them. The genetic predisposition2Z8II7IT8] and epigenetic factors, including an increased
level of gene methylation, histone modification, and microRNA pattern variation ZBABL gre important for the
development of PCOS. Environmental and socioeconomic factors are also of great importance, including ethnic

characteristics, nutrition, and adverse environmental factors (toxins, xenobiotics, chemical mutagens, and ionizing
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radiation)B2l83184] ' The development of PCOS in women largely depends on the effects of maternal hormones

during the prenatal period, as well as on their metabolic and hormonal status in the early childhoodZ[E3I[881(87]

2.2. The Use of Metformin in PCOS Women

In recent years, MF therapy has become widely used for correction of the metabolic and hormonal impairments in
women with PCOS and for restoration of their reproductive functions(€B8IEA  including the improvement of
IVF/ICSI outcomes in PCOS [BUBO2]93] MF s most effective in treating PCOS patients with the metabolic
disorders such as T2DM, obesity, dyslipidemia, and severe IR [241511968] Thijs is majorly attributed to the alleviation
of negative effects of these disorders on the female reproduction by MF, increased tissues sensitivity to insulin,
improved lipid and glucose metabolism and cell metabolism, and reduced inflammation and oxidative stress in the
ovaries as well as in other tissues. In cases where significant metabolic changes in PCOS patients are not
observed during treatment, MF therapy can lead to energy and hormonal imbalance. The outcomes may be the
opposite of improvement, but a further deterioration in reproductive functions. This possibility is supported by the
data from clinical trials on metabolic changes, including an increase in fasting glucose clearance and endogenous
glucose production24[28] as well as changes in the microbiota in non-diabetic individuals®2, as well as data on

metabolic and hormonal dysfunctions in normal rodents, for a long time receiving MF109,

There is a lot of clinical evidence of the high efficacy of MF in PCOS, which makes it feasible to consider MF as a
second-line drug for ovulation induction in women with PCOSI1941[102][103][104][105][106][107]{108] MF s recommended
for the induction of ovulation in PCOS women who are either resistant to clomiphene citrate (CC) or require
antiandrogen therapy without the use of contraceptives%, as well as in PCOS patients with severe obesity and
impaired lipid metabolism 222, One very important consideration during PCOS treatment with MF is that drug has
no or little adverse effects on the outcomes of pregnancy as well as the health of fetus and newborn, which
indicates the safety of MF therapy[2081l197] The gastrointestinal side effects of MF have been reported in a number

of cases, but these effects did not significantly affect the health of PCOS women [22I110],

The MF treatment of PCOS women normalizes the frequency and regularity of ovulation, including when co-
administered with exogenous gonadotropins21LIL12] This suggests that MF can also affect the sensitivity of
ovarian cells to gonadotropins, which is important for the ART. As a result, during the ART, the most promising
approach is the combined use of MF with gonadotropinsi23l83l |n PCOS, MF improves clinical pregnancy rates
and live birth rates22 [113][92][93][114][115][116][117][118)[119] and also reduces the number of miscarriages and

increases the rate of embryo implantation221121],

There is evidence of a positive effect of MF on the effectiveness of IVF and IVF/ICSI in PCOS women 24, It is
believed to be due to the normalization of metabolic and hormonal parameters and the androgen levels in PCOS,
which leads to an improvement of embryo implantation, an increase in the ovarian response to gonadotropins and
a decrease in the rates of miscarriagel22l118][122][123][124][125] The jncreased gonadotropin sensitivity allows
avoiding the use of high-dose gonadotropins and, thereby, preventing the ovarian hyperstimulation syndrome

(OHSS), a severe complication of gonadotropin-induced ovulation induction. However, it should be noted that some
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data on the use of MF in the ART technology in PCOS women are not so unambiguous, and there are results that
do not support the efficacy of MF in IVF/ICSI. The clinical studies carried out by Egyptian group of physicians
showed no improvement in IVF rates in PCOS women who received MF128l. However, in this study, overweight or
obese PCOS women received short-term courses of low-dose MF (1000 mg/day), from the start of ovarian
stimulation with gonadotropins until proof of clinical pregnancy. As a result, in this case, the period of time for the
manifestation of the restorative effects of MF on the ovaries and folliculogenesis in PCOS patients may not have
been long enough. Potentially, for an adequate estimation of MF effectiveness in PCOS patients it is necessary to
separate them in the groups, based on the severity and duration of the disease and in the body mass index 22194]

as well as the severity of IR, dyslipidemia and hyperglycemia.

2.3. Combined Use of Metformin with Clomiphene Citrate, Letrozole, Liraglutide,
Saxagliptin, or Oral Contraceptives

A promising approach to treat PCOS is the use of combination of MF with the other drugs that improve the ovarian
function and metabolic parameters in PCOS, with the best candidates for co-administration are CC, a mild
nonsteroidal estrogen antagonist belonging to the family of selective estrogen receptor modulators, and letrozole, a

non-steroidal aromatase inhibitor that prevents the conversion of androgens to estrogens [261[114]1127][128][129][130][131]
132

The CC is the main drug of choice for treatment of PCOS, yet a significant proportion of PCOS women have weak
or no response to CC therapy. Therefore, a search is underway for drugs that can potentiate the therapeutic effects
of CC in PCOS, and MF is one of the most promising candidates [11411122][94][127][128][129][130]  Combined use of MF
plus CC in PCOS showed significant improvement in clinical indices of pregnancy and the combination therapy is
more effective than the use of CC alone. However, a number of studies reported no effectl233! or relatively weak
potentiating effect of MF for CC therapyX1Z. One of the possible reasons for these contradictory results may be the
difference in the sensitivity to CC and MF in PCOS patients. The most profound potentiating effect of MF on the
induction of ovulation and pregnancy rates is found in patients with a pronounced resistance to CCU134I[135][136]
However, some PCOS patients may be also insensitive to MF, which is due to many factors, including the
polymorphisms and inactivating mutations in the transmembrane proteins facilitating intracellular transport MFI27],
As a result, the combined therapy is expected to benefit mainly PCOS patients with reduced sensitivity to CC,

pronounced obesity, IR and dyslipidemia, and high sensitivity to MF.

In recent years, the data have been obtained for the effectiveness of the combined use of MF and letrozole, an
aromatase inhibitor that is widely used to restore the ovarian cycle and induction of ovulation and improves oocyte
implantation and pregnancy rates in women with PCOS, primarily those with reduced sensitivity to CC134I[132](136]
The combined therapy with MF demonstrated enhancement for the improving effects of letrozole on the pregnancy
and live birth rates. Moreover, there are clinical results showing that the combined use of letrozole and MF is more
effective than the combined use of CC and MF122[138]
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In PCOS patients, the efficiency of MF therapy is increased when MF is used with oral estrogen-progestin
contraceptives, both acting similar, by suppressing ovarian androgen overproduction and normalizing menstrual
cycle, most noticeably in obese PCOS women(232l1401 On a contrary, when the same combined treatment (MF and
oral contraceptives) is used for PCOS women with normal or reduced body weight, it results in a decrease in their
muscles mass, leads to the water retention and the formation of an “osteosarcopenic” phenotype22ll, Two main
reasons are behind the decrease in the muscles mass during combined therapy. First, MF and oral contraceptives
reduce the blood androgen levels. It is known that in PCOS there is a significant positive correlation between the
blood level of androgens and the muscles mass44. Second, MF-induced activation of AMPK and changes in
mitochondrial energy status stimulate catabolic processes in the muscles tissue, which leads to muscles atrophy,
as shown in patients with T2DM [243]_|n this regard, it should be noted that MF treatment of T2DM patients leads to
an increase in the blood level of fibroblast growth factor 21 (FGF21), which is one of the specific markers of
muscles damage and degeneration 1441, Thus, it is highly recommended to take into account the proportion of the
muscle tissue and body mass index in PCOS women, as well as the severity of HA when considering the option of
using the combined therapy of MF and oral contraceptives41],

The agonists of glucagon-like peptide-1 (GLP-1) receptor and the inhibitors of dipeptidyl peptidase-4 are widely
used to treat T2DM and MetS [145][146]11471[148] ‘1, ;¢ they can also be used to correct the metabolic alterations and IR
in PCOS women, as well as in pregnant women with GDM and T2DM 149111501 |t js shown that MF enhances the
beneficial effect of liraglutide, a selective GLP-1 receptor agonist, on insulin sensitivity and glucose homeostasis.
The 12-week treatment of 30 obese PCOS women with a combination of MF (1000 mg twice a day) and liraglutide
(1.2 mg/day) causes a decrease in IR and normalizes the sensitivity of patients to glucose, and the combined
therapy was more effective than monotherapy3tl. The treatment of premenopausal PCOS women with MF (2000
mg/day), saxagliptin (5 mg/day), an inhibitor of dipeptidyl peptidase-4, or a combination of MF and saxagliptin leads
to normalization of glucose tolerance on average of 56% of patients52. Moreover, in the group treated with MF
alone or saxagliptin alone, the improvement of glycemic control is demonstrated only in 25 and 55% of patients,
respectively, while the combined therapy restores glucose tolerance in 91% of women with PCOSI52, A high
efficacy of the combined therapy was shown by other group of authors who monitored the 16-week treatment of 38
women with pre-diabetes and PCOS using the MF plus saxagliptin223l. Weight loss and decrease in hyperglycemia
and IR, which are induced by treatment of obese PCOS patients with GLP-1 receptor agonists, lead to a decrease
in HAMLS4IISSILSE] and an improvement in menstrual frequency@34l1561 | jraglutide, an analogue of GLP-1,
normalizes the menstrual cycle and fertility in women with HAIR-AN syndrome, which is due to a decrease in the
levels of androgens and insulin24. Consequently, in PCOS patients, MF-induced potentiation of the metabolic-

improving effects of GLP-1 agonists may also increase their restorative effects on the menstrual cycle and fertility.
2.4. The Mechanisms of Metformin Effects on Reproductive Functions in PCOS

2.4.1. Metformin-Induced Inhibition of Hyperandrogenism and Normalization of the Steroid
Hormones Balance
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One of the main mechanisms of the restorative effect of MF on ovarian function, ovulation and pregnancy in PCOS
women mediates through the pronounced antiandrogenic effect of MF, both in monotherapy and in combination
with other drugs[125](158][159][160][161][162][163][164][165][166][167] (One-year treatment of overweight PCOS women with

MF (1700 mg/day) reduced the levels of free testosterone, dehydroepiandrosterone (DHEA) and androstenedione,

and significantly weakened the signs of hirsutism. This effect of MF was strongly associated with a decrease in the
homeostasis model assessment of insulin resistance index (HOMA-IR) and an improvement in glucose tolerance,
but was weakly associated with a decrease in the body weight, which indicates a main contribution of a decrease in
IR and hyperinsulinemia to the antiandrogenic effect of MFL88l, An antiandrogenic effect was demonstrated in the
treatment of overweight and obese adolescents with MF (1000-2000 mg/day), and was accompanied by a
significant decrease in IR [128]l161][162][169][170][164][165] \F reduced both the basal and gonadotropin-stimulated
testosterone levels, and these effects were observed even with short-term MF treatment. The administration of MF
for two days to PCOS women caused a decrease in their testosterone levels stimulated by luteinizing hormone
(LH). This effect was not due to a decrease in the body weight and the changes in metabolic indices, pointing to

potential direct influence of MF on steroidogenic activity in ovarian cellsZ1,

In PCOS, the severity of IR is positively correlated with the severity of HA and dysregulations of the ovulatory cycle.
The PCOS women with oligomenorrhea and without HA usually do not have IR, while the PCOS women with
oligomenorrhea and HA often show significant signs of IRLZZ. In turn, in PCOS women with regular ovulatory

cycle, IR was less pronounced than in women with PCOS and irregular or no ovulationZ3],

The inhibitory effect of MF on the production of steroid hormones by ovarian cells was demonstrated in the in situ
experiments using different cell linesZ4L74IL7SI176]  Cyltured human ovarian cells grown in the presence of MF,
showed a decrease in production of basal and gonadotropin- or insulin-stimulated steroid hormones. Similar effects
were shown for progesterone and estradiol in granulosa cells and androstenedione in theca cells. Inhibitory effect
of MF was dose-dependent and most pronounced in the measure of suppression of hormone-stimulated
steroidogenesis 172, MF (10 mM) treatment of bovine granulosa cells isolated from small follicles led to a decrease
in both the basal and follicle-stimulating hormone (FSH)- and IGF-1-stimulated production of progesterone and
estradioll278],

When deciphering the mechanisms of the inhibitory effect of MF on steroidogenic activity in the ovaries, a key role
is assigned to stimulation of AMPK, and the triggering of AMPK-dependent pathways in ovarian cells Z4L76][177]
[(Figure 2). The mechanisms of AMPK activation in ovarian cells are the same as described in the Section 2 above,
and are triggered by MF-induced inhibition of electron transport chain in mitochondrial respiratory complex IL28 |t
is worth noticing that in humans, other mammals and birds (cows, goats, sheep, pigs, rats, mice, chicken), AMPK is
widely expressed in different types of the ovarian cells (oocyte-cumulus complexes, granulosa cells, and theca
cells) and in the corpus luteumZ8IL77IL79]
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Figure 2. The pathways involved in the inhibitory effect of metformin on hyperandrogenism in PCOS.
Hyperinsulinemia and HA are among the key pathogenetic factors in the development of PCOS, which is why, their
attenuation by MF is the most important mechanism for improving effect of this drug on ovarian function in PCOS
women. In PCOS, MF-induced increase in insulin sensitivity leads to a decrease in the HOMA-IR and a weakening
of compensatory hyperinsulinemia. Another mechanism for lowering insulin levels may be an increase in the level
of IGFBP-1, which specifically binds insulin and IGF-1. In PCOS, the expression of IGFBP-1 is generally reduced,
and MF treatment may be one way to normalize it. A reduced hyperinsulinemia and an increase in IGFB-1 levels
lead to a decrease in the stimulating effect of insulin and IGF-1 on the ovarian steroidogenesis and a weakening of
HA. Hyperinsulinemia leads to a decrease in the production of SHBG, which provokes HA in PCOS. MF-induced
reduction of hyperinsulinemia leads to the normalization of the SHBG levels, thereby preventing excess androgen
levels in the blood. By improving the functionality of the hypothalamic signaling network responsible for the
pulsatile secretion of GnRH, treatment with MF leads to the normalization of blood LH levels and the LH/FSH ratio,
both of which are increased in PCOS. A decrease in blood LH levels results in a weakening of gonadotropin-
induced androgen production by the ovaries. A direct regulatory effect of MF on ovarian steroidogenesis was also
established. By inhibiting the mitochondrial ETC complex I, stimulating the LKB1 activity and, as a result,
increasing the AMPK activity, MF reduces the synthesis of androstenedione in the ovarian cells and prevents HA. It
can be assumed that the prevalence of some mechanisms of the inhibitory effect of MF on HA is due to the
characteristic features of PCOS pathogenesis and the metabolic and hormonal status of the ovaries. Details and
bibliographic references are presented in the Section 2.4. Abbreviations: AMPK, AMP-activated protein kinase;
FSH, follicle-stimulating hormone; HA, hyperandrogenism; HOMA-IR, homeostasis model assessment of insulin
resistance; IGF-1, insulin-like growth factor-1; IGFBP-1, insulin-like growth factor-binding protein-1; LH, luteinizing
hormone; LKB1, liver kinase B1; SHBG, androgen and sex hormone-binding globulin.
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There is a large body of experimental data that AMPK is essential for the regulation of folliculogenesis and meiotic
activity, both control the maturation of oocytes!1Z6[180][181][182][183][184] anq that AMPK is involved in the regulation
of steroidogenesis in ovarian granulosa cellslZZ7183 Deletion of the AMPK al-subunit in mouse oocytes leads to a
27% decrease in litter size, and after IVF, the number of embryos in these mutant mice decreases by 68%[188 |n
the ovaries of mutant mice, the levels of transmembrane connexin-37 and N-cadherin, which mediate the
intercellular communication and are involved in the formation of the oocyte-cumulus complexes, were significantly
reduced. The activity level within cAMP-dependent cascade, which includes PKA and factor CREB, and the activity
of mitogen-activated protein kinase (MAPK) cascade are reduced, indicating weakening of cAMP- and MAPK-
mediated signal transduction282l186] The components of these signaling pathways are involved in the junctional
communication between the oocyte and the cumulus/granulosa cells. The MIl oocytes in mice lacking the al-
AMPK have a significantly reduced intracellular ATP level and decreased levels of cytochrome ¢ and peroxisome
proliferator-activated receptor y coactivator 1-a (PGC1a), which indicates the impaired mitochondrial biogenesis

and the activation of apoptotic processes [188],

In ovarian cells, through the activation of AMPK, MF inhibits the cAMP signaling pathways, decreases the
expression and activity of the steroidogenic enzymes and the production of androstenedione, a precursor of
testosterone (Figure 2). When exposed to cultured human theca cells, both in the basal and forskolin-stimulated
state, application of MF (50 and 200 uM) caused the AMPK stimulation and reduced androstenedione synthesis in
dose-dependent manner. In theca cells stimulated by forskolin, a non-hormonal AC activator, MF suppressed the
expression of StAR and Cypl7la genes encoding StAR protein, which carries out cholesterol transport into
mitochondria (the first, rate-limiting stage of steroidogenesis), and cytochrome P450c17a, which catalyzes the
synthesis of androstenedionel?2, The inhibitory effect of MF on steroidogenesis in the rat and bovine granulosa
cells was also due to AMPK activation, as indicated by an increase of Thrl72 phosphorylation of AMPK a-subunit,
as well as an increase of Ser’® phosphorylation and inhibition of the main target of AMPK, the enzyme acetyl-CoA-
carboxylaselZ’8ll187] The involvement of AMPK in the antiandrogenic action of MF is supported by the data on a
similar effect of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), the pharmacological activator of
AMPKIZZ8 The MF-induced stimulation of AMPK in granulosa cells results in a decrease in the activity of MAPK
cascade, primarily the kinases ERK1/2, and inhibition of phosphorylation of MAPK-activated protein kinase-1, also
referred to as ribosomal s6 kinase (p9ORSK)ILZEI187I[188] Therefore, through the AMPK-dependent mechanisms, MF
not only reduces the excessive steroidogenic activity in ovarian cells, but also suppresses and/or modulates the

cell growth and intracellular protein synthesis.

An important role of AMPK-dependent mechanisms in the antiandrogenic action of MF in PCOS is supported by

the data on the relationship between the androgen production and the activity of LKB1 in the ovaries of mice with

experimental HALEIMILIOI191][192[193] The | KB1 expression in the ovaries of hyperandrogenic mice is inhibited by
high concentrations of androgens through activation of intracellular androgen receptors. In opposite, LKB1
activation leads to a decrease in the androgens production by theca cells, but increases the estrogen production by
granulosa cells. Transgenic mice overexpressing LKB1 are characterized by the increased resistance to the
development of HAZ8 Mice with a functionally inactive ovarian gene Lkb1 have significantly enlarged ovaries and

activated entire pool of primordial follicles, but without further maturation and ovulation, which results in the
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premature ovarian failure and severely reduced fertility2®4l, The data indicates that MF-induced activation of

LKB1/AMPK pathway in PCOS ovaries normalizes ovarian steroidogenesis and counteracts HA (Figure 2).

Another, very important mechanism of antiandrogenic action of MF is largely due to an MF-induced increase in
insulin sensitivity and consequent weakening of compensatory hyperinsulinemia, the main pathogenic factor in
PCOS, also closely associated with HAL9SI[19611197] (Figure 2).

It is generally accepted that the stimulating effect of hyperinsulinemia on the production of androgens by ovarian
cells is based on low affinity binding of insulin with IGF-1 receptors24198I[199] | the 1990s, it was shown that
insulin in vitro and in vivo activates the IGF-1 receptor in the ovaries, which leads to an increase in the synthesis
and secretion of androgens. This is supported by the data on the increased secretion of androstenedione and the
elevated basal and LH-stimulated production of testosterone in cultured ovarian theca and stroma cells incubated
in the presence of insulin281200] - A decrease in insulin secretion induced by MF (500 mg three times daily) in
obese PCOS women led to inhibition of cytochrome P450c17a activity in the ovaries, decreasing the basal levels
of 17a-hydroxyprogesterone and the levels of this hormone stimulated by leuprolide, a gonadotropin-releasing

hormone (GnRH) analoguel32],

Along with the activation of IGF-1 receptor, hyperinsulinemia reduces the production of insulin-like growth factor-
binding protein-1 (IGFBP-1) by ovarian granulosa cellsi228 Figure 2). This protein specifically binds IGF-1,
decreasing the concentration of free IGF-1 and weakening its stimulating effect on the IGF-1 receptor and
steroidogenesis in the ovarian theca and stromal cells. The result of insulin-induced decrease in IGFBP-1 level is
overproduction of androgens and the impaired folliculogenesis and ovulatory cycle22Ll. |t should be noted that IGF-
1, like insulin, reduces the IGFBP-1 production in ovarian cells, while FSH stimulates the IGFBP-1 production,
preventing IGF-1-induced stimulation of androgen production 2%, The blood IGFBP-1 levels in PCOS women are
significantly lower compare to than in healthy women, which may indicate suppression of IGFBP-1 production
under the conditions of hyperinsulinemia2Jl197] At the same time, there is no strong correlation between the
IGFBP-1 deficiency and the severity of hyperinsulinemia and IR, which suggests the presence of additional
mechanisms mediating the inhibition of IGFBP-1 production in PCOSE2], There are no data for the MF effect on
blood IGFBP-1 levels in PCOS, but there is evidence of its significant increase in MF-treated women with GDME29
(1901 MF caused an increase in both phosphorylated and non-phosphorylated forms of IGFBP-1, thereby reducing

the negative effect of IGFBP-1 deficiency on the course and outcomes of pregnancy299,

In PCOS, the blood levels of androgen and sex hormone-binding globulin (SHBG) are reduced, which leads to an
increase in free testosterone level and free androgen index. As early as the 1990s, hyperinsulinemia was found to
be an important factor for the suppression of SHBG production in PCOSI33I191I1192] Gyerweight plays a key role in
this process, as supported by observation that weight loss in obese PCOS women induced by a low-calorie diet
leads to a restoration of SHBG levels, which may be due to a decrease in IR and insulin levels293l MF
administration increases the production of SHBG, by reducing body weight and hyperinsulinemia, and, thereby,
reduces the signs of HA in PCOS womenl58112021203] (Figure 2). Blood SHBG levels are also increased in MF-

treated obese women without clear signs of PCOS [224 The PCOS women with low SHBG levels are more
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sensitive to MF therapy, while the effectiveness of MF in patients with normal or high SHBG levels and, as a
consequence, without signs of HA is significantly less noticeable. The PCOS women with an average SHBG level
in the blood of 37.5 nmol/L respond well to MF treatment, while in PCOS women with an average SHBG level of
56.0 nmol/L, the response to MF was weakl2%3], Therefore, the assessment of the blood SHBG concentration is an
important prognostic factor for predicting the effectiveness of MF therapy in PCOS. Thus, a MF-induced decrease
in the level of insulin should lead to a weakening of the stimulating effect of insulin on the ovarian IGF-1 receptors,
prevent their stimulation by an excess of free IGF-1, and reduce the blood level of free androgens by restoring the
SHBG production.

Of great importance for normalization of the steroidogenic function in the ovaries can be MF-induced decrease in
the blood LH level and the LH/FSH ratio, which are significantly increased in PCOS[2061207]12081209] (Fjgure 2). An
increase in the LH/FSH ratio due to abnormal gonadotropin pulsatility and hypersecretion of LH by the pituitary is a
significant factor responsible for the deterioration of folliculogenesis and oogenesis in PCOS [209]1210][211][212]213]
(241 |n most cases, gonadotropin imbalance is found in PCOS women with obesity, and level of increase in LH is
correlated with the severity of obesity 211, The restoration of this ratio leads to normalization of the ovulatory cycle
and triggers the development of the dominant follicle, improving the rate and outcomesof pregnancy/2131215]  Eight-
week treatment of PCOS women with MF (1500 mg/daily) results in a 32% decrease in the blood LH levels and a
42% decrease in the LH/FSH ratiol228l. There is reason to believe that, as in the case of SHBG, the sensitivity of
PCOS women to MF therapy depends on the LH level and the LH/FSH ratio. The MF treatment of PCOS women
with severely impaired gonadotropin secretion and significantly increased LH level is more effective than the same

treatment of PCOS women without gonadotropin imbalance[218],

It is suggested that the restoration of normal LH secretion by the pituitary gland may be due to MF-induced
normalization of AMPK-dependent signaling in hypothalamic neurons secreting GnRHE2L (Eigure 2). This is due to
the ability of MF to cross the blood-brain barrier and reach the hypothalamus and the other brain regions28 The
secretion of GNRH is under the control of neuropeptides, such as kisspeptin, melanocortins, agouti-related peptide
and neuropeptide Y, as well as y-aminobutyric acid and the other biogenic amines219, and the neurons producing
these neurohormones may also be pharmacological targets for MF. The restoration of functional interaction
between GnRH-expressing neurons and the other components of the neuronal network responsible for
hypothalamic control of the HPG axis can prevent PCOS-associated HA and provide a balance between steroid
hormones, thereby normalizing the functionality of feedback loops in this axis. Our group and other authors have
demonstrated the restoring effect of MF on leptin signaling pathways in the hypothalamus of animals with
metabolic disorders and IR [220[2211[222]223] and the improvement of hypothalamic leptin signaling can also make a
significant contribution to the restoration the reproductive functions in PCOS. It should be noted that MF, both at the
periphery and in the CNS, acts on the signaling and effector systems synergistically with leptin. It is generally
accepted that leptin is the most important regulator of the female and male reproductive systems, which stimulates

the activity of hypothalamic GnRH-expressing neurons, and affects the other links of the HPG axis[2241(223],

2.4.2. Protective Effect of Metformin against Excess Androgens in PCOS
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In addition to reducing HA in PCOS, MF is able to prevent the negative effect of excess androgens on the ovarian
cells[228l227] |t was shown in mice model of PCOS, that treatment using MF (500 mg/kg, 20 days) after DHEA
induction improved the quality of oocytes and normalized the early stages of embryonic development. In the
ovaries of MF-treated mice, the restoration of the number of metaphase Il oocytes, mitochondrial membrane
potential and ATP levels were shown. Along with this, MF attenuated oxidative stress, as indicated by a decrease in

reactive oxygen species levels and an increase in the reduced form of glutathionel228!,

The inhibition of endoplasmic reticulum (ER) stress and the prevention of MAPK cascade hyperactivation make a
significant contribution to protective effects of MF in PCOS-associated HA. The activation of ER stress in the
ovaries and the triggering of signaling pathways induced by the unfolded protein response lead to impaired
synthesis and post-translational modification of proteins and the mitochondrial dysfunction, all of which negatively
affects folliculogenesis and meiotic maturation of oocytes!228122911230] The effector components of MAPK cascade
p38-MAPK is important for the activation of the unfolded protein response signaling and apoptosis in ovarian
cells[231232] nMore recently, it was shown that an excess of androgens led to activation of ER stress and apoptosis
in human and mouse cumulus cells(2242338] The MF treatment reduces ER stress and inhibits p38-MAPK
phosphorylation, which is significantly increased in cumulus cells of PCOS women and in the granulosa cells and
the oocyte-cumulus complexes in mice with DHEA-induced PCOS [237]. There is every reason to believe that this
effect of MF is based on its ability to inhibit HA.

2.4.3. Effects of Metformin on FSH-Activated Signaling in the PCOS Ovaries

Another mechanism of the MF restoring effect on ovarian function in PCOS is the inhibition of expression of the
Cypl9al gene encoding aromatase. Reduced levels of aromatase result in a decrease in estrogen response to
FSH, insulin and IGF-1 in the ovaries[234l2351[236] A |arge number of PCOS patients have increased sensitivity of
granulosa cells to stimulation with FSH, insulin, or IGF-1. This is due to the fact that in granulosa cells of PCOS
women, the expression of the FSH and IGF-1 receptors and the IRS1 and IRS2 proteins are significantly

increased(2371(2381[239][24011241] " | addition, the expression of PTEN, a negative regulator of signaling pathway

involving insulin/IGF-1 receptors, IRS proteins, phosphatidylinositol 3-kinase (Pl 3-K) and Akt-kinase, is reduced,
which leads to hyperactivation of Akt-kinase by insulin and IGF-11221 |n the PCOS ovaries, the important
mechanism of suppression of PTEN expression and hyperactivation of the insulin and IGF-1 signaling pathways is
an increase in the expression of two microRNAs of miR-200 family, miR-200b and miR-200c, which negatively
affect the expression of the PTEN genel24ll |n addition, a decrease in the expression of miR-99a, a negative
regulator of IGF-1 receptor expression, leads to an increase in the sensitivity of granulosa cells to IGF-1. An
increase in the expression and activity of the receptor and postreceptor components of the FSH-, insulin- and IGF-
1-regulated signaling systems in PCOS results in the accelerated growth and proliferation of the ovarian cells,
primarily granulosa cells, in the response to the stimulating effect of these hormones. Moreover, this potentiates

already pre-existing increased ovarian reactivity and premature luteinization[2421243],

MF reduces the expression of FSH receptors thereby weakening the stimulating effects of FSH on steroidogenesis

and proliferation of granulosa cells, increased in PCOS, which leads to the normalization of folliculogenesis and
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ovulation. Under the conditions of ovarian dysfunctions in PCOS, MF treatment postpones the triggering of
processes that ensure the normal growth of antral follicles, thus providing more appropriate window of time
required for their differentiation and development (on average about three months)232l. By reducing the ovarian
sensitivity to FSH, MF prevents the OHSS, the most common complication of gonadotropin-stimulated induction of
ovulation [2441245][135 136,138,255,256].

The inhibitory and modulating effects of MF on the effector components of gonadotropin-stimulated cascades in
ovarian cells can be realized through both AMPK-dependent and AMPK-independent pathways, including the
MAPK cascade [244,245]. Through AMPK-independent pathways, MF reduces FSH-induced increases in
aromatase activity and estradiol synthesis in granulosa cells, and this effect is not reproduced when using AICAR
[245]. The inhibitory effect of MF on the expression and activity of aromatase can be elicited through at least three

well understood mechanisms.

The first mechanism is MF-induced inhibition of the expression of FSH receptor in granulosa cells, which reduces
the stimulatory effect of FSH on the intracellular signaling pathways through which FSH controls the expression of
aromatase and steroidogenic enzymes [245]. As noted above, in granulosa cells of women with PCOS, the
expression of the Fshr gene is often significantly increased, which causes the elevated responsiveness of the
ovaries to FSH [247,248,249]. The polymorphisms in the Fshr gene can have a significant role in modulating the
responsiveness to FSH in both, positive and negative way, although in PCOS the data on the interrelation between
Fshr isoforms and the activity of FSH receptor are contradictory [257]. At the same time, there is evidence that
some polymorphisms can lead to an increase in the sensitivity of FSH receptor to gonadotropin [258,259]. The
second mechanism of the inhibitory effect of MF on aromatase activity is due to a decrease in FSH-induced
phosphorylation of the transcription factor CREB, which positively regulates the expression of the aromatase gene,
as well as the Star, CYP1lal and HSD3b genes encoding the cholesterol-transporting protein StAR, cytochrome
P450scc (CYP11A1), which catalyzes the synthesis of pregnenolone, and 33-hydroxysteroid dehydrogenase (3[3-
HSD), which converts pregnenolone to progesterone [245]. The third mechanism involves inhibition of FSH-
induced dephosphorylation of the CREB-regulated transcription coactivator 2 (CRTC2) and its translocation into
the nucleus, where CRTC2 is involved in the assembly of CREB containing activating transcriptional complex
[245]. Thus, MF inhibits the formation of the CREB-CBP-CRTC2 activation complex, which is capable of binding to
the CRE regulatory elements in the promoter of the genes encoding aromatase and some steroidogenic proteins,

and prevents their overexpression by FSH.

The FSH- and insulin/IGF-1-activated signaling pathways in ovarian cells are closely interrelated due to cross-talk
between them, including their interaction through the PKA/PI 3-K/Akt pathway [260,261]. The functional activity of
Akt kinase is increased as a result of these pathways activation in the conditions of overstimulation of FSH receptor
and FSH-mediated activation of IRS1 protein. This leads to an increase in the survival of ovarian cells, suppresses

atresia of the follicles and impairs maturation of the dominant follicle.

The FSH-dependent pathways are also regulated by the members of the transforming growth factor B (TGF-)

family, including activins, inhibins, and anti-Mdllerian hormone (AMH). Activins increase the FSH receptor
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expression and enhance the stimulatory effects of FSH on ovarian steroidogenesis [262,263]. In contrast, AMH and

inhibins suppress the stimulatory effects of FSH on folliculogenesis [249,262,264,265]. The regulatory effects of the

protein members of the TGF--family on the FSH-dependent signaling pathways can be realized through both Akt-
and cAMP-dependent mechanisms [266,267,268,269], but the effect of MF on the TGF-B-mediated regulation of

the FSH signaling pathways in granulosa cells remains poorly understood.
2.4.4. The Effect of Metformin on the Production of Anti-Mullerian Hormone in PCOS

In PCOS, one of the targets of MF therapy is AMH, a dimeric glycoprotein that is produced by the granulosa cells of
the primary, preantral and small antral follicles [270,271]. AMH concentration in the blood of women positively
correlates with the follicular reserve and, as a result, in PCOS, the blood levels of AMH are usually increased by

two or more fold [251,271,272,273,274]. Excess levels of AMH lead to an impaired folliculogenesis, preventing the

recruitment of primordial follicles into the pool of growing follicles and reducing the responsiveness of growing
follicles to FSH [249,275,276,277]. The increased levels of AMH may be due to HA and hyperinsulinemia, which
are characteristic features of PCOS and are closely interrelated [249,273,278,279,280], as well as to an increase in
blood LH levels or the sensitivity of granulosa cells to LH, typical for PCOS patients [280,281,282,283]. In in vitro

experiments using lutein granulosa cells obtained from oligo/anovulatory PCOS women, the LH increases the AMH
production, while the expression of type Il AMH receptors in these cells does not change significantly. In the case
of lutein granulosa cells obtained from healthy women and normo-ovulatory PCOS women, the stimulating effect of
LH on AMH production is almost completely inhibited, but the inhibiting effect of LH on the expression of type Il
AMH receptors is preserved. This effect was reproduced with the use of cAMP analogs, which indicates the
participation of cAMP-dependent mechanisms in it [281]. All this indicates that PCOS women with an impaired
ovulatory cycle have an increase in both the LH-induced AMH production and the responsiveness of lutein

granulosa cells to this factor.

By lowering insulin and androgen levels and normalizing gonadotropin levels, MF attenuates ovarian AMH
secretion, which leads to a decrease of its inhibitory effect on folliculogenesis and a weakening of the signs of
PCOS [270,271,284,285,286,287,288]. Eight-week treatment of PCOS women with MF (1500 mg/day) reduced the
blood AMH levels from 10 + 3.75 to 7.8 £ 3.7 ng/mL [271]. Six-month treatment with MF at the same dose led to a

decrease in AMH, ovarian volume and antral follicle number in PCOS women [270]. The treatment of PCOS

women with MF at the doses of 850 mg/day (first week), 850 mg/12 h (second week) and 850 mg/8 h (next six
weeks), along with the restoration of ovulation and the normalization of LH and testosterone levels, caused a
decrease in the blood AMH levels, from 8.99 + 0.99 to 6.28 + 0.46 ng/mL [286]. The combined therapy with MF and
resveratrol of rats with DHEA-induced PCOS reduced ovarian size, improved ovarian follicular cell architecture,
and decreased AMH production [217]. It is assumed that in PCOS, a decrease in the blood AMH level to control

values can be considered as one of the prognostic factors of the effectiveness of MF therapy [285,286,289].

However, there are clinical studies that showed a weak suppressive effect of MF therapy on AMH production in
PCOS [290], or the absence of this effect [291,292]. This may be due to differences in the MF doses, the duration

of MF treatment, and the peculiarities of the hormonal status in PCOS patients. MF treatment of PCOS women for
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8 months led to a decrease in the blood AMH level, while four-month MF therapy had a little effect on AMH
concentration, although it significantly reduced the blood level of androstenedione and normalized the regularity of
the menstrual cycle [284]. It is possible, that normalization of the AMH level at the first stage requires normalization
of androgens, insulin and gonadotropins levels, which in turn affects the expression and secretion of AMH. On the
other hand, Iraqi scientists showed that the treatment of PCOS women with MF (500 mg three times daily) for three
or six months significantly reduced the blood AMH levels, but in the case of six-month therapy, the MF effect
became less pronounced [289]. There is reason to believe that the severity of obesity, as well as the degree of an
increase in AMH levels, can have a significant effect on the inhibitory effect of MF on ovarian AMH production. The
most pronounced inhibitory effect of MF on AMH production was demonstrated in PCOS women with a higher body
mass index, as well as with a higher level of AMH [285].

Based on the above results, as well as on the available data on the molecular mechanisms mediating the
regulation of AMH production by granulosa cells [249,293], it can be assumed that the main mechanism for the
improving effect of MF on AMH levels in PCOS is the weakening of HA. Under normal conditions, the androgens
produced by theca cells induce a decrease in AMH levels, which leads to inhibition of the antral follicle
development and precedes ovulation. With prolonged exposure to high concentrations of androgens, which are
comparable to those in PCOS, the response of granulosa cells to androgens is impaired, resulting in the absence
of an androgen-induced fall in AMH levels and dysregulation of follicular development [293]. When PCOS patients
are treated with MF, their androgen levels are normalized, and hyperinsulinemia, which is usually associated with
HA, is reduced, which leads to the restoration of the granulosa cell response to androgens. Accordingly, the low
efficacy of MF in reducing AMH levels and restoring follicular maturation in patients with PCOS may be due to
initially mild HA and IR. It is impossible to exclude the direct effects of MF on the production of AMH by follicular
cells, including through AMPK-dependent mechanisms, as well as through weakening the stress of the
endoplasmic reticulum, stimulated by high concentrations of androgens [237]. However, this issue has not yet been
studied.

There are only two clinical studies on the MF effect on the levels of other TGF-3 family factors. One of them
showed the normalization of the TGF-B level in the blood of PCOS women with MF and cyproterone
acetate/ethinyloestradiol treatment [294]. The other authors demonstrated that a long-term therapy with MF (more

than three months) led to a significant decrease in the blood level of inhibin-B in PCOS patients [289].
2.4.5. Effect of Metformin on Metalloproteinases in PCOS

Women with PCOS usually have the increased serum levels of type 9 matrix metalloproteinase (MMP-9) and
MMP-2 [295,296], and the altered concentrations of the types 1 and 2 tissue inhibitor of MMP (TIMP-1 and TIMP-2)
[295]. The changes in the concentrations and balance of MMPs and TIMPs lead to the remodeling in the ovarian
stroma, increased ovarian angiogenesis and impaired folliculogenesis [295,296]. The activation of AMPK causes a
decrease in the activity of the pathway involving mTOR (mammalian target of rapamycin) and ribosomal protein

kinase p70S6K, and suppresses the expression and functional activity of MMPs. Consistently, stimulation of Akt
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kinase and mTOR enhances the expression of MMPs and, thereby, stimulates angiogenesis, cell migration, cell

proliferation and protein synthesis [297,298].

By activating AMPK, MF reduces the expression and activity of MMPs, and this is largely responsible for the well-
described antitumor effect of MF [299]. MF treatment (10 mM) of cultured human ovarian granulosa (HTOG) cells,
leads to an increase in AMPK activity, an inhibition of mTOR-dependent cascade, and a decrease in the expression
of MMP-2 and MMP-9 [300]. Another MF-mediated mechanism for down regulating the MMP expression involves
triggering the H19/miR-29b-3p signaling pathway. MF increases the expression of miR-29b-3p, a negative
regulator of the MMP-2 and MMP-9 expression via decreasing the expression of histone H19 through methylation
of the promoter in the gene encoding this histone, which leads to a decrease in the production of these enzymes
and contributes to normalization of ovarian morphology in PCOS [300]. MF-induced activation of the H19/miR-29b-
3p pathway is attenuated by the increased expression of histone H19, which decreases the expression of miR-29b-
3p. The miR-29b-3p-mediated effect of MF on MMP expression is independent of AMPK, in contrast to MF
regulation of mTOR signaling cascade [300].

2.4.6. Influence of Metformin on Inflammation and Lipid Status in PCOS

Dyslipidemia, oxidative stress and inflammation, along with IR, are essential for the pathogenesis of PCOS. These
factors are similar to those in MetS and T2DM [301,302]. As a result, the ability of MF to improve energy
metabolism, prevent lipotoxicity and restore the redox balance in the ovaries is another mechanism of its beneficial
effect on folliculogenesis and the ovulatory cycle in PCOS. In human granulosa cells, through AMPK-dependent
mechanisms, MF suppresses the tumor necrosis factor-o (TNF-a)-induced production of pro-inflammatory
cytokines, interleukin-8 and chemokine CXCL1/GROa [303]. The other AMPK activators, such as AICAR and
Baicalin, also reduce TNF-a- and chemokine-mediated inflammatory responses in ovarian cells [303,304]. In PCOS
ovarian cells, the mechanism of MF suppressive effect on the TNF-o-induced cascades includes a decrease in the
gene expression of TNF-a [217].

The severity of metabolic disorders positively correlates with the therapeutic effect of MF, which is due not only to
its effect on the ovaries, but also to the effect on the metabolic processes in the other tissues. A prominent feature
of PCOS is decreased level of high-density lipoprotein cholesterol (HDL-C), and MF is most effective in PCOS
patients with blood HDL-C levels below 50 mg/dL [226]. HDL-C modulates glucose homeostasis through AMPK-
dependent mechanisms, whereby in PCOS, MF-induced AMPK activation may significantly contribute to the insulin

sensitivity-restoring effect of MF [226].
2.5. The Sensitivity of PCOS Women to Metformin Therapy

The responsiveness of PCOS women to MF may be due to the efficiency of MF transport into the target cell and
the distribution and pharmacokinetics of this drug in the tissues [28] (Eigure 3). Despite the ability to freely
penetrate the blood-tissue barriers and redistribute in the tissues, MF transport into the cell is carried out through
the specialized transporters, including OCT1, OCT2, ATM and MATE. A decrease in their functional activity due to

inactivating mutations in their genes, primarily in the OCT1 gene, has a negative effect on the therapeutic effect of
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MF, in some cases making PCOS patients completely resistant to MF [151,305,306]. The incidence of OCT1,
OCT2 and ATM polymorphisms in PCOS is much higher than in women without PCOS. During genotyping of
PCOS patients, non-functional alleles of the OCT1, OCT2, and ATM genes were detected in 29.8%, while low-
functional alleles in 57.9% of cases. Non-functional alleles in the OCT1 and OCT2 genes were associated with
poor response to MF, as well as with glucose intolerance and significantly elevated levels of proinsulin C-peptide
after glucose loading [306]. In the recent work of Taiwanese scientists, the polymorphisms rs683369 (allele G) and
rs628031 (allele A) were identified in the OCT1 gene of PCOS women, and they were associated with a decrease
in sensitivity of patients to both the MF and insulin therapy [151]. It should be noted that of the 38 currently
identified OCT1 gene polymorphisms, the Met*%8val (rs628031) variant exhibits the most suppressed MF
therapeutic effect [307]. Quite unexpected finding was that single-nucleotide polymorphism in the OCT2 gene did
not significantly affect the affinity to MF, although there is evidence of the involvement of the OCT2 in MF transfer

into the target cells, including the ovarian cells [308].

Efficient transport of MF w ><
into cells through } ! The impaired 1anspon of MF
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of ofganic cations :{.::—E ;IT.I.TILI:. OTEAINIC CRION ransponers
| PCOS J_
High (normal) responsiveness to MF treatment Low or no responsiveness to MF treatment
- Severce or moderate HA - Weak HA and normeandrogenism
= Decreased blood levels of SHBG = Mormal or increased blood levels of SHBG
- Severe or moderate hypennsulinemia - Weak hyperinsulinemia and fasting normoinsulinemia
- Decreased blood levels of 1GEBP-1 (7) - Normal or increased blood levels of IGFBP-1
- Increase in the blood LH level and the LH/FSH ratio - Mormal or decreased LH levels and the LH/FSH ratio
- Inerease in the blood AMH level - Wormal blood levels of AMH
= Decreased blood levels of HDL-C (1) = Mormal or increased blood levels of HDL-C
= Largely increased FSH-induced estradiol synthesis = Moderate to small changes in FSH-induced estradiol
and aromatase gene expression (1) synthesis and aromatase genc cxpression

Figure 3. Factors determining responsiveness to metformin and the effectiveness of metformin therapy in women
with PCOS. Women with PCOS, as well as the patients with other pathologies, must have functionally active
transporters of organic cations (OCT1, OCT2, and others) in order to respond to MF, since inactivating mutations
and polymorphisms in the genes encoding these transporters lead to impairment of MF transport into the cell and
make MF therapy ineffective. Since MF improves metabolic parameters and insulin sensitivity, its effectiveness in
PCOS women with overweight or obesity, as well as with severe dyslipidemia and impaired glucose tolerance, is
usually higher. There is evidence that MF therapy is most effective in PCOS women who have pronounced signs of
hyperinsulinemia and hyperandrogenism, the increased LH levels and the LH/FSH ratio, the decreased levels of
SHBG, IGFBP-1 and HDL-C, and the increased levels of AMH. It can also be assumed that MF will be more
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effective in patients with increased aromatase expression and ovarian hypersensitivity to FSH, since one of the
mechanisms of MF action is normalization of the expression of genes encoding the FSH receptor and aromatase,
as well as normalization in the response of ovarian cells to stimulation of FSH. Details and bibliographic references
are presented in the Section 2.5. Abbreviations: AMH, anti-Millerian hormone; FSH, follicle-stimulating hormone;
HDL-C, high-density lipoprotein cholesterol; IGFBP-1, insulin-like growth factor-binding protein-1; LH, luteinizing
hormone; OCT1 and OCT2, organic cation transporters-1 and 2; SHBG, androgen and sex hormone-binding

globulin.

In addition to negative effects for MF transport into the cell, a number of other factors contribute the sensitivity of
PCOS patients to MF therapy. Among these factors are the severity of hyperinsulinemia and HA, the blood levels of
the binding proteins for insulin, IGF-1 (IGFBP-1) and androgens (SHBG), and the blood levels of AMH and HDL-C
(Eigure 3).

| 3. Metformin and Gestational Diabetes Mellitus

Over the past years, the focus has been on the validity of the use of MF for the treatment of GDM and the
prevention of GDM-associated preeclampsia, which is of great importance for a normal pregnancy and the birth of
healthy offspring [309,310,311,312,313,314,315,316,317,318]. GDM is recognized on average in 10-20% of

pregnant women, and the incidence is largely depends on diagnostic criteria and genetic, environmental and ethnic

factors [319,320,321]. The dietary and exercise interventions are often used to prevent and treat GDM and improve
pregnancy [317,322,323], but such interventions are effective only when used concurrently, and with
pharmacological intervention [322,324]. Combining diet and exercise with vitamin D and myo-inositol supplement

has been shown to be effective [324,325,326,327]. The most widely used pharmacological approach for GDM

correction is insulin therapy, which is currently considered the “gold standard” of care in GDM [317,328,329].
Notably, insulin treatment leads to a number of side effects, primarily hypoglycemic episodes, dangerous for the
health of pregnant women and fetus. As a result, the development of alternative pharmacological approaches is
now underway, among which the use of MF and other oral hypoglycemic agents is of the greatest interest
[317,330,331,332].

In 2007-2013, the first series of randomized clinical trials was carried out to assess the efficacy and safety of MF
therapy in GDM, including the comparison with insulin therapy [333,334,335,336,337,338]. It was concluded that

MF, to a greater extent than insulin, reduces body weight gain in pregnant women, and also reduces the frequency

and severity of gestational hypertension. Unlike insulin, MF did not induce hypoglycemic episodes in the mother
and fetus. At the same time, MF therapy had a little or no effect on the incidence of small for gestational age (SGA)

or large for gestational-age (LGA) neonates, and had a little effect on the incidence of preeclampsia.

Subsequently, there were the additional evidences of the effectiveness of MF as a drug that reduces maternal body

weight and prevents gestational hypertension [314,339,340]. Based on a large clinical data
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[337,341,342,343,344,345,346,347,348,349], it was concluded that MF in GDM and T2DM, to a greater extent than
insulin, prevents neonatal hypoglycemia, and significantly reduces the incidence of fetuses with LGA, thereby
reducing the number of newborns who require intensive care after birth [321,339,350]. It is important to note that
MF therapy does not increase the rate of preterm delivery, Cesarean section, and SGA neonates [321,339,340],
despite the fact that earlier studies showed the risks of MF therapy for a normal pregnancy in GDM [334,351].
Polish scientists found some increase in triglyceride levels and atherogenic index in the third trimester of
pregnancy in MF-treated women with GDM. At the same time, they indicated that short-term treatment with MF and

insulin had a similar impact on lipid markers of MetS in women with GDM [352].

Several advantages of MF therapy in GDM treatment were demonstrated when comparing MF efficiency with that

of other oral hypoglycemic agents, including glibenclamide and its analogues [330,347,353,354,355]. The use of

glyburide, which, like MF, provides adequate glycemic control in GDM, is associated with an increased risk of

neonatal hypoglycemia, high neonatal birth weight and macrosomia [330,353,355].

As noted above, there is evidence that MF reduces preeclampsia in GDM, and this is based on the ability of MF to
prevent endothelial dysfunctions via normalizing the levels of the anti- and pro-angiogenic factors and improving
the mitochondrial energy and biogenesis [313,356,357]. MF decreases the production of anti-angiogenic factors,
including soluble forms of receptors of angiogenic factors. Among them, there are the placenta-produced soluble
vascular endothelial growth factor receptor-1 (VEGFR-1), also called soluble fms-like tyrosine kinase-1 (sFlt-1),
which specifically binds to vascular endothelial growth factor-A (VEGF-A) and placental growth factor (PIGF), and
the soluble endoglin, a soluble isomer of endoglin, which inhibits the specific binding of TGF-B1 to its receptor
[313,356,357,358]. Moreover, MF and its combination with other drugs (esomeprazole, sulfasalazine) lead to an
increase in the expression of VEGF-A and placental growth factor (PIGF), both powerful activators of angiogenesis,
and to a decrease in TNFa-induced expression of endothelin-1, a potent vasoconstrictor [356,357]. In pregnant
women, the increased activity of anti-angiogenic factors induces the systemic endothelial dysfunctions and
vasospasm and provokes preeclampsia [358]. MF treatment of mice with a preeclampsia-like model induced by a
six-week high-fat diet (HFD) before pregnancy reduces the blood pressure, prevents the proteinuria, normalizes
the fetal and maternal weight, and leads to an improvement of the placental labyrinth and fetal vascular
development, impaired in the conditions of preeclampsia [359]. This is based on MF-induced normalization of

placental production of MMP-2 and VEGF in preeclamptic mice, which, in turn, improves the pregnancy outcomes

[359].

In GDM, MF-induced normalization of angiogenesis and blood circulation prevents hypoperfusion of the placenta.
In this regard, it should be noted that hypoperfusion leads to placental hypoxia and ischemia and oxidative stress
at the maternal-fetal interface, and then the inflammatory factors and the oxidized and degraded biomolecules are
transferred into the mother’s bloodstream, causing preeclamptic symptoms [360,361]. Another mechanism for the
prevention of preeclampsia may be a MF-induced decrease in IR and normalization of insulin levels in women with
GDM, since there is an evidence that a decrease in insulin sensitivity is an important factor provoking preeclampsia
[362,363].
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It is also assumed that in GDM the protective effect of MF on preeclampsia may be due to its effect on the
sensitivity of the placenta to human chorionic gonadotropin (hCG) during the early pregnancy. hCG is the most
important regulator of placental development and angiogenesis and is able to influence the ratio of PIGF and sFlt-1
receptors in the blood and, thereby, control the activity of pro- and anti-angiogenic factors [364]. During early
pregnancy, high levels of hCG are associated with the elevated sFlt-1/PIGF ratio and the increased risk of
preeclampsia [364]. The pregnant women with GDM are more likely to deliver by Cesarean section. The success of
Cesarean section is significantly increased with the combined use of MF and insulin and is higher than with the use
of insulin or MF alone [365]. The combination MF plus insulin had an improving effect on the delivery of LGA infant
as compared to insulin monotherapy. These data indicate the need for the combined use of MF and insulin in

treating GDM women with high-risk pregnancy and recommendation for Cesarean section [365].

When using MF to treat GDM, it is important to take into account the ability of this drug to easily cross the placenta
barrier to affect the embryo and developing fetus [366]. At the same time, the available data do not support the
teratogenic effect of MF when used during pregnancy [315,345,346,351,353,367,368,369,370,371]. Moreover, a
number of positive effects of prenatally administered MF on fetal development and functional indices of newborns
in GDM were demonstrated [366,372,373]. In GDM, the side effects of MF, as in the treatment of PCOS and T2DM,
are mainly limited to gastrointestinal dysfunctions [287,334,374,375].

The fact that, in GDM, MF therapy in about half of cases has little or no effect [334,376], may be due to the genetic
and ethnically defined environmental ethnic features, as well as the severity and pattern of hormonal and metabolic
disorders in women with GDM. In this regard, the situation is similar to that in PCOS women, where the factors that
determine the effectiveness of MF therapy are hyperinsulinemia, HA, functional activity of the gonadotropin and
insulin/IGF-1 signaling systems in the ovaries, lipids spectrum, expression and activity of inflammatory factors and
antioxidant enzymes, and also organic cation transporter-dependent transfer of MF into the target cells (see Figure
3).

To fully assess the response of pregnant women with GDM to MF, the effect of this drug on glucose homeostasis
should be investigated. The glucose level one hour after the start of the oral glucose tolerance test above 212
mg/dL and the mean fasting glucose level during the first week of MF therapy above 95 mg/dL are both reliable
indices for supplementing MF therapy with insulin [376]. The differences in responsiveness to MF therapy are
believed to explain the results for a number of recent studies and meta-analyzes that did not show a significant
effect of MF on pregnancy and its outcomes in women with GDM and on the development of preeclampsia. Based
on this, a number of authors have expressed the opinion that insulin is preferable to MF in GDM treatment
[377,378,379].

4. Metformin Treatment of Women with Diabetes Mellitus and
Obesity

MF, the main oral hypoglycemic agent for the treatment of T2DM, is also widely used to treat women with T2DM

before pregnancy. At the onset of pregnancy, for a significant proportion of diabetic women, on average from 11.4%
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to 62.5%, MF therapy is replaced by insulin therapy, which is still considered more acceptable for glycemic control
in pregnancy [380,381]. However, with the accumulation of clinical data, the validity increases for the use of MF to
treat women with T2DM during pregnancy, mainly due to the optimization of strategy of MF use and strong
evidence of its prenatal safety [341,343,346,349,370,375,381,382,383,384,385,386,387].

As in the case of PCOS and GDM, the effectiveness of MF in the treatment of pregnant women with T2DM
depends on a number of factors, including individual susceptibility to this drug. Reduced response to MF requires
the use of insulin supplements to improve glycemic control. The number of pregnant T2DM women receiving MF
treatment, which require supplementary insulin therapy varied significantly and ranged widely from 4% [385] to
43% [341] and even up to 84% [346]. Supplementary insulin therapy usually begins on average after the 25th week
of gestation [346]. The need to add insulin is due to the ineffectiveness of glycemic control using MF alone, even
with a significant increase in the daily doses of this drug. Egyptian scientists have shown that in 37% and 39% of
pregnant women with T2DM, MF in the daily doses of 1500 and 2000 mg, respectively, provided a good glycemic
control, while in 24% of pregnant diabetic women the use of a daily dose of 2000 mg did not secure reliable

glycemic control, thus these patients required supplementary insulin treatment [343].

In contrast to women with T2DM, the use of MF in obese pregnant women who do not have severe IR,
hyperglycemia and dyslipidemia is not effective. Most clinical studies indicate that MF does not significantly affect
the pregnancy and the health of newborns in obese pregnant women [318,388,389,390]. The use of MF in
pregnant women with overweight or obesity at the end of the first and beginning of the second trimesters does not
significantly improve the outcomes of pregnancy and childbirth [390]. Although some meta-analyzes show that MF
treatment of obese women can reduce maternal gestational weight gain and prevent preeclampsia, without
negatively affecting the fetus, including stillbirth and congenital abnormalities [314,388], there is currently no
reliable reason to recommend MF for the prevention of adverse pregnancy outcomes in obese or overweight

women without pronounced signs of T2DM [388,390].

Women with type 1 diabetes mellitus (T1DM) are also characterized by an increased risk of developing
preeclampsia and adverse pregnancy outcomes, and these risks are significantly higher than those in T2DM
therapy is used, both in the period before and during pregnancy. Adequate insulin therapy for women with TIDM

before pregnancy reduces the risk of hypertensive disorder of pregnancy [396].

However, a long-term therapy with increasing doses of insulin leads to IR and hypoglycemic episodes, and also
increases the mother’'s body weight, thereby worsening the outcome of pregnancy [397,398,399]. In the third
trimester of pregnancy, the daily insulin dose can increase to 1.0 IU/kg, and the increase in this dose can occur
rapidly [400]. Weight gain in pregnant women with T1DM, which is more pronounced than among non-diabetic
patients, and persistent hyperglycemia lead to a higher risk of fetal overgrowth, resulting in LGA and macrosomia
[401,402].
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Optimization of insulin therapy using automated insulin delivery is one of the approaches to prevent IR and
normalize the body weight and glucose homeostasis [399,403,404]. Another, alternative, approach is the use of MF
therapy to correct hyperglycemia in pregnant women with T1DM, especially since MF has been successfully used
for a long period of time to correct hyperglycemia in non-pregnant patients with TAIDM, which makes it possible to
increase insulin sensitivity and reduce the insulin dose [405,406,407,408,409]. The data on MF treatment of

pregnant women with TIDM are encouraging, demonstrating improved glycemic control without the need to

increase the insulin dose and reducing maternal weight gain and the risk of neonatal hypoglycemia [410].

| 5. Conclusions

The data presented in the review convincingly prove that MF has an improving effect on reproductive functions in
women with PCOS, GDM and T2DM. At the same time, the effectiveness of MF therapy is due to a large number of
different factors that must be taken into account when choosing this therapy and also when developing a strategy
for using MF. Firstly, it is necessary to assess the efficiency of MF transport into the cell, which depends on the
functional activity of the organic cation transporters and can be disrupted by inactivating mutations in their genes.
The presence of certain mutations leads to a loss of responsiveness to MF and makes the use of MF therapy
meaningless. Secondly, MF therapy is more effective in the severely overweight and obese patients with IR,
compensatory hyperinsulinemia, impaired glucose tolerance, as well as with dyslipidemia, which is due to a
decrease in the blood levels of HDL-C. This is not surprising, since the clinical effect of MF therapy is due to an
improvement in insulin sensitivity, a decrease in the adipose tissue mass, and restoration of the glucose and lipid

metabolism.

In addition, as demonstrated in a number of clinical studies in PCOS women, the effectiveness of MF is largely
determined by the hormonal status of the ovaries and the functioning of the HPG axis. The MF therapy may be
most effective in PCOS women who have: (1) severe HA, which may be due to hyperactivation of ovarian
insulin/IGF-1-regulated signaling pathways that stimulate androgen synthesis, as well as an increase in LH levels
and the LH/FSH ratio and a decrease in the blood levels of IGFBP-1 and SHBG; (2) an increase in the AMH
production; and (3) an increased aromatase expression and FSH-induced estrogen synthesis in the ovaries. There
is reason to believe that various combinations of these factors, including those with IR and metabolic disorders,
may become reliable indications for prescribing MF alone and in combinations with other drugs, diet or exercises to
correct the reproductive functions in PCOS. This can be helpful when using MF to treat the pregnant women with
GDM and T2DM.

Since some of MF targets overlap well with those of leptin, the assessment of leptin status in patients with
reproductive disorders may also be important. As a result, leptin resistance, both systemic and in the ovaries, as
well as the changes in the hypothalamic leptin signaling pathways, negatively affecting the production of GnRH,
can become factors that will determine the effectiveness of MF therapy. In this regard, it should be noted that the
central mechanisms of action of MF, which easily penetrates the CNS and improves the metabolism of the
neuronal and glial cells, still remain underestimated. By acting on the CNS, MF restores the signaling networks of

the hypothalamus and the other brain regions that are involved in the control of reproductive functions and undergo
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significant compensatory and pathological changes in metabolic and endocrine disorders, including PCOS, GDM,
T2DM, and MetS.

A unique feature of MF is the multiplicity of molecular mechanisms of its action on target cells, which include direct
or indirect regulation of the AMPK-, calcium- and cAMP-dependent signaling pathways, as well as the MAPK
cascade and the IRS/PI 3-K/Akt pathway. As a result, MF controls not only energy and metabolic processes in the
cell, but also the processes of growth, differentiation, apoptosis, inflammation, and ER stress. At the same time,
most of the regulatory effects of MF are based largely on its modulating and normalizing influence on intracellular
signaling cascades than on their prolonged stimulation or suppression. Depending on the functional state of the
IRS/PI 3-K/Akt pathway, MF can either prevent its hyperactivation, which is especially important for its antitumor
effect, or, on the contrary, restore its reduced activity, improving the survival of target cells and their sensitivity to
insulin and leptin. As expected, MF therapy affects the responsiveness of hypothalamic neurons, pituitary
gonadotrophs, and ovarian cells to the hormones, growth factors, adipokines and cytokines, but more studies are

required for complete elucidation of all regulatory mechanisms involved.

The use of MF in combination with the other drugs has great potential. This is supported by the encouraging results
of clinical trials of the combined therapy with MF and insulin in pregnant women with GDM and T2DM. In metabolic
and endocrine disorders, the combined therapy not only allows to increase the efficiency and pattern of the effects
of MF on the HPG axis, but also to reduce the pharmacological doses of drugs, including MF, thus avoiding
possible side effects of high-dose drug administration, including the undesirable effect of MF on the functioning of

the gastrointestinal tract.

The presented results indicate a significant and not yet fully understood potential of MF therapy for the correction of
reproductive dysfunctions in women. Significantly, of great importance are the absence of a teratogenic effect of
MF and the low risks of MF therapy on the health of the mother and child. It should be taken into account that the
unjustified use of MF for the treatment of patients lacking profoundly manifesting metabolic and endocrine
disorders can lead to energy and metabolic imbalance and further deterioration of the functional state of their

reproductive system.
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