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Acetylation, also known as acetylation or acetylation, refers to the chemical reaction of adding an acetyl functional

group to an organic compound. Conversely, the reaction in which the acetyl group is removed is called

deacetylation or deacetylation. Acetylation of proteins is a post-translational modification.

DNA damage response  post-translational modification  lipid metabolites  acetylation

1. Acetylation of Histones and Non-Histone Proteins

In eukaryotic cells, chromatin refers to a linear, complex structure composed of histone, non-histone, DNA, and a

small amount of RNA and is located in the nucleus. Histones are alkaline proteins that bind to DNA in eukaryotic

cells. They are composed of four core histone families (H2A, H2B, H3, H4) and a linker family (H1). Core histones

are mainly responsible for binding to DNA to form nucleosomes, which represent the structural units of chromatin,

while linker histones are responsible for binding with nucleosomes to form the next chromatin unit. Thus, histones

play an important role in maintaining chromatin structure. Non-histone chromatin refers to other proteins that can

bind to chromatin, including chromatin structural proteins, enzymes, and a small number of regulatory proteins.

Although non-histones are less common in chromatin than histones, there a wide range of types, and they serve

complex functions, such as regulating gene expression and maintaining chromatin structure. There are more basic

amino acids in histones than acidic amino acids, but the ratio of basic to acidic amino acids in non-histones varies

across situations and contexts.

Histone acetylation is a dynamic and reversible protein protein post-translational modification (PTM) and may be

the most well-understood. Histone acetyltransferases (HATs, also referred to as lysine acetyltransferases) and

histone deacetylases (HDACs, also known as lysine deacetylases) catalyze the addition or removal of acetyl

groups, respectively, to lysine residues on both histone and non-histone proteins . Acetylation occurs on amino-

terminal proteins and on the O-junctions of serine and threonine, acetylation refers only to N ε-lysine acetylation

(Kac) (defined as the deposition of an acetyl group onto the epsilon amino group of lysine; Figure 1) . It was

found that, by stable isotope tracking and acetylation proteomic analysis, more than 90% of acetylation

modification on histone lysine is derived from the carbon of fatty acids . Acetyl-CoA in mitochondria from fatty

acid β-oxidation is converted to citrate, an intermediate of the tricarboxylic acid cycle. Citrate is exported out of

mitochondria by citate transporter and subsequently cleaved by ATP-citrate lyase (ACLY) into acetyl-CoA .
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Figure 1. Acetylation modification mechanism.

Acetylation of histones by HATs relaxes the structure of chromatin and increases DNA accessibility, which results in

increased gene transcription. The effect of HDACs is the opposite, with deacetylation making the structure of

chromatin more compact and inhibiting transcription. The histone code hypothesis suggests that histone

modification can be explained by chromatin-binding proteins called “readers,” which distinguish between modified

and unmodified nucleosomes and then decide on DNA transcription or other related downstream events . At

present, known domains with the ability to recognize or read acetylated lysine residues include YAF9, ENL, AF9,

Taf14, and Sas5 YEATS domains, and tandem homologous domains (PHDs, also known as double PHD finger

(DPF) domains) in plants . In addition to histones, mass spectrometry has also revealed that acetylation occurs

on non-histone proteins, some of which participate in protein folding, protein degradation, and chromatin structure

adjustment .

The exact number of HATs in the human proteome remains unknown. However, the histone HATs that have been

identified thus far include the P160, P300/CBP, TAFII230, MYST, GNAT, and PCAF families, with the current

classification system primarily being based on homology with the original enzyme sequence found in yeast. In

addition, a total of 13 non-histone HATs have also been identified, and these are roughly divided into three families:

GCN5, P300, and MYST. These include histone acetyltransferase 1 (HAT1, also known as KAT1), α-tubulin N-

acetyltransferase 1 (TAT1, also known as ATAT1) , and establishment of cohesion 1 homology 1 (ESCO1) and

ESCO2, which all serve different functions. At present, non-histone HAT specificity is thought to be determined by

the accessibility of lysine in their substrate proteins, specific subcellular localization, and interacting proteins. For

example, with the exception of TAT1, HATs are primarily located in the cell nuclei. Most HAT substrates do not

overlap, but some functionally similar HATs can acetylate the same sites: for example, CREB-binding proteins
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(CBP, also known as KAT3A) and p300 (also known as KAT3B) both acetylate histone H3Lys18 (H3K18) and

H3K27.

HDACs, meanwhile, are divided into four categories based on their sequence similarity and degree of phylogenetic

conservation. The class I HDACs include HDAC1, 2, 3, and 8; the class II HDACs include HDAC4, 5, 6, 7, 9, and

10 (being further subdivided into class IIa and IIb); the class III HDACs are known as the sirtuins and include

SIRT1-7; while the fourth category currently includes HDAC11 only . With the exception of class III HDACS,

which are NAD -dependent, the other HDAC classes are all zinc-dependent. Zinc-dependent HDACs contains a

deacetylase domain which is highly conserved and are often referred to as classical HDACs. While class I and IV

HDACs are localized in the nucleus, class IIb HDACs are distributed in the cytoplasm. Class IIa HDACs are mainly

distributed in the nucleus but are exported to the cytoplasm when activated. The sirtuins are distributed in different

locations in the cell as follows: cytoplasm (SIRT2), mitochondria (SIRT3, SIRT4, and SIRT5), nucleus (SIRT1 and

SIRT6), and nucleolus (SIRT7).

It is worth noting that most non-histone deacetylases have limited or no deacetylase activity or primarily perform

other types of acylation. For example, SIRT4  removes the acyl group from hydroxymethyl glutaryl lysine, SIRT5

 acts as a demalonylase and a deglutarylase, and SIRT6 acts as a long-chain fatty acid deacylase. Class IIa

HDACs lack obvious catalytic activity, primarily due to the alterations in the conserved amino acids found in their

catalytic pocket. Recent studies have found that lymphoid augmenter factor 1 (LEF1)  and T cell-specific

transcription factor 1 (TCF1, also known as Tcf7)  also exert HDAC activity and that these two transcription

factors are involved in the regulation of the WNT signaling pathway . The overall sequences of LEF1 and TCF1

are very different from HDAC8, but their functions are similar.

Recent studies have shown that acetylation can also occur through non-enzymatic mechanisms . For example,

lysine can be acylated by acyl-CoAs formed by the breakdown of fatty acids, and this mostly occurs through non-

enzymatic mechanisms. Interestingly, some acyl-CoAs, such as glutaryl coenzyme A and succinyl coenzyme A, are

derived from the carboxy cycle process but are more active than acetyl-CoA. The primary mechanism underpinning

these modifications is acyl-CoA carboxyl group-induced intramolecular nucleophilic attack on CoA thioester bonds,

which results in the formation of cyclic anhydride. This is more active than acyl-CoA and can produce non-

enzymatic modifications more efficiently. Non-enzymatic acylation is thought to be affected by the cellular

concentration of acyl-CoAs, the reactivity of acyl-CoA, local pH levels, and the number of lysine residues in

proteins. These factors may differ between cell and tissue types. However, the specific regulatory mechanisms of

this non-enzymatic modification remain unclear and require further investigation.

2. Acetylation in the DDR

2.1. Histone Acetylation in the DDR

Histone acetylation is well known to lead to changes in the structure of chromatin. Mechanistically, this occurs in

two ways: on the one hand, the positive charge of lysine residues can be neutralized after acetylation, resulting in
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the weakening of the interaction between histone and DNA skeleton and the promotion of chromatin decompaction.

This exposes more sites and enhances the accessibility of nucleosomal DNA. On the other hand, related chromatin

remodeling complexes, such as SWI/SNF complexes, can also be recruited to the chromatin region to regulate

chromatin structure. It was found that, in response to ionizing radiation (IR), nuclear ACLY is phosphorylated at

S455 by ataxia telangiectasia mutated (ATM) and facilitates histone acetylation at double-strand breaks (DSBs),

promoting HR-mediated repair by enabling BRCA1 recruitment while impairing 53BP1 recruitment . This direct

evidence demonstrates the link between histone acetylation and DNA damage response (DDR). Other studies

have shown that the acetylation modification of histone H1K85 can mediate chromatin changes under the dynamic

regulation of acetylase PCAF and deacetylase HDAC1 in response to DNA damage, thus ensuring genome

stability . However, compared with H1 histone, H2 histone acetylation has been studied more extensively in

terms of DDR. When cells are stimulated by ionizing radiation (IR), H2AX lysine 36 (H2AX K36ac) can be

acetylated by acetyltransferase CBP/P300 to recruit corresponding DNA repair proteins to DNA damage sites .

Furthermore, under ionizing radiation-induced stimulation, the DNA PKCs BRD domain can specifically recognize

H2AX acetylated lysine 5 (K5ac), which can lead to the determination of cell fate via γH2AX . Moreover, under

IR stimulation, knockdown of the tumor suppressor gene ZNF668, known to be involved in breast cancer, will

weaken the interaction between Tip60 and H2AX. This leads to reduced hyperacetylation of histone H2AX and the

prevention of chromatin relaxation, resulting in a reduced recruitment of repair proteins to DNA damage sites,

defective homologous recombination (HR) repair, and reduced cell survival rates. These examples fully illustrate

the importance of H2 histone acetylation to the DDR and, thus, to cancer .

Histone H3 acetylation also serves an important regulatory role in the DDR. At the location of DNA damage, the

histone deacetylases HDAC1 and HDAC2 maintain low H3K56 acetylation levels to ensure that the damaged DNA

is repaired. After the repair is completed, the proteasome will degrade the acetylated core histones, and the newly

formed core histones will be assembled into nucleosomes. This represents the completion of the process of coping

with DNA damage and repair . PhD bromo tandem domain containing trimer motif 66 (TRIM66) has also been

found to recognize unmodified H3R2, H3K4, and acetylated H3K56, while TRIM66 can recruit SIRT6 to deacetylate

H3K56, thereby initiating the DDR and maintaining genome stability . In addition, after 24 h of stimulation of

HaCaT cells with sodium arsenite (NaAsO ), arsenic has been reported to reduce histone H3K18 acetylation

levels, affect the expression of xeroderma pigmentosa-related proteins (XPA, XPD, and XPF nucleotide excision

repair (NER)-related genes), and further aggravate DNA damage. However, the use of histone deacetylase

inhibitor trichostatin A (TSA) can inhibit the deacetylation of H3K18 in the promoter region of XPA, XPD, and XPF,

increase the acetylation of H3K18, and promote the transcriptional expression of nucleotide excision repair (NER)-

related genes. To a certain extent, it can inhibit arsenic-induced DNA damage .

In addition to H1, H2, and H3 acetylation, some studies also have been conducted on histone H4 acetylation. After

doxorubicin treatment, cells in G0/G1 phase experience DNA damage but it can also promote the activation of

chromatin kinase VRK1. VRK1 directly interacts with Tip60 and phosphorylates it, resulting in increased histone

H4K16 acetylation, a marker of local chromatin relaxation. Inhibition of Tip60 expression by siRNA or its kinase

inhibitor MG149 inhibited H4K16 acetylation, indicating VRK1-mediated phosphorylation of Tip60 increases its

enzymatic activity. This work suggests that the dynamic remodeling of chromatin is closely related to the epigenetic

[16]

[17]

[18]

[19]

[20]

[21]

[22]

2

[23]



Acetylation | Encyclopedia.pub

https://encyclopedia.pub/entry/34331 5/17

modification of histone . In addition, males absent of the first (MOF) proteins can regulate the level of H4K16

acetylation. MOF is responsible for maintaining sufficient levels of H4K16 acetylation in cells, which facilitates the

generation of chromatin structures conducive to DNA repair. When MOF is absent in cells, the acetylation level of

H4K16 is reduced and ultimately, the recruitment and cancellation of the corresponding signal proteins at the DNA

damage site is impaired . Furthermore, after DNA double-strand breaks induced by the HO endonuclease

system, if the acetylation sites of newly synthesized histone H4 are mutated, the reassembly of chromatin structure

is inhibited. Interestingly, the newly synthesized histone H4 acetylation mutation site changes, resulting in

phosphorylated H2A (γ-H2AX) levels significantly decreasing around DSBs, indicating the critical role of chromatin

assembly in DNA damage signaling .

In summary, Kac modification of histone tails can lead to the relaxation of chromatin structure, which is more

conducive to the completion of DNA repair after DNA damage. Moreover, after DNA repair is completed, histones

undergo deacetylation, and the chromatin structure becomes compact. Thus, this dynamic regulation by histone

acetylation is critical to the maintenance of genome stability.

2.2. Non-Histone Acetylation in the DDR

Non-histone acetylation has also been found to participate in the DDR process. When inducing DNA damage in

human cells, the acetylation of lysine 382 and phosphorylation of serine 392 in p53, a key DDR factor, can

significantly enhance the interaction between p53 and MDC1 and promote the recruitment of these two proteins to

DNA damage sites . In response to DNA damage, N-acetyltransferase 10, NAT10 (also known as HALP), a

member of the GNAT family, translocates to the nucleoplasm, promoting p53 acetylation at K120 with its

acetyltransferase activity and proteosome-mediated degradation of MDM2 with its intrinsic E3 ligase activity,

ultimately resulting in stabilizing p53 and p53-mediated cell cycle arrest and apoptosis . Tip60-mediated

acetylation, the DDR core kinase ATM also activates its kinase activity and subsequent checkpoint signaling upon

DNA damage, while Tip60 inactivation sensitizes cells to ionizing radiation .

Werner syndrome is a rare autosomal recessive disease caused by mutations of the WRN gene. When the lysines

K1127 and K1117 of WRN are mutated to arginine, cells may become sensitive to DNA-damaging agents such as

mitomycin C and etoposide, indicating defective DNA repair. In fact, these two sites are critical for the recruitment

of WRN to DNA damage sites .

Furthermore, the acetylation of proteins has also been found to be involved in the regulation of base excision repair

(BER). For example, acetylation of depuridine/depyrimidine endonuclease 1 (APE1; also known as APEX1), an

important regulator of BER, inhibits its interaction with XRCC1 when DNA damage occurs; resulting in decreased

APE1 activity. However, SIRT1 can deacetylate APE1, recovering its function . Additional acetylated non-histone

proteins involved in the DDR are summarized in Table 1.

2.3. Roles of HATs and HDACs/SIRTs in DDR
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Many HATs-mediated acetylations of histone and non-histone proteins directly or indirectly modulate DDR. KAT8

(hMOF), as a member of the histone acetyltransferase MYST family, can respond to DNA damage by catalyzing

the acetylation of H4 at K16 (H4K16) and p53 at K120 . KAT5 (TIP60) is also a member of the histone

acetyltransferase MYST family , and its regulatory role in DNA damage signaling  has been reported. It was

found that TIP60 can regulate the acetylation of a variety of histones (H2, H3, and H4) and non-histones (p53 

and ATM ). For example, TIP60 can acetylate the K15 position of H2A in response to DNA damage . It has

also been shown that Tip60 regulates the acetylation of H4 by forming a complex with transformation/transfer

domain-associated protein (Trrap) and then promotes DNA damage repair by HR . In addition, histone

acetyltransferases KAT3A (CBP) and KAT3B (p300) are structurally similar and participate in the regulation of

many functions in cells. In vitro enzyme activity test showed that CBP/p300 could acetylate all acetylation residue

sites of histone H2A and H2B, among which K14, K18, and K56 of H3 and K5 and K8 of H4 were preferentially

oxidized . Moreover, CBP can also regulate the acetylation of non-histones in cancer. In human colon cancer

cells, CBP can mediate the acetylation of K358 of DOT1L, which is positively correlated with the staging of colon

cancer . It was found that in vitro, acetyltransferase GCN5 can form a complex with its chaperone PCAF to

acetylate multiple lysine residue sites on histone H3, such as H3K9, H3K14, H3K18, and H3K23 . In

addition, PCAF can acetylate H1K85 in response to DNA damage .

On the other hand, HDACs/SIRTs-mediated protein deacetylation also plays an important role in DDR. In

mammals, SIRT1-7 has different subcellular localization, functions, and substrates and was initially identified as

histone and non-histone protein deacetylases . It was found that sirtuins can mediate the specific

deacetylation of histone lysine residues to facilitate DNA repair. In mammals, H3K56 will undergo hyperacetylation

upon inhibition of SIRT1 expression, leading to the instability of the S phase genome . It has also been reported

thatSIRT3, which is mainly located in mitochondria, will be transported to the nucleus to regulate the deacetylation

of H4K16ac in response to DNA damage . SIRT6 is an intranuclear deacetylase which plays an important

role in regulating DDR signal and genome stability. Its histone substrates include H3K9, H3K18, and H3K56. H3K9

deacetylation mediated by SIRT6 can protect telomeres in mammalian cells. On the contrary, the lack of SIRT6 will

lead to chromosome fusion due to telomere dysfunction . Similarly, in the nucleus, SIRT7 can catalyze the

deacetylation of H3K18ac at the late response to IR . In addition, HDAC1/2-mediated deacetylation of H3K56

and H4K16 also plays an important role in chromatin regulation . It was found that histone deacetylase was

rapidly recruited to the DNA damage site, leading to histone deacetylation, thereby promoting non-homologous end

joining (NHEJ) repair . Several studies have found that the levels of H3K56ac, H4K16ac, and H4K91ac will

increase after HDAC1 expression is inhibited, which is related to the decreased cell survival rate after treatment

with DNA damaging reagents .

In conclusion, the dynamic regulation of both histone and non-histone acetylation and deacetylation serves an

important function in the repair of DNA damage.

Table 1. Lipid metabolite associated PTMs in the DDR.
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Abbreviations: NA, not available; ESCO1, the establishment of cohesion 1 homolog 1; PFKFB3,

phosphofructokinase-2/fructose-2,6-bisphosphatase 3; WRN, Werner syndrome protein; MLH1, MutL Homolog 1;

RRM2, Ribonucleoside-Diphosphate Reductase Subunit M2; FEN-1, flap endo/exonuclease; RPA1, Replication

factor A protein 1; KAT, lysine (K) acetyltransferase family; DHHC, aspartate–histidine–histidine–cysteine family;

NMT, N-terminal myristoyltransferase family.

3. Acetylation in Cancer

3.1. HATs and Cancer

HATs are well known to be involved in tumorigenesis and cancer progression, with HAT activity being altered either

by gene mutations or viral oncogenes in both blood and solid cancers. For example, the interaction between

adenovirus SV40T antigen protein E1A and the co-activators p300 and CBP play a key role in cell transformation

. These HATs are then redistributed to the promoter regions of certain genes to promote cell growth,

differentiation, and the transcriptional activation of specific genes . Ambiguous p300 mutations can be found in

solid stomach, rectum, breast, and prostate tumors .

Modification Writers Erasers Readers Substrates in the DDR References

Acetylation
(histone)

P160,
P300/CBP

HDAC1-11,
YAF9, ENL,
AF9, Taf14,

H1K85  

TAFII230,
MYST,

SIRT1-7 Sas5(Yeats), H2AX K5, K36

GNAT, PCAF   PHDs
H3K4, K18, K56

H4K16
 

Acetylation
(non-histone)

GCN5, P300,
MYST19,

HDAC1-11   Tip60, APE1,  

KAT1, TAT1,
ESCO1-2

SIRT1-7,
LEF1, TCF1

NA

PFKFB3 K472,
OGG1, Cdc25A,

P53K382/K120, WRN
K1117/K1127,
MLH1, RRM2
PARP1 K949,

Succinylation

NA
KDAC:
SIRT5,
SIRT7

NA H3K12, P53K120, H4K77,  

     
ACOX1(acyl-CoA oxidase

1), FEN1 K200, NPM1

Palmitoylation DHHC1-23 APT1-2 NA
Rap1-interacting factor

1(Rif1) C466/C473

N-
myristoylation

NMT1-2
SIRT1-3,

SIRT6
NA

Finkel-Biskis-Reilly (FBR)
v-fos

Crotonylation
P300/CBP,

MOF
HDAC1-3,
SIRT1-3

YEATS,
PHD

RPA1

[17][18][19][22]

[23][24]

[7][60][61][62]

[63][64]

[65][66][67][68]

[69][70]

[71]

[72]

[73]

[74]

[75]

[76][77][78]



Acetylation | Encyclopedia.pub

https://encyclopedia.pub/entry/34331 8/17

Tip60 is another HAT that is closely associated with tumorigenesis  and may be involved in the regulation

of DNA repair and the transcriptional activation of p53 and Myc . Decreased expression of Tip60 results in low

p53 acetylation levels and incomplete apoptosis signaling, which indicates transformation to a malignant tumor .

As a tumor suppressor protein, single allele deletion of human Tip60 is often found in head and neck tumors,

breast cancer, and lymphoma . In addition, Tip60 has also been found to inhibit Myc-mediated lymphoma

formation in B-cell lymphoma .

3.2. HDACs and Cancer

HDACs function in the opposite manner to HATs, regulating transcription by removing acetyl groups from lysine

residues of histone tails and other non-histone substrates. Thus, it stands to reason that they would also be

involved in cancer. Functional experiments have indicated that type I HDACs are mainly responsible for regulating

cell proliferation and apoptosis, while type II HDACs regulate cell metastasis and angiogenesis. For example,

inhibiting HDAC1 and HDAC2 in vitro can inhibit colon cancer cell proliferation . However, the inhibition of

HDAC3 suppresses the proliferation of colon cancer cells more substantially . In addition, inhibition of HDAC2

and HDAC3 is known to induce DDR and apoptosis after DNA damage.

Type II and IV HDACs are primarily localized in the cytoplasm and are mainly responsible for the deacetylation of

non-histone proteins. Previous studies have shown that inhibiting HDAC4 reduces colon cancer cell proliferation

and induces apoptosis . Furthermore, while the inhibition of HDAC7 in endothelial cells does not affect cell

growth and survival, it does inhibit cell metastasis and the formation of capillary-like structures in cancer .

Type II HDACs are mainly responsible for regulating angiogenesis, and inhibition of HDAC6 and HDAC10 results in

decreased VEGFR1 and two expressions .

Type III HDACs, also known as the sirtuins, share no sequence homology with other deacetylases. However, they

may also be involved in regulating the occurrence and development of tumors. Sirtuins induce the deacetylation of

a range of protein substrates, including histones, but also mediate ADP ribosylation. Furthermore, overexpression

of SIRT1, 2, 3, and 7 have been identified in many types of cancer . For example, overexpression of

SIRT1 is known to prevent apoptosis by regulating histone deacetylation, promoter methylation, and histone

methylation and inhibiting the transcription of tumor suppressor genes. This ultimately promotes cancer cell growth

by preventing cell senescence and differentiation, as well as the formation of tumor blood vessels by promoting the

growth of endothelial cells and preventing their aging . Interestingly, the expression of SIRT2 is absent in human

glioma cells, and re-expression of SIRT2 can reduce the ability of colony-stimulating factor formation of cells .

This suggests that, in some cases, Sirtuins also serve as tumor suppressors. At present, whether Sirtuins function

as oncogenes or as tumor suppressors remains controversial. However, it is clear that altered HDAC function plays

a corresponding role to that of HATs in the process of tumorigenesis and development.

3.3. Summary
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The extensive research conducted thus far on protein acetylation and the fact that abnormal acetylation is closely

associated with cancer has laid the foundation for the discovery of many novel epigenetic drug targets. Certain

HDAC inhibitors have been approved for cancer treatment, including romidepsin, panobinostat, and belinostat,

while more are being tested in clinical trials. However, most research exploring the potential for HAT inhibitors to

treat cancer is yet to enter clinical trials, leaving this treatment avenue in its primary stages. However, the

identification of new HAT subtypes and improved characterization of their roles and functions have provided more

potential treatment strategies. For example, curcumin, as a natural KATi, can inhibit the activity of p300/CBP and

so suppress the proliferation of a variety of cancer cells, thereby achieving anti-inflammatory and anti-tumor effects

. Moreover, as a small molecule derived from anacardic acid, MG153 also acts as a potential p300/PCAF

inhibitor and can suppress the proliferation of BCR-ABL-expressing cells, induce apoptosis, and resist DNA

damage . In addition, L002, a small molecule inhibitor of p300, has been shown to inhibit p300, PCAF, and

GCN5 activity in leukemia, lymphoma, and breast cancer cell lines . In conclusion, further research on both

HDAC and HAT inhibitors will likely prove very fruitful when developing novel treatments for cancer .
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