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1. Introduction

Xanthones are considered polyketide derivatives due to their biosynthetic precursor. They are aromatic oxygenated

heterocyclic compounds with a dibenzo-γ-pyrone scaffold, known as 9H-xanthen-9-one (Figure 1) . This molecule can

accommodate various substituents at different positions , making xanthones recognized as privileged scaffolds in

searching for new drugs .

Figure 1. Xanthone (9H-xanthen-9-one) core structure.

Xanthones are widely distributed in nature in higher plants, lichens, and fungi from terrestrial origins . In

addition, the marine environment, the least explored area of this planet, has also proven to be an invaluable source .

Many xanthones have been isolated from marine-derived fungi 

, which can be found in marine sediments and associated with other marine organisms 

. Marine environments, such as

temperature, salinity, and pressure, to which marine organisms are subject, sometimes force them to develop unique

defenses against the conditions in which they live . These unique defenses can lead to the biosynthesis of new

secondary metabolites, different from those synthesized by terrestrial sources . The chemically different/unique

structures allow xanthones to have important biological activities, such as cytotoxic ,

antibacterial , and antifungal  activities, giving them great potential as

natural products with medicinal value .

Therefore, the chemical uniqueness of marine-derived xanthones and the significant bioactivities support the idea that the

marine environment could be a valuable source of new hits, leads, and drugs . However, access to some marine

natural products may be difficult, and in some cases, isolation may yield small amounts of compounds . Different

techniques have been applied to increase the availability of the new natural compounds, which can be produced by

bacteria or yeasts, or through a chemical approach, such as laboratory synthesis . Synthetic routes can help to

overcome supply problems, but it is also very important since it allows the preparation of structures with different

substitution patterns relative to those provided by nature, which rise to the opportunity to generate new bioactive agents

. Bioinspiration is very useful in medicinal chemistry as it allows the selection of molecular structures to be used

as scaffolds and the strategy to follow for molecular transformations .
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2. New Marine Xanthones Isolated since 2010

Under the period covered by this research, several studies were carried out to identify biologically active marine

compounds, of which the xanthones stand out. Around 100 xanthones were isolated, from which 51 are considered new

natural compounds.

Nowadays, the isolation of xanthone derivatives from marine sources usually involves fermentation to increase the

compound’s final amount. Fermentation involves putting the fungi in a culture broth, which comprises all the nutrients,

such as glucose, iron phosphate, calcium carbonate, malt extract, and controlled pH , necessary for its growth. The

duration of fermentation can be variable but usually involve several days, at least 14 days and the highest 45 days .

Then, the cultured broth is filtered and extracted, most often, with EtOAc. This extract is subjected to a vacuum liquid

chromatography over a silica gel column , flash chromatography  or, most commonly, to normal column

chromatography (CC) , originating different fractions, which can be subjected to analysis by HPLC or TLC,

obtaining sub-fractions, or be directly purified to obtain pure compounds. Most of the xanthones herein referred to were

obtained after semi-preparative HPLC purifications of these sub-fractions. Naturally, the eluents and gradients used differ

depending on the extracts/fractions being analyzed. The most common eluents used are organic solvents mixtures, such

as n-hexane/CH Cl /MeOH , n-hexane/EtOAc , CH Cl /MeOH , gradient of petroleum ether/EtOAc 

, but mixtures of H O/MeOH can also be used successfully .

The new xanthone derivatives isolated include simple ones (Figure 2), mainly isolated from marine-derived fungi found in

marine sediments . These xanthones are usually highly substituted, with different

substituent patterns being the substituents found to be essential for four types; hydroxy, methoxy, methyl, and

methoxycarbonyl groups. It seems that the methoxy group is not common in bioactive marine xanthones , but yicathins

B (3) and C (4) (Figure 2), which were recently prepared by total synthesis , present such a group at C-8. Other

examples include xanthones bearing a 6-methoxy group (2) and (6) and 7-methoxy group (13) and (15) (Figure 2). On the

other hand, marine xanthones (14) and (16) present two methoxy groups, respectively, at C-3 and C-7 and at C-2 and C-7

(Figure 2).

Figure 2.

Marine xanthones with simple structures isolated for the first time from 2010 to 2021.

The more complex xanthones isolated during the covered period are depicted in Figure 3 and present the xanthone

skeleton fused with other rings. The most interesting examples include (2S,3aS,12cS)-8-hydroxy-2,6-dimethoxy-

1,2,3a,12c-tetrahydro-7H-furo [3’,2’:4,5] furo [2,3-c] xanthen-7-one (18), isolated from the marine fungus Aspergillus
versicolor and named oxisterigmatocystin D due to its similarity with the known oxisterigmatocystin C . Although the

similarities with oxisterigmatocystin C and other isomers were previously isolated, the researchers established the

stereogenic centers’ configurations and demonstrated that oxisterigmatocystin D is a new natural compound .

Compound (19), named monacyclione G, is another example isolated from Streptomyces sp. HDN15129 . Its

stereochemistry was confirmed by the NMR data mainly through the correlations found in HMBC  and was established

as depicted in Figure 3.
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Figure 3. Marine xanthones with more

complex structures isolated for the first time from 2010 to 2021.

The most prevalent nucleus in these new marine xanthones is the 11-hydroxy-5-methyl-2-(prop-1-en-2-yl)-2,3-

dihydropyrano [3,2-a]xanthen-12(1H)-one, found in fourteen of the twenty-one new derivatives (Figure 3). Twelve marine

xanthones with this core were isolated from the fungus Aspergillus sp. ZA-01, respectively, aspergixanthones A-K (20–24
and 26–31) and the 15-acetyltajixanthone hydrate (25) (Figure 3) . Varioxiranols F (37) and G (38) (Figure 3) were

isolated from the Emericella variecolor, a fungus associated with a Cinachyrella sp. Sponge .

The aspergixanthones (20–24, 26 and 27) and the 15-acetyltajixanthone hydrate (25) have a 3-hydroxy-3-methylbutyl

moiety at C-8, whereas the remaining aspergixanthones (28–31) have at the same position a 3-methylbut-3-en-1-yl

substituent (Figure 3), in both cases, hydroxy, methoxy or acetyloxy groups at C-1′ and C-2′ are also present (Figure 3).

The last examples are xanthone derivatives bearing a 1,7,8,10-tetrahydroxy-11-methoxy-5,6-dihydro-9H-naphtho [2,1-

c]xanthen-9-one (32, 33) and a 1,9,14-trihydroxy-5,6-dihydro-8H-naphtho [2,1-b]xanthen-8-one nucleus (34–36) (Figure
3). Buanmycin (34) was extracted from a marine Streptomyces cyaneus , and the remaining examples, citreamicin θ A

(32), citreamicin θ B (33), citreaglycon A (36), and dehydrocitreaglycon A (35), were isolated from Streptomyces caelestis
.

In the last years, complex tetrahydroxanthone derivatives were also isolated (Figure 4) . Compounds (39–44),
named versixanthones A-F, were isolated from the fungus Aspergillus versicolor HDN1009 . Compounds (45, 46) were

isolated from the fungus Engyodontium album strain LF069  and the Tritirachium sp. SpB081112MEf2 a marine sponge

fungus . Finally, compounds (47–51) were also isolated from the fungus Aspergillus versicolor HDN1009 .

[14][17]

[28]

[52]

[19]

[23][26][27][40]

[27]

[26]

[40] [23]



Figure 4. Marine

tetrahydroxanthones isolated for the first time from 2010 to 2021.

Versixanthones A–F have a methyl (3R,4S,4aS)-1,4,8-trihydroxy-3-methyl-9-oxo-2,3,4,9-tetrahydro-4aH-xanthene-4a-

carboxylate moiety linked to a methyl (2′R,2″S,3″S)-5-hydroxy-2-(3-methyl-5-oxotetrahydrofuran-2-yl)-4-chromanone-2-

carboxylate (39, 41–43) and methyl (2′R,1″R,2″S)-5-hydroxy-2-(1-hydroxy-4-methoxy-2-methyl-4-oxobutyl)-4-

chromanone-2-carboxylate (40, 44). The main differences are the linkage between the two moieties since the researchers

establish the stereocenter configurations as equal in all isomers (Figure 4) .

Compounds (45, 46) represent two diastereomers fully characterized by Wu et al. in 2016 , although the isomers JBIR-

99 (45a) and JBIR-97/98 (46a) were previously isolated by Ueda et al. in 2010 . The absolute configuration of these

isomers and the engyodontochone A (46b) and B (45b) was established using NMR experiments and is depicted in

Figure 4 .

The final examples are the dimeric tetrahydroxanthones (47–51) isolated from the fungus Aspergillus versicolor HDN1009

and named versixanthones G-K (Figure 4) . The structure depicted in Figure 4, including the absolute configuration,

was established using NMR experiments.
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