

HiPSCs-Derived Exosomes

Subjects: **Pathology**

Contributor: Aline Yen Ling Wang

Exosomes have emerged as an important paracrine factor for iPSCs to repair injured cells through the delivery of bioactive components. Animal reports of iPSC-derived exosomes on various disease models are increasing, such as in heart, limb, liver, skin, bone, eye and neurological disease and so forth.

induced pluripotent stem cells

exosome

cell-free regenerative medicine

1. Introduction

Since Yamanaka et al. discovered the delivery of Oct3/4, Sox2, c-Myc and Klf4 into somatic fibroblasts using retrovirus systems, it has become clear that the fibroblasts can be reprogrammed into pluripotent stem cells and are thus defined as induced pluripotent stem cells (iPSCs) [1]. The discovery of this reprogramming technique won him a Nobel Prize in Physiology or Medicine in 2012. iPSCs possess regenerative properties and have the ability to differentiate into any cell lineage in the body. This property is similar to that of embryonic stem cells (ESCs), although iPSC generation does not face the ethical controversies associated with sources of ESCs. Cell sources for iPSC reprogramming include somatic fibroblasts, peripheral blood mononuclear cells and even mesenchymal stem cells such as adipose-derived stem cells. These are easier to harvest than embryos and do not involve ethical controversies. Therefore, the use of iPSCs has great promise in regenerative medicine [2]. For example, the overexpression of four pluripotent factors converts fibroblasts from diseased patients into iPSCs using reprogramming techniques. The mutated genes of diseased iPSCs can be repaired using the homologous recombination method and differentiated into therapeutic somatic cells and then sequentially transferred into diseased patients for cell therapy. In addition, iPSCs generated from healthy or diseased cells can also be used for the in vitro screening of drug candidates [3][4][5][6][7][8]. In consideration of the possibility of eliciting alloimmune responses towards allogeneic iPSCs, autologous iPSC-differentiated therapeutic cells are preferred for use in diseased patients. This shows great promise for precision and personalized medicine.

In addition to utilizing the regenerative property of iPSCs for disease treatment, iPSCs also produce some modulatory factors for the direct regulation of neighboring cells. iPSCs were demonstrated to upregulate nerve growth factors such as neurotrophic factor 3, promoting sciatic nerve recovery and regeneration [9]. These modulatory factors from iPSCs can be released in the form of extracellular vesicles, such as exosomes. Thus, iPSC-secreted exosomes inspire a therapeutic strategy without cell administration for diseased patients. Pluripotent factors were also demonstrated in iPSC-derived exosomes (iPSC-Exos), which have great potential for cell-free regenerative medicine. Recently, studies have shown that iPSC-Exos exhibit therapeutic efficacy in various disease models, suggesting that iPSC-Exos have great potential as an alternative therapy for diseases.

2. Exosomes

2.1. Biogenesis, Secretion and Delivery of Exosomes

Extracellular vesicles (EVs) play an important role in intercellular communication between cells and organs. EVs contain exosomes (diameter range: 60–180 nm), microvesicles (diameter range: 50–1000 nm) and apoptosomes (diameter range: 50–5000 nm) [10]. Exosomes are secreted by most cell types [11][12] and include a variety of proteins and nucleotides [13]. For example, injured organs secrete stimulatory signals to induce stem cells to produce healing RNAs and protein-containing exosomes, which facilitate the maintenance of tissue homeostasis. Exosome compositions are influenced by inflammatory signals such as lipopolysaccharide, tumor necrosis factor- α , interferon- γ and hypoxia. In addition, other physiological factors and cellular conditions also affect exosome release, such as intracellular levels of calcium, cellular energetics, membrane phospholipid components, membrane-acting enzymes, cytoskeleton–membrane interactions and other effectors of exocytosis, hypoxia and oxidative stress [14][15]. The exosomes are loaded with bioactive components for intercellular communication and then gradually mature as they are delivered into multivesicular bodies (MVBs) by inward budding [16]. This process prevents exosomes from degradation by cytoplasmic lysosomes. MVBs then fuse with the plasma membrane and are secreted into the microenvironment, as is the case for blood, amniotic fluid, breast milk and malignant ascites fluids [17]. Thus, exosomes contain distinct subsets of RNAs and proteins depending on the cell type from which they are secreted, making them useful for biomarker discovery.

In addition, circulating exosomes are also recognized by a variety of receptors on recipient cells which, after being taken up, receive the exosome cargo. Exosome uptake may occur through three mechanisms: endocytosis, ligand–receptor uptake and fusion. Exosome uptake mainly occurs by the endocytic pathway, which allows for fusion with the endosomal membrane or lysosomal targeting for degradation [18]. Endocytic pathways contain endocytosis and clathrin-independent pathways, such as phagocytosis, macropinocytosis, caveolin-mediated uptake and lipid raft-mediated internalization [19]. Ligand–receptor-mediated exosome internalization can specifically deliver bioactive components into target cells [20][21]. For example, ligand proteins expressed on the exosome surface, such as integrins, CD9, CD63 and CD81, are readily internalized by specific receptors on target cells and message delivery is mediated between cells through the release of exosome cargo into the cytoplasm or nucleus of the target cells [22]. Fusion-mediated exosome cargo delivery involves the fusion of the exosome with the cell membrane, releasing the cargo into the cytoplasm of the target cells [23].

2.2. Components of Exosomes

In general, the diameter range of exosomes is 60–180 nm and their major components are proteins, lipids and nucleic acids [24][25]. The architecture of exosome membranes is a lipid bilayer composed of high levels of sphingomyelin, cholesterol and phosphatidylserine. These unique lipid bilayer membranes of exosomes possess the ability to protect the bioactive components from degradation by cytosolic enzymes and enable the delivery of cargo into target cells [26][27]. Thus, exosomes are extracellular organelles that facilitate communication between cells and organs.

The most common proteins in exosomes include those from endosomes, the cytosol and cell membranes but do not include those from the cell nucleus, mitochondria, endoplasmic reticulum and Golgi complex. Four types of proteins make up the exosome membrane: tetraspanins, adhesion proteins, antigen presentation proteins and membrane transport and fusion protein. Tetraspanins have a function in exosome formation and secretion and include proteins such as CD9, CD63 and CD81 [28]. Adhesion proteins have a function in exosome maturation and target cell binding and include proteins such as integrins, intercellular adhesion molecule 1 (ICAM-1) and CD31. Antigen presentation proteins have a function in immune modulation, anergy and priming and include proteins such as major histocompatibility complex (MHC) classes I and II. Membrane transport and fusion proteins have functions in exosome biogenesis, secretion and downstream cell fusion, and include proteins such as SNAP, annexins and Ran5b. Thus, these four types of proteins can be used as markers for exosome characterization. In addition, enzymes and heat shock proteins are also included in exosomes. Nucleic acids such as DNA fragments, mRNA, microRNAs (miRNAs) and non-coding RNAs are found within exosomes as well [29].

3. Application of hiPSCs-Derived Exosomes in Diseases

3.1. Cardiovascular Disease

iPSC-Exos have been reported to serve as therapeutic agents, signaling mediators and pathogenic mediators in cardiovascular diseases. A previous study demonstrated that ESC-derived exosomes promote endogenous repair and enhance cardiac function following myocardial infarction (MI) [30]. In recent years, emerging studies have also shown the effective therapeutic effects of iPSC-derived exosomes in MI models. Wang et al. [31] isolated exosomes from mouse iPSCs and sequentially administered them in a mouse ischemic myocardium model with intramyocardial injection. miPSC-Exos showed cardiac protection against myocardial ischemia/reperfusion (MIR) injury. In vitro studies indicate that miPSC-Exos have anti-apoptotic and anti-oxidative effects, for example, protecting H9C2 cells against H₂O₂-induced oxidative stress by inhibiting caspase 3/7 activation. These cardioprotective effects were demonstrated to be associated with the delivery of protective miRNA such as Nanog-regulated miR-21 and hypoxia-inducible factor (HIF)-1 α -regulated miR-210 to H9C2 cardiomyocytes in vitro. Gao et al. [32] demonstrated that exosomes from human induced pluripotent stem cell-derived cardiomyocytes (iCM) also have cardioprotective effects in a swine MI model by the measurement of left ventricular ejection fraction, wall stress, myocardial bioenergetics and cardiac hypertrophy. These exosomes exhibited anti-apoptotic and angiogenic functions. In vitro studies also showed angiogenic and anti-apoptotic effects depending on increased endothelial cell tube formation and cardiomyocyte survival derived from iPSCs. Interestingly, exosomes from iCM improved myocardial recovery without increasing the frequency of arrhythmogenic complications, suggesting that iPSC-Exos may provide a cellular therapeutic option for myocardial injury. Santoso et al. [33] also used exosome therapy from iCM in a mouse MI model. iCM-Exos can significantly improve MI by reducing apoptosis and fibrosis. In vitro studies demonstrated the anti-apoptotic effects by reducing the apoptosis of iCM.

In addition, EVs derived from miPSCs, hiPSC cardiomyocytes, hiPSC cardiovascular progenitors and hESC cardiovascular progenitors significantly improved cardiac repair [34][35][36]. These EVs displayed the properties of angiogenesis, anti-apoptosis and the migration and delivery of cardioprotective miRNA for tissue repair.

hESC-CM-Exos and hiPSC-CM-Exos were further investigated and showed a similar exosome profile of abundant miRNAs, including several miRs associated with cardioprotection such as miR-1, miR-21 and miR-30 [37][38][39][40]. A comparative analysis showed a decrease in miR-22 expression in exosomes from cardiac fibroblast-derived hiPSCs compared with dermal fibroblast-derived hiPSC exosomes [41]. miR-22 is reported to be elevated in cardiac hypertrophy and remodeling [42]. miR-22 overexpression can induce cardiomyocyte hypertrophy. The specific loss of miR-22 in hearts blunted cardiac hypertrophy and cardiac remodeling in response to stress. Thus, miR-22 plays a critical role in the regulation of cardiomyocyte hypertrophy and cardiac remodeling.

CD82 is reported to function in exosome production [43] and it has been further demonstrated that CD82 contributes to cardiomyocyte differentiation from hiPSCs by attenuating the Wnt/β-catenin signaling pathway through exosomal regulation [44]. Wnt signal inhibition through the exosomal clearance of β-catenin from the cells is mediated by exosome-mediated β-catenin excretion [45]. The inhibition of the Wnt signal is associated with the differentiation of cardiomyocytes from mesoderm cells [46][47].

One study reported that exosomes from the serum of pediatric dilated cardiomyopathy (DCM) patients can induce pathological changes in gene expression in neonatal rat ventricular myocytes (NRVMs) and hiPSC-CMs [48]. This suggests that DCM serum exosomes mediate pathological responses in cardiomyocytes and may contribute to the disease process of pediatric heart failure. DCM serum exosomes may be used as a potential therapeutic target specific to DCM patients.

From these results, exosomes secreted from iPSCs or iPSC-derived cardiomyocytes both exhibit cardiac protective effects by the delivery of protective molecules into injured target cells that regulate apoptosis, inflammation, fibrosis and angiogenesis.

3.2. Liver Disease

Several studies have shown the hepatoprotective effects of exosomes from hiPSC-derived mesenchymal stromal cells (MSCs) against hepatic ischemia–reperfusion (I/R) injury. Nong et al. [49] and Du et al. [50] demonstrated that exosomes from hiPSC MSCs display hepatoprotective effects in rat and mouse hepatic I/R injury models, respectively. The hiPSC-MSC-Exos group showed a decrease in hepatocyte necrosis, sinusoidal congestion and the hepatocyte injury markers aspartate aminotransferase (AST) and ALT (alanine aminotransferase) compared with the control group. Nong et al. concluded that hiPSC-MSC-Exos ameliorate hepatic I/R injury, possibly via the suppression of inflammatory mediators such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), the attenuation of the oxidative stress response such as glutathione (GSH), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) and the inhibition of apoptosis such as caspase-3 and bax. Du et al. concluded that hiPSC-MSC-Exos could alleviate hepatic I/R injury by activating sphingosine kinase (SK1) and the sphingosine-1-phosphate (S1P1) pathway in hepatocytes to promote cell proliferation. Furthermore, the inhibition of the SK1 or S1P1 receptor completely abolished the protective and proliferative effects of hiPSC-MSC-Exos on hepatocytes. These results represent a strategy that could potentially promote liver regeneration and has implications for alternative therapeutic approaches to acute liver disease.

3.3. Limb Disease

In ischemic limb disease, Hu et al. [51] found that the intramuscular injection of exosomes from hiPSCs MSCs can attenuate mouse limb ischemia by observing enhanced microvessel density and blood perfusion, promoting angiogenesis. These exosomes could activate angiogenesis-associated molecule expression and promote human umbilical vein endothelial cell (HUVEC) migration, proliferation and tube formation. To further investigate the mechanism of exosome-mediated protection from limb ischemia, Ye et al. [52] isolated exosomes from hiPSC-derived endothelial cells (ECs) and intramuscularly injected them into a mouse ischemic hindlimb. They found that hiPSC-EC-Exos could induce HUVEC migration, proliferation and tube formation *in vitro* and enhance microvessel density and blood perfusion in ischemic limbs *in vivo*. As the underlying mechanism, it was demonstrated that hiPSC-EC-Exos contain high levels of miR-199b-5p and subsequently induce angiogenesis, with the observation of cell migration, proliferation and tube formation through the Jagged-1-dependent upregulation of vascular endothelial growth factor receptor 2 (VEGFR2) in human umbilical vein endothelial cells (HUEVCs). The function of miR-199b-5p was documented as angiogenesis and as an miRNA suppressor of Jagged1 in ovarian cancer [53][54]. hiPSC-EC-Exos enriched with miR-199b-5p enhanced VEGF2 expression and promoted VEGF2-induced angiogenesis through the inhibition of Jagged 1/Notch1 signaling-mediated VEGF2 suppression via the transcriptional suppressor hairy and enhancer of split 1 (HES-1).

3.4. Skin Disease

Several works have shown the effective application of iPSC-Exos in skin disease, such as wound healing. Zhang et al. [55] provided the first evidence for the potential of hiPSC-MSC-Exos in treating rat cutaneous wounds. The subcutaneous injection of hiPSC-MSC-Exos around rat wound sites resulted in accelerated re-epithelialization, reduced scar widths and the promotion of collagen maturity. Exosome treatment stimulated the proliferation and migration of human dermal fibroblasts and HUEVCs and increased type I and III collagen and elastin secretion in a dose-dependent manner *in vitro*. Their findings suggest that hiPSC-MSC-Exos can facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. Diabetic ulcer mice treated with exosomes from undifferentiated hiPSCs also had faster wound closure and healing rates, as demonstrated by the study of Kobayashi et al. [56]. Their exosomes had the ability to promote fibroblast migration and proliferation in an *in vitro* scratch assay.

To investigate the potential application of exosomes derived from iPSCs in human clinical trials, Lu et al. [57] treated exosomes derived from autologous and allogeneic rhesus macaque iPSCs in wounds and found evidence of accelerated skin wound healing in both groups, as demonstrated by wound closure, epithelial coverage, collagen deposition and angiogenesis. The exosomes promoted the cell viability of injured epidermal, endothelial and fibroblastic cells *in vitro*.

Macaque iPSC-Exos contained low levels of pluripotent mRNAs such as Oct4, Sox2, Klf-4 and Nanog, whereas they did not deliver pluripotency to host cells. A possible explanation for this was the transient presence of pluripotent mRNAs in exosome-receiving cells and the delivered mRNAs were not sufficient to be translated into a

detectable amount of pluripotent factors. Exosome-receiving cells thus did not have the reprogramming ability, suggesting that macaque iPSC-Exos carry no risk of forming teratomas. Moreover, allogeneic exosomes did not elicit lymphocyte infiltration into the skin lesion, as demonstrated by Western blot assay for the T-cell marker CD3, B cell marker CD20 and monocyte/macrophage marker CD68. This suggests that allogeneic iPSC-Exos may be the preferred choice for “off-the shelf” iPS cell-free products due to their mass production with no concern for teratoma formation. Allogeneic iPSC-derived exosomes may represent a promising alternative approach for disease therapy in addition to personalized medicine using autologous exosomes. Therefore, the potential application of allogeneic iPSC-Exos in various disease models needs more study and evidence.

3.5. Neurological Disease

iPSC-Exos were reported to serve as pathogenic mediators, therapeutic agents and biomarkers in neurological diseases. Alzheimer’s disease (AD) is characterized by the progressive accumulation of the aggregation-prone proteins amyloid- (A) and hyperphosphorylated-tau (p-tau) [58][59][60]. Winston et al. [61] demonstrated that exosomes derived from hiPSC neurons that express the repeat domain of tau P301L and V337M mutations (NiPSCEs) would induce pathogenesis in a wild-type mouse brain. The presence of tau inclusions throughout the brain, the increase in phosphorylated tau immunoreactivity and the extensive degeneration of neuronal dendrites in both the ipsilateral and contralateral hippocampi were observed in NiPSCEs-treated mice. This suggests that exosomes are sufficient to cause the long-distance propagation of tau pathology and neurodegeneration *in vivo*. To further understand the dysregulation of pathogenic exosomes, they were analyzed using proteomics and bioinformatics in the study of Podvin et al. [62]. They found that the expression of the P301L and V337M mutations of tau in human iPSC neurons results in the recruitment of distinct proteins to exosomes. mTau can be a dynamic regulator of the biogenesis of exosomes, resulting in acquisition, deletion and the upregulation or downregulation of protein cargo, causing pathogenic mTau exosomes to be capable of the *in vivo* propagation of p-Tau neuropathology in the mouse brain.

In addition, exosomes were demonstrated to regulate neurogenesis and neural circuit assembly in the study of Sharma et al. [63]. They examined the protein cargo and signaling bioactivity of exosomes released from hiPSC-derived neurons lacking methyl-CpG binding protein 2 (MECP2), a model of the neurodevelopmental disorder known as Rett syndrome, with exosomes released by isogenic rescue control neurons. Treating MECP2-knockdown human primary neurons with control exosomes reduces deficits in neuronal proliferation, differentiation, synaptogenesis and synchronized firing, whereas exosomes from MECP2-deficient hiPSC neurons lack this capability.

Aberrant hexanucleotide repeat expansions in C9orf72 are the most common genetic change underlying amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). RNA transcripts containing these expansions undergo repeat associated non-ATG RAN translation to form five dipeptide repeat proteins (DPRs). In spinal motor neuron cells derived from induced pluripotent stem cells from C9orf72-ALS patients, Westergard et al. found the cell-to-cell spreading of DPRs through exosome-dependent and -independent pathways, which may potentially be related to disease [64].

Bipolar I disorder (BP) is a serious, recurrent mood disorder that is characterized by alternating episodes of mania and depression. To investigate novel approaches for BP patients, iPSCs were generated from the skin samples of BP patients. Attili et al. established the iPSC model of BP using exosomes derived from iPSC astrocytes [65].

The therapeutic potential of EVs from hiPSCs was investigated in mouse and porcine stroke models by Webb et al. They found that iPSC neural stem cell EVs (iNSC EVs) can improve tissue and functional recovery in a mouse thromboembolic stroke model, possibly via the modulation of the systemic immune response [66]. iNSC EVs improved cellular, tissue and functional outcomes in middle-aged rodents, whereas iMSC EVs were less effective. Moreover, iNSC EVs improved motor function in the aged rodent as indicated by beam walking, instances of foot faults and strength as evaluated by the hanging wire test. In the porcine stroke model, where clinically relevant end-points were used to assess recovery in a more translational large animal model, iNSC EVs were found to significantly improve neural tissue preservation and functional levels in cases of post-middle cerebral artery occlusion (MCAO), suggesting that iNSC EVs may be a paradigm-changing therapeutic option for stroke [67].

Candelario et al. reported that two kinds of exosomes were found from different Parkinson's disease (PD) tissue sources [68]. One exosome was isolated from human neural progenitor (AHPN) cells from the substantia nigra of postmortem PD patients and the other was isolated from the leucine-rich repeat kinase 2 (LRRK2) gene identified in patient iPSCs. This suggests that exosomes can serve as biomarkers of idiopathic PD patients (AHPNs) and mutant LRRK2 PD patients.

3.6. Bone Disease

iPSC-Exos have been reported to serve as tissue engineering agents and therapeutic agents in bone diseases. Emerging evidence has shown that exosomes derived from iPSCs exhibit therapeutic effects for bone diseases such as bone defects, osteonecrosis and osteonecrosis (OA). Bone defects are generally caused by trauma, severe infection, tumor resection and skeletal abnormalities and constitute major challenges in orthopedic surgery, yet there is still no effective solution to this problem. Due to the combination of the advantages of MSCs and iPSCs and without immunogenicity for hiPSC-MSC-Exos, Qi et al. implanted exosomes into critical-size bone defects in ovariectomized rats [69]. Exosome treatment could dramatically induce bone regeneration and angiogenesis in critical-sized calvarial defects *in vivo*, enhance cell proliferation and alkaline phosphatase activity and upregulate the mRNA and protein expression of osteoblast-related genes in bone marrow MSCs *in vitro*. To further the study of the osteogenesis ability of exosomes, Zhang et al. combined hiPSC-MSC-Exos with tricalcium phosphate (β -TCP) to form scaffolds for the repair of bone defects [70]. The exosome/ β -TCP scaffolds could enhance osteogenesis compared with β -TCP scaffolds only via activating the PI3K/Akt signaling pathway.

In the osteonecrosis of the femoral head (ONFH), which was caused by local ischemia, Liu et al. demonstrated that hiPSC-MSC-Exos could prevent osteonecrosis by promoting angiogenesis [71]. The administration of hiPSC-MSC-Exos could significantly prevent bone loss and increase microvessel density in the femoral head *in vivo* and enhance the proliferation, migration and tube-forming capacities of endothelial cells *in vitro*, as demonstrated by the activation of the PI3K/Akt signaling pathway in endothelial cells.

In osteoarthritis (OA), Zhu et al. demonstrated that hiPSC-MSC-Exos have a better therapeutic effect on OA in vivo and better angiogenesis and migration and proliferation of chondrocytes in vitro than synovial membrane MSC-Exos [72].

3.7. Eye Disease

Corneal epithelial defects can cause corneal wounds and render the eye susceptible to infection, stromal ulceration, perforation and scarring, which lead to severe vision loss [73][74]. While there has been great progress in the treatment of corneal diseases such as supportive measures in the form of lubrication, antibiotics, bandage contact lenses and the amniotic membrane [75], corneal defect healing in the setting of severe corneal disease or damage remains challenging [76]. Wang et al. [77] found that hiPSC-Exos exhibited better therapeutic effects and promoted corneal epithelium defect healing in vivo. They also exhibited better in vitro effects on the proliferation, migration, cell cycle promotion and apoptosis inhibition of human corneal epithelial cells than treatment with hMSC-Exos. Both exosomes promoted cell regeneration by upregulating cyclin A and CDK2 to drive human corneal endothelial cells (HCECs) to enter the S phase of the cell cycle from the G0/G1 phase. A cell-free therapeutic strategy for treating corneal wounds and other ocular surface diseases could involve the use of iPSC-Exos dissolved in eye drops.

References

1. Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell* 2006, 126, 663–676.
2. Wang, A.Y.L.; Loh, C.Y.Y. Episomal Induced Pluripotent Stem Cells: Functional and Potential Therapeutic Applications. *Cell Transplant.* 2019, 28, 112S–131S.
3. Olgasi, C.; Cucci, A.; Follenzi, A. iPSC-Derived Liver Organoids: A Journey from Drug Screening, to Disease Modeling, Arriving to Regenerative Medicine. *Int. J. Mol. Sci.* 2020, 21, 6215.
4. Zahumenska, R.; Nosal, V.; Smolar, M.; Okajcekova, T.; Skovierova, H.; Strnadel, J.; Halasova, E. Induced Pluripotency: A Powerful Tool for In Vitro Modeling. *Int. J. Mol. Sci.* 2020, 21, 8910.
5. Li, J.; Hua, Y.; Miyagawa, S.; Zhang, J.; Li, L.; Liu, L.; Sawa, Y. hiPSC-Derived Cardiac Tissue for Disease Modeling and Drug Discovery. *Int. J. Mol. Sci.* 2020, 21, 8893.
6. Garcia-Leon, J.A.; Caceres-Palomo, L.; Sanchez-Mejias, E.; Mejias-Ortega, M.; Nunez-Diaz, C.; Fernandez-Valenzuela, J.J.; Sanchez-Varo, R.; Davila, J.C.; Vitorica, J.; Gutierrez, A. Human Pluripotent Stem Cell-Derived Neural Cells as a Relevant Platform for Drug Screening in Alzheimer's Disease. *Int. J. Mol. Sci.* 2020, 21, 6867.
7. Kouroupi, G.; Antoniou, N.; Prodromidou, K.; Taoufik, E.; Matsas, R. Patient-Derived Induced Pluripotent Stem Cell-Based Models in Parkinson's Disease for Drug Identification. *Int. J. Mol. Sci.* 2020, 21, 7113.

8. Ovics, P.; Regev, D.; Baskin, P.; Davidor, M.; Shemer, Y.; Neeman, S.; Ben-Haim, Y.; Binah, O. Drug Development and the Use of Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Disease Modeling and Drug Toxicity Screening. *Int. J. Mol. Sci.* 2020, 21, 7320.

9. Loh, C.Y.; Wang, A.Y.; Kao, H.K.; Cardona, E.; Chuang, S.H.; Wei, F.C. Episomal Induced Pluripotent Stem Cells Promote Functional Recovery of Transected Murine Peripheral Nerve. *PLoS ONE* 2016, 11, e0164696.

10. Barile, L.; Moccetti, T.; Marban, E.; Vassalli, G. Roles of exosomes in cardioprotection. *Eur. Heart J.* 2017, 38, 1372–1379.

11. Kishore, R.; Garikipati, V.N.S.; Gumpert, A. Tiny Shuttles for Information Transfer: Exosomes in Cardiac Health and Disease. *J. Cardiovasc. Transl. Res.* 2016, 9, 169–175.

12. Gao, L.; Gregorich, Z.R.; Zhu, W.; Mattapally, S.; Oduk, Y.; Lou, X.; Kannappan, R.; Borovjagin, A.V.; Walcott, G.P.; Pollard, A.E.; et al. Large Cardiac Muscle Patches Engineered From Human Induced-Pluripotent Stem Cell-Derived Cardiac Cells Improve Recovery From Myocardial Infarction in Swine. *Circulation* 2018, 137, 1712–1730.

13. van der Pol, E.; Boing, A.N.; Harrison, P.; Sturk, A.; Nieuwland, R. Classification, functions, and clinical relevance of extracellular vesicles. *Pharmacol. Rev.* 2012, 64, 676–705.

14. Maheshwari, S.; Singh, A.K.; Arya, R.K.; Pandey, D.; Singh, A.; Datta, D. Exosomes: Emerging Players of Intercellular Communication in Tumor Microenvironment. *Discoveries* 2014, 2, e26.

15. Turturici, G.; Tinnirello, R.; Sconzo, G.; Geraci, F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: Advantages and disadvantages. *Am. J. Physiol. Cell Physiol.* 2014, 306, C621–C633.

16. Taheri, B.; Soleimani, M.; Fekri Aval, S.; Esmaeili, E.; Bazi, Z.; Zarghami, N. Induced pluripotent stem cell-derived extracellular vesicles: A novel approach for cell-free regenerative medicine. *J. Cell Physiol.* 2019, 234, 8455–8464.

17. Rashed, M.H.; Bayraktar, E.; Helal, G.K.; Abd-Ellah, M.F.; Amero, P.; Chavez-Reyes, A.; Rodriguez-Aguayo, C. Exosomes: From Garbage Bins to Promising Therapeutic Targets. *Int. J. Mol. Sci.* 2017, 18, 538.

18. Fitzner, D.; Schnaars, M.; van Rossum, D.; Krishnamoorthy, G.; Dibaj, P.; Bakhti, M.; Regen, T.; Hanisch, U.K.; Simons, M. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. *J. Cell Sci.* 2011, 124, 447–458.

19. Mulcahy, L.A.; Pink, R.C.; Carter, D.R. Routes and mechanisms of extracellular vesicle uptake. *J. Extracell. Vesicles* 2014, 3.

20. Segura, E.; Guerin, C.; Hogg, N.; Amigorena, S.; Thery, C. CD8+ dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo. *J. Immunol.* 2007, 179, 1489–1496.

21. O'Loughlin, A.J.; Woffindale, C.A.; Wood, M.J. Exosomes and the emerging field of exosome-based gene therapy. *Curr. Gene Ther.* 2012, 12, 262–274.

22. Rana, S.; Yue, S.; Stadel, D.; Zoller, M. Toward tailored exosomes: The exosomal tetraspanin web contributes to target cell selection. *Int. J. Biochem. Cell Biol.* 2012, 44, 1574–1584.

23. Parolini, I.; Federici, C.; Raggi, C.; Lugini, L.; Palleschi, S.; De Milito, A.; Coscia, C.; Iessi, E.; Logozzi, M.; Molinari, A.; et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. *J. Biol. Chem.* 2009, 284, 34211–34222.

24. Colombo, M.; Raposo, G.; Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. *Annu. Rev. Cell Dev. Biol.* 2014, 30, 255–289.

25. Deng, H.; Sun, C.; Sun, Y.; Li, H.; Yang, L.; Wu, D.; Gao, Q.; Jiang, X. Lipid, Protein, and MicroRNA Composition Within Mesenchymal Stem Cell-Derived Exosomes. *Cell Reprogram* 2018, 20, 178–186.

26. Subra, C.; Grand, D.; Laulagnier, K.; Stella, A.; Lambeau, G.; Paillasse, M.; De Medina, P.; Monsarrat, B.; Perret, B.; Silvente-Poirot, S.; et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. *J. Lipid Res.* 2010, 51, 2105–2120.

27. Koga, Y.; Yasunaga, M.; Moriya, Y.; Akasu, T.; Fujita, S.; Yamamoto, S.; Matsumura, Y. Exosome can prevent RNase from degrading microRNA in feces. *J. Gastrointest. Oncol.* 2011, 2, 215–222.

28. Andreu, Z.; Yanez-Mo, M. Tetraspanins in extracellular vesicle formation and function. *Front. Immunol.* 2014, 5, 442.

29. Jeske, R.; Bejoy, J.; Marzano, M.; Li, Y. Human Pluripotent Stem Cell-Derived Extracellular Vesicles: Characteristics and Applications. *Tissue Eng. Part. B Rev.* 2020, 26, 129–144.

30. Khan, M.; Nickoloff, E.; Abramova, T.; Johnson, J.; Verma, S.K.; Krishnamurthy, P.; Mackie, A.R.; Vaughan, E.; Garikipati, V.N.; Benedict, C.; et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. *Circ. Res.* 2015, 117, 52–64.

31. Wang, Y.; Zhang, L.; Li, Y.; Chen, L.; Wang, X.; Guo, W.; Zhang, X.; Qin, G.; He, S.H.; Zimmerman, A.; et al. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. *Int. J. Cardiol.* 2015, 192, 61–69.

32. Gao, L.; Wang, L.; Wei, Y.; Krishnamurthy, P.; Walcott, G.P.; Menasche, P.; Zhang, J. Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine. *Sci. Transl. Med.* 2020, 12.

33. Santoso, M.R.; Ikeda, G.; Tada, Y.; Jung, J.H.; Vaskova, E.; Sierra, R.G.; Gati, C.; Goldstone, A.B.; von Bornstaedt, D.; Shukla, P.; et al. Exosomes From Induced Pluripotent Stem Cell-Derived Cardiomyocytes Promote Autophagy for Myocardial Repair. *J. Am. Heart Assoc.* 2020, 9, e014345.

34. Adamiak, M.; Cheng, G.; Bobis-Wozowicz, S.; Zhao, L.; Kedracka-Krok, S.; Samanta, A.; Karnas, E.; Xuan, Y.T.; Skupien-Rabian, B.; Chen, X.; et al. Induced Pluripotent Stem Cell (iPSC)-Derived Extracellular Vesicles Are Safer and More Effective for Cardiac Repair Than iPSCs. *Circ. Res.* 2018, 122, 296–309.

35. El Harane, N.; Kervadec, A.; Bellamy, V.; Pidial, L.; Neametalla, H.J.; Perier, M.C.; Lima Correa, B.; Thiebault, L.; Cagnard, N.; Duche, A.; et al. Acellular therapeutic approach for heart failure: In vitro production of extracellular vesicles from human cardiovascular progenitors. *Eur. Heart J.* 2018, 39, 1835–1847.

36. Barile, L.; Lionetti, V.; Cervio, E.; Matteucci, M.; Gherghiceanu, M.; Popescu, L.M.; Torre, T.; Siclari, F.; Moccetti, T.; Vassalli, G. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. *Cardiovasc. Res.* 2014, 103, 530–541.

37. Lee, W.H.; Chen, W.Y.; Shao, N.Y.; Xiao, D.; Qin, X.; Baker, N.; Bae, H.R.; Wei, T.T.; Wang, Y.; Shukla, P.; et al. Comparison of Non-Coding RNAs in Exosomes and Functional Efficacy of Human Embryonic Stem Cell- versus Induced Pluripotent Stem Cell-Derived Cardiomyocytes. *Stem Cells* 2017, 35, 2138–2149.

38. He, B.; Xiao, J.; Ren, A.J.; Zhang, Y.F.; Zhang, H.; Chen, M.; Xie, B.; Gao, X.G.; Wang, Y.W. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. *J. Biomed. Sci.* 2011, 18, 22.

39. Gu, G.L.; Xu, X.L.; Sun, X.T.; Zhang, J.; Guo, C.F.; Wang, C.S.; Sun, B.; Guo, G.L.; Ma, K.; Huang, Y.Y.; et al. Cardioprotective Effect of MicroRNA-21 in Murine Myocardial Infarction. *Cardiovasc. Ther.* 2015, 33, 109–117.

40. Roca-Alonso, L.; Castellano, L.; Mills, A.; Dabrowska, A.F.; Sikkel, M.B.; Pellegrino, L.; Jacob, J.; Frampton, A.E.; Krell, J.; Coombes, R.C.; et al. Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in beta-adrenergic signaling and enhances apoptosis. *Cell Death Dis.* 2015, 6, e1754.

41. Kurtzwald-Josefson, E.; Zeevi-Levin, N.; Rubchevsky, V.; Bechar Erdman, N.; Schwartz Rohaker, O.; Nahum, O.; Hochhauser, E.; Ben-Avraham, B.; Itskovitz-Eldor, J.; Aravot, D.; et al. Cardiac Fibroblast-Induced Pluripotent Stem Cell-Derived Exosomes as a Potential Therapeutic Mean for Heart Failure. *Int. J. Mol. Sci.* 2020, 21, 7215.

42. Huang, Z.P.; Chen, J.; Seok, H.Y.; Zhang, Z.; Kataoka, M.; Hu, X.; Wang, D.Z. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. *Circ. Res.* 2013, 112, 1234–1243.

43. Tsai, Y.C.; Weissman, A.M. Dissecting the diverse functions of the metastasis suppressor CD82/KAI1. *FEBS Lett.* 2011, 585, 3166–3173.

44. Takeda, M.; Kanki, Y.; Masumoto, H.; Funakoshi, S.; Hatani, T.; Fukushima, H.; Izumi-Taguchi, A.; Matsui, Y.; Shimamura, T.; Yoshida, Y.; et al. Identification of Cardiomyocyte-Fated Progenitors from Human-Induced Pluripotent Stem Cells Marked with CD82. *Cell Rep.* 2018, 22, 546–556.

45. Chairoungdua, A.; Smith, D.L.; Pochard, P.; Hull, M.; Caplan, M.J. Exosome release of beta-catenin: A novel mechanism that antagonizes Wnt signaling. *J. Cell Biol.* 2010, 190, 1079–1091.

46. Naito, A.T.; Shiojima, I.; Akazawa, H.; Hidaka, K.; Morisaki, T.; Kikuchi, A.; Komuro, I. Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. *Proc. Natl. Acad. Sci. USA* 2006, 103, 19812–19817.

47. Yamashita, J.K.; Takano, M.; Hiraoka-Kanie, M.; Shimazu, C.; Peishi, Y.; Yanagi, K.; Nakano, A.; Inoue, E.; Kita, F.; Nishikawa, S. Prospective identification of cardiac progenitors by a novel single cell-based cardiomyocyte induction. *FASEB J.* 2005, 19, 1534–1536.

48. Jiang, X.; Sucharov, J.; Stauffer, B.L.; Miyamoto, S.D.; Sucharov, C.C. Exosomes from pediatric dilated cardiomyopathy patients modulate a pathological response in cardiomyocytes. *Am. J. Physiol. Heart Circ. Physiol.* 2017, 312, H818–H826.

49. Nong, K.; Wang, W.; Niu, X.; Hu, B.; Ma, C.; Bai, Y.; Wu, B.; Wang, Y.; Ai, K. Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats. *Cytotherapy* 2016, 18, 1548–1559.

50. Du, Y.; Li, D.; Han, C.; Wu, H.; Xu, L.; Zhang, M.; Zhang, J.; Chen, X. Exosomes from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells (hiPSC-MSCs) Protect Liver against Hepatic Ischemia/ Reperfusion Injury via Activating Sphingosine Kinase and Sphingosine-1-Phosphate Signaling Pathway. *Cell Physiol. Biochem.* 2017, 43, 611–625.

51. Hu, G.W.; Li, Q.; Niu, X.; Hu, B.; Liu, J.; Zhou, S.M.; Guo, S.C.; Lang, H.L.; Zhang, C.Q.; Wang, Y.; et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. *Stem Cell Res. Ther.* 2015, 6, 10.

52. Ye, M.; Ni, Q.; Qi, H.; Qian, X.; Chen, J.; Guo, X.; Li, M.; Zhao, Y.; Xue, G.; Deng, H.; et al. Exosomes Derived from Human Induced Pluripotent Stem Cells-Endothelia Cells Promotes Postnatal Angiogenesis in Mice Bearing Ischemic Limbs. *Int. J. Biol. Sci.* 2019, 15, 158–168.

53. Liu, M.X.; Siu, M.K.; Liu, S.S.; Yam, J.W.; Ngan, H.Y.; Chan, D.W. Epigenetic silencing of microRNA-199b-5p is associated with acquired chemoresistance via activation of JAG1-Notch1 signaling in ovarian cancer. *Oncotarget* 2014, 5, 944–958.

54. Qu, X.; Chen, Z.; Fan, D.; Sun, C.; Zeng, Y.; Guo, Z.; Qi, Q.; Li, W. MiR-199b-5p inhibits osteogenic differentiation in ligamentum flavum cells by targeting JAG1 and modulating the Notch

signalling pathway. *J. Cell Mol. Med.* 2017, 21, 1159–1170.

55. Zhang, J.; Guan, J.; Niu, X.; Hu, G.; Guo, S.; Li, Q.; Xie, Z.; Zhang, C.; Wang, Y. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. *J. Transl. Med.* 2015, 13, 49.

56. Kobayashi, H.; Ebisawa, K.; Kambe, M.; Kasai, T.; Suga, H.; Nakamura, K.; Narita, Y.; Ogata, A.; Kamei, Y. Editors' Choice Effects of exosomes derived from the induced pluripotent stem cells on skin wound healing. *Nagoya J. Med. Sci.* 2018, 80, 141–153.

57. Lu, M.; Peng, L.; Ming, X.; Wang, X.; Cui, A.; Li, Y.; Wang, X.; Meng, D.; Sun, N.; Xiang, M.; et al. Enhanced wound healing promotion by immune response-free monkey autologous iPSCs and exosomes vs. their allogeneic counterparts. *EBioMedicine* 2019, 42, 443–457.

58. Fevrier, B.; Vilette, D.; Archer, F.; Loew, D.; Faigle, W.; Vidal, M.; Laude, H.; Raposo, G. Cells release prions in association with exosomes. *Proc. Natl. Acad. Sci. USA* 2004, 101, 9683–9688.

59. Ayers, J.I.; Giasson, B.I.; Borchelt, D.R. Prion-like Spreading in Tauopathies. *Biol. Psychiatry* 2018, 83, 337–346.

60. Frost, B.; Jacks, R.L.; Diamond, M.I. Propagation of tau misfolding from the outside to the inside of a cell. *J. Biol. Chem.* 2009, 284, 12845–12852.

61. Winston, C.N.; Aulston, B.; Rockenstein, E.M.; Adame, A.; Prikhodko, O.; Dave, K.N.; Mishra, P.; Rissman, R.A.; Yuan, S.H. Neuronal Exosome-Derived Human Tau is Toxic to Recipient Mouse Neurons in vivo. *J. Alzheimers Dis.* 2019, 67, 541–553.

62. Podvin, S.; Jones, A.; Liu, Q.; Aulston, B.; Ransom, L.; Ames, J.; Shen, G.; Lietz, C.B.; Jiang, Z.; O'Donoghue, A.J.; et al. Dysregulation of Exosome Cargo by Mutant Tau Expressed in Human-induced Pluripotent Stem Cell (iPSC) Neurons Revealed by Proteomics Analyses. *Mol. Cell Proteomics* 2020, 19, 1017–1034.

63. Sharma, P.; Mesci, P.; Carromeu, C.; McClatchy, D.R.; Schiapparelli, L.; Yates, J.R., 3rd; Muotri, A.R.; Cline, H.T. Exosomes regulate neurogenesis and circuit assembly. *Proc. Natl. Acad. Sci. USA* 2019, 116, 16086–16094.

64. Westergard, T.; Jensen, B.K.; Wen, X.; Cai, J.; Kropf, E.; Iacovitti, L.; Pasinelli, P.; Trott, D. Cell-to-Cell Transmission of Dipeptide Repeat Proteins Linked to C9orf72-ALS/FTD. *Cell Rep.* 2016, 17, 645–652.

65. Attili, D.; Schill, D.J.; DeLong, C.J.; Lim, K.C.; Jiang, G.; Campbell, K.F.; Walker, K.; Laszczyk, A.; McInnis, M.G.; O'Shea, K.S. Astrocyte-Derived Exosomes in an iPSC Model of Bipolar Disorder. *Adv. Neurobiol.* 2020, 25, 219–235.

66. Webb, R.L.; Kaiser, E.E.; Scoville, S.L.; Thompson, T.A.; Fatima, S.; Pandya, C.; Sriram, K.; Swetenburg, R.L.; Vaibhav, K.; Arbab, A.S.; et al. Human Neural Stem Cell Extracellular Vesicles

Improve Tissue and Functional Recovery in the Murine Thromboembolic Stroke Model. *Transl. Stroke Res.* 2018, 9, 530–539.

67. Webb, R.L.; Kaiser, E.E.; Jurgielewicz, B.J.; Spellicy, S.; Scoville, S.L.; Thompson, T.A.; Swetenburg, R.L.; Hess, D.C.; West, F.D.; Stice, S.L. Human Neural Stem Cell Extracellular Vesicles Improve Recovery in a Porcine Model of Ischemic Stroke. *Stroke* 2018, 49, 1248–1256.

68. Candelario, K.M.; Balaj, L.; Zheng, T.; Skog, J.; Scheffler, B.; Breakefield, X.; Schule, B.; Steindler, D.A. Exosome/microvesicle content is altered in leucine-rich repeat kinase 2 mutant induced pluripotent stem cell-derived neural cells. *J. Comp. Neurol.* 2020, 528, 1203–1215.

69. Qi, X.; Zhang, J.; Yuan, H.; Xu, Z.; Li, Q.; Niu, X.; Hu, B.; Wang, Y.; Li, X. Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats. *Int. J. Biol. Sci.* 2016, 12, 836–849.

70. Zhang, J.; Liu, X.; Li, H.; Chen, C.; Hu, B.; Niu, X.; Li, Q.; Zhao, B.; Xie, Z.; Wang, Y. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. *Stem Cell Res. Ther.* 2016, 7, 136.

71. Liu, X.; Li, Q.; Niu, X.; Hu, B.; Chen, S.; Song, W.; Ding, J.; Zhang, C.; Wang, Y. Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis. *Int. J. Biol. Sci.* 2017, 13, 232–244.

72. Zhu, Y.; Wang, Y.; Zhao, B.; Niu, X.; Hu, B.; Li, Q.; Zhang, J.; Ding, J.; Chen, Y.; Wang, Y. Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. *Stem Cell Res. Ther.* 2017, 8, 64.

73. Katzman, L.R.; Jeng, B.H. Management strategies for persistent epithelial defects of the cornea. *Saudi J. Ophthalmol.* 2014, 28, 168–172.

74. Wilson, S.E.; Medeiros, C.S.; Santhiago, M.R. Pathophysiology of Corneal Scarring in Persistent Epithelial Defects After PRK and Other Corneal Injuries. *J. Refract. Surg.* 2018, 34, 59–64.

75. Samaeekia, R.; Rabiee, B.; Putra, I.; Shen, X.; Park, Y.J.; Hematti, P.; Eslani, M.; Djalilian, A.R. Effect of Human Corneal Mesenchymal Stromal Cell-derived Exosomes on Corneal Epithelial Wound Healing. *Invest. Ophthalmol. Vis. Sci.* 2018, 59, 5194–5200.

76. Li, F.; Zhao, S.Z. Mesenchymal stem cells: Potential role in corneal wound repair and transplantation. *World J. Stem Cells* 2014, 6, 296–304.

77. Wang, S.; Hou, Y.; Li, X.; Song, Z.; Sun, B.; Li, X.; Zhang, H. Comparison of exosomes derived from induced pluripotent stem cells and mesenchymal stem cells as therapeutic nanoparticles for treatment of corneal epithelial defects. *Aging* 2020, 12, 19546–19562.

Retrieved from <https://encyclopedia.pub/entry/history/show/19193>