
Urban Remote Sensing with Spatial Big Data | Encyclopedia.pub

https://encyclopedia.pub/entry/43039 1/21

Urban Remote Sensing with Spatial Big Data
Subjects: Remote Sensing

Contributor: Danlin Yu , Chuanglin Fang

During the past decades, multiple remote sensing data sources, including nighttime light images, high spatial

resolution multispectral satellite images, unmanned drone images, and hyperspectral images, among many others,

have provided fresh opportunities to examine the dynamics of urban landscapes. In the meantime, the rapid

development of telecommunications and mobile technology, alongside the emergence of online search engines

and social media platforms with geotagging technology, has fundamentally changed how human activities and the

urban landscape are recorded and depicted. The combination of these two types of data sources results in

explosive and mind-blowing discoveries in contemporary urban studies, especially for the purposes of sustainable

urban planning and development. Urban scholars are now equipped with abundant data to examine many

theoretical arguments that often result from limited and indirect observations and less-than-ideal controlled

experiments. For the first time, urban scholars can model, simulate, and predict changes in the urban landscape

using real-time data to produce the most realistic results, providing invaluable information for urban planners and

governments to aim for a sustainable and healthy urban future. 

urban studies  remote sensing  spatial big data

1. Introduction

Remote sensing technologies have experienced unprecedented development over the past decades, thanks

primarily to sensor advancements and continuously increasing information infrastructure . One of the key

advancements in remote sensing technology development, and closely related to urban science, is object detection

from remote sensing images. After an intensive review of recent deep learning-based object detection progress, Li,

et al.  proposed a large-scale, publicly available benchmark for object detection in optical remote (DIOR) sensing

images, which contains 23,463 images and 192,472 instances, covering 20 object classes. The benchmark

established the baseline for scholars to develop and validate their own study, which is particularly useful in urban

science.

Clearly, while research in urban studies now primarily falls within the fields of environmental sciences and studies,

and focuses mostly on sustainable development, agenda, approaches, action plans, and strategic operations,

works that take advantage of the most recent developments in observational technology (remote sensing),

geotagged data generating platforms (spatial big data), and advanced spatiotemporal data analysis techniques

(such as spatial econometrics and Bayesian hierarchical spatiotemporal modeling, among many others) are only

starting to take off.
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2. Remote Sensing and the Advancement of Urban Science

In the early development stages of remote sensing technology, the term “big data” was not on the horizon. Back

then, applications of remote sensing technology were primarily for observation, change detection, and information

extraction, limited by the available spatial and temporal resolutions . The rapid development of various sensors

and the accumulation of remote sensing images in the recent decade, coupled with the recognition of us entering a

“big data” era, however, has greatly changed the ways remote sensing images are stored, processed, analyzed,

and utilized. In their study, Xu, et al.  regard remote sensing as a form of “big data” (remote sensing big data) and

proposed a modular framework attempting to connect the data (remote sensing images) and computation (big data

computation). This is especially effective with the advancement in computer science and computational capabilities

of today’s networked hardware and software environment. Consequently, Xu, et al.  argue that cloud computing

is an effective way to activate and mine large-scale heterogeneous data such as remote sensing big data. In

addition, Zhang, et al.  study suggests that deep learning algorithms are effective and efficient ways to process

and analyze remote sensing big data, including geometric and radiometric rectification and processing, cloud

detection and removal, data fusion, object identification and extraction, land-use and cover classification, change

evaluation, and multitemporal analysis. The coupling of remote sensing and big data starts off with a mutually

supportive relationship. While accumulative remote sensing images are undoubtedly a form of spatial big data,

spatial big data also extends its horizon to include data acquired from geotagged social sensing, in which the

sensors are none other than the people who are also part of the dynamic urban space complex.

2.1. Remote Sensing and Its Application to Urban Studies

The term, “urban remote sensing,” or, rather, applying remote sensing technologies to study urban phenomena and

urban environments, only appears in the late 1950s. Norman and colleagues started to explore the urban

environments in the late 1950s using aerophotos to interpret the social structure, human geography, and human

ecology of cities . A report submitted to NASA and the Geological Survey  attempted to use color infrared

aerial photos to analyze urban residential environments in the Los Angeles basin. As meticulously noted in their

report, the authors stated that applications of remote sensing techniques in urban studies were slower than in other

fields such as land use land cover change detection, water resource management, and forest management. They

argued that this was because of the “great diversity of the urban environment,” and the “complex nature of the

spatial relationships” among different urban elements. In addition, the remote sensing techniques at the time were

also limited by the available spatial and temporal resolutions of the remote sensing products that were typically

coarse for typical urban applications. Urban environments, unlike in other fields where remote sensing found lively

applications, require much smaller spatial and much shorter temporal resolutions to produce meaningful and

actionable study results.

Still, the sheer volume of information that is contained within the remote sensing products (even though most of

such products are in physical paper formats, and often produced by airplane-borne unstable sensors for urban

application), was very tempting for urban scholars, especially since such approaches provided timely and abundant

information that traditional approaches fall short on, such as large area land use change detection 
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, urban waterbody and green space extraction and mapping , urban environmental justice

evaluation , and urban heat island detection and mechanism studies ,

among many others.

2.1.1. Extracting and Analyzing Physical Environments of Urban Areas

Using remote sensing images (be it aerophotos or satellite borne sensed images) to detect land use land cover

change, detection of environmental condition changes, and monitor urban heat island phenomenon were among

the most obvious choices due to the different reflectivity in both panchromatic and multispectral bands of different

land use land cover types, and the thermal signatures under different temperatures.Common algorithms that

classify land use land cover , detect and monitor the general urban environments

, air quality assessment and pollution hotspot identification , and extract the

percentage of impervious surfaces  are widely applied in this aspect of

urban studies. This is understandable since the practices are a natural extension of applying remote sensing

techniques to study natural environments. However, urban areas are more fragmented, more complex, and

fluctuate more often and more irregularly than natural environments. Still, the newly developed machine learning

algorithms, such as random forest , support vector machine , neural network , deep

learning , and estimation techniques, including categorized and regression tree (CART) ,

geographically weighted regression , and Bayesian learning , among many others, provide an ever

increasing arsenal for urban scholars to take advantage of the growing remote sensing datasets, be it regular 30 m

spatial resolution multispectral images or sub-meter spatial resolution hyperspectral images. Undoubtedly, applying

remote sensing techniques to study urban environments, air quality assessment, and urban land use land covers

will continue to dominate the frontline of urban remote sensing scholarly activities.

2.1.2. Morphological Analysis of Urban Landscapes

Analyzing urban morphology and detecting urban spatial patterns from remote sensing data is straightforward, and

of particular importance for urbanization assessments. As noted in the studies by Zhu, et al. , an accurate

account of urban morphological features is “at the core of many international endeavors to address issues of

urbanization, such as the United Nations’ call for Sustainable Cities and Communities” .

From the late 1980s onwards, urbanization has picked up its pace, especially in developing countries, due to

increased globalization and industrialization worldwide. One of the major issues of rapid urbanization, as

manifested in the developed world right after the Second World War, is the rapid and uncontrollable urban sprawl

that caused the urban centers to decline and suburban and exurban areas to emerge with spider-web-like highway

networks. Not only did the decline of urban centers exacerbate the deterioration of urban environments and

socioeconomic prosperity in the urban centers and the entirety of urban areas as a whole, but also the natural

environments that used to surround the cities fragmented. Natural habitats for many species, including endangered

ones, were disrupted, and pristine forests, wetlands, and waterbodies were infringed upon and polluted 

. Morphological analysis appears to be a powerful tool enabling urban scholars and practitioners to
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understand, monitor, model, and predict the extent of urban sprawl and the change of urban spatial structures 

.

2.1.3. Deducing Demographic, Social and Economic Characteristics of Cities

While a healthy urban environment and accurate account of urban morphology are surely critical for a sustainable

urban future, the urban complex is a myriad of intermingling environmental, social, demographic, economic, and

physical build-up, and unique land cover (impervious surface) elements, among many others. At the center of the

urban environment are the urban residents and all of the activities that are caused by or occurring around them. A

sustainable urban future only makes sense when there is a harmonic relationship and a virtuous relationship

between the urban dwellers and the urban environment. Scholars, especially those in the social science and

humanity fields of studies, also attempted to utilize remote sensing techniques in their respective domains. For

instance, using remote sensing techniques to estimate the population in an urban area was an early attempt to

capitalize on remote sensing images’ convenient accessibility and cost-effectiveness compared to a full-scale

census or even a 1% or 5% demographic survey (such as the American Community Survey conducted annually).

In recent years, other than the common multispectral remote sensing images, nighttime light images collected from

the US Defense Meteorological Satellite Program’s Operational Linescan System (OLS) sensor (from 1971–2011)

and the later NASA launched Suomi National Polar-orbiting Partnership (NPP) satellite and NOAA-20 satellite

(since 2018), which carried the visible infrared imaging radiometer suite (VIIRS) instrument and produced day/night

band (DNB) data, are attracting much attention in socioeconomic, demographic, and building environmental fields

of study. This is due to the fact that the intensity of various modern human activities in a place is closely related to

the amount of energy consumed there. Nighttime light emission provides an immediate proxy for the intensity of

energy consumption, hence a good proxy for a wide variety of human socioeconomic activities . In

addition, the new generation of nighttime light satellites with a much finer spatial resolution (130 m), like the luojia1-

01, are also providing much needed data that might be more suitable for urban studies . While nighttime

light remote sensing data have been available since the early 1970s, early studies often focused on using nighttime

light remote sensing data as a proxy to map the city  due to the relatively coarse resolution (2.7 km in

spatial resolution) and poor, inconsistent radiometric quality due to the lack of on-board calibration. The improved

spatial resolution (375 and 750 m depending on the band, and 130 m for the luojia1-01) and onboard radiometric

calibration for the VIIRS instrument greatly enhanced the application scope of nighttime light images in urban

studies. It was soon found that nighttime light data was a very promising data source in urban studies to estimate

population size , explore the urban socioeconomic landscape , estimate poverty ,

model urban morphology, expansion, and growth , and investigate urban energy exchange with

the environment , among many other things. This booming application of nighttime light data

in urban studies is understandable. While it is true that there are many sources of illumination during nighttime,

most notably moonlight and surface albedo, the light produced from various anthropogenic activities is the most

obvious and consistent information. The intensity and density of light distribution are directly related to the intensity

and density of human activities. For instance, Chen and Nordhaus  examined the usefulness of the VIIRS data

in the estimation of economic activity with both US states and metropolitan statistical areas (MSAs). Not
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surprisingly, with enhanced spatial resolution and wider coverage, their results suggested that high-resolution

VIIRS light data provides a better prediction for an MSA’s GDP than for state GDP. This suggests that lights may be

more closely related to urban sectors than rural sectors, hence better suited for urban-related studies. 

2.2. Social Sensing—A New Frontier of Remote Sensing and Interface with “Big
Data” Semantics

The term “social sensing” refers primarily to people’s ability to perceive and make inferences about what others

think and do in their own environments . In their edited seminal book, Social Sensing, Wang, et al.  define

social sensing to be a set of sensing and data collection paradigms where data are collected from humans or

devices on their behalf. In this definition, society as a whole (humans, or devices on their behalf) is the context and

object for sensing and sensing the means of data acquirement. This is viewed as a direct result of the proliferation

of social media and social network platforms such as Facebook, Twitter, LinkedIn, Sina Weibo, Google Search, and

Baidu Search, among others. The recent outbreak of the COVID-19 disease has further accelerated the use of

these social media platforms to facilitate data acquisition and database construction, which in turn provides

powerful means to fight back against the spread of the disease . Aggarwal and Abdelzaher  presented a

broad overview of social sensing and suggested that the growing availability of such socially sensed data provide a

natural way to predict and monitor individual as well as societal behaviors, trends, and patterns. The rise of social

sensing, coupled with the embedded geotag capabilities via embedded GPS of ever-increasingly available smart

devices, and the internet-enabled data sharing mechanism, enabled the arrival of a context-aware computing

environment, which proves to be particularly useful and relevant in urban studies .

It remains debatable whether social sensing is a type of remote sensing since remote sensing has traditionally

referred to information acquired from electromagnetic energy sensors that collect information generated by

electromagnetic energy. Social sensing, however, relies more on individual perceptions and observations of their

environments and is facilitated by the rapidly developed telecommunication technology and widely available

personal mobile devices with geotagged social medial platforms. In their research, Liu, et al.  regarded each

individual who supplied information via social media platforms as playing a “role of a sensor,” which might be

analogous to the electromagnetic energy sensors as in traditional remote sensing. This analogy bridges social

sensing with remote sensing, if not regarding social sensing as a form of remote sensing. In addition, they also

argued that social sensing information captures socioeconomic features well, while traditional remote sensing

information might need complex algorithms and conversions (such as using nighttime light data, high-resolution

images for impervious surfaces identification, etc.) to do so .

2.3. Limitations and Challenges of Remote Sensing in Urban Science

While applauding the integration of remote sensing data sources as a great jump in urban studies/science, it is also

acutely recognized in especially the urban scientific scholarly community that there exist significant challenges in

this new frontier. As pointed out in the early studies by Mullens Jr and Senger , spatial resolution is a big hurdle

in applying remote sensing technologies to urban science. The spatial resolution of remote sensing data
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determines the level of detail that can be obtained from an image. For example, satellite images with a low spatial

resolution may not be able to capture small-scale features, such as individual buildings or small patches of

vegetation. This limitation can be particularly challenging when studying urban areas, where high spatial resolution

is often needed to accurately capture the complex and heterogeneous urban environment. Admittedly, more recent

remote sensing sensors and equipment, including satellites and unmanned drones, are able to provide sufficient

spatial resolution for urban areas. However, the conundrum of cost, availability, and added noise with finer spatial

resolution could quickly amount to a grave challenge for urban scholars to effectively take advantage of this new

data source .

3. The Emergence of Big Data Thinking, and How Big Data
Supports Urban Studies/Science

3.1. The Big Data Era

While applying remote sensing information in urban studies has proven to be a long road to trek, the recent

buzzword, “Big Data,” seems to be naturally suited to studying urban phenomena from the onset. The essence of

big data is not necessarily a new concept, though the term was initially used in the early 1990s. From a broad

perspective, big data is only relative to the analytical approaches and means (hardware)—collectively the

computational capability. When the computing power was low, a dataset that could not be adequately analyzed by

the then computational capability was legitimately considered “big data” in the sense that it was too “big” to be

processed.

In the precomputer and premodern transportation and telecommunication era, data accumulation and analytical

power often went hand in hand in a parallel fashion. While we understood data could be potentially big, the data

that concerned us often was within an analytically manageable level. Alternatively, statistical approaches that

“sampled” the population satisfied the need to explore and understand the story behind the data. Such an

analytical paradigm changed dramatically during the globalization and high-speed, high-powered computational era

when clustered computation became increasingly popular for data management and analysis .

Accumulation of information was explosive, and, while the computational power and analytical power were also

growing, it was in no way parallel to the increased amount of information. As a matter of fact, the renowned urban

geographer, Batty  cited an anonymous source defining “big data” being “any data that cannot fit into an Excel

spreadsheet.” This is particularly true in urban science since the highly dynamic everyday urban events are now

able to be recorded, layered, assessed, analyzed, and incorporated into real-time decision making for a more

livable and sustainable urban environment . The development of the general idea of “big data” also

originated from constantly arising urban development and planning problems that could not be adequately handled

by conventional means , as noted in the seminal book by Mayer-Schönberger and Cukier .

3.2. Big Data Thinking
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It is generally agreed that there are roughly three phases of the concept and understanding of “big data” ,

based on how data is accumulated, stored, and analyzed. The first phase concerns primarily the structured content

of information, roughly covering the period from 1970–2000. It was directly linked to the long-standing domain of

database management. During this phase, data storage, extraction, and optimization techniques were the foci. The

prominent development in this phase was the transition from flat-file data storage to hierarchical data storage, to

the development of relational database management systems (RDBMS) which is still used today as a standard

data storage format to facilitate fundamental data analytics. Data warehousing, data mining through traditional

statistical analysis, and dynamic near-real time information updating via online dashboards and scorecards were

the primary activities in this phase of big data development.

The second phase of big data development started from the early 2000s to around 2010 when the internet and

relevant web applications produced enormous amounts of data. In addition, search engines including Yahoo ,

Google , and Baidu , among others, had also produced enormous amounts of web-based unstructured content.

Big data development in this phase, therefore, is concerned with primarily exacting regularities from the seemingly

irregular, unstructured data. For instance, many big internet commerce companies, such as Amazon , eBay , and

major online news agencies often analyzed customer behaviors through their click rate, content-viewing trends,

search logs, and even IP-address associated geographic locations to generate highly targeted, specific content

and recommendations for their customers. The massive increase of data resulting from fast-growing web traffic and

the wide reach of the internet globally during this phase demanded more advanced data analytical techniques.

Coupled with increased computational power, new network analysis, web mining, and spatiotemporal analysis

methods emerged rapidly during this phase.

The third phase of big data development was from 2010 until now. This is the phase when mobile devices (mobile

phones, tablets, and mobile workstations, among many others) dominated the consumer electronics market. In

2020, it was estimated that there were 10 billion devices that were connected to the internet . The emergence

of social media and mobile browsing and mobile devices’ constant connection to the internet, coupled with the

embedded GPS tracking device, enables us to collect enormous amounts of data regarding individual behaviors,

and movements, and even deduce individual health status, shopping preferences, and detailed daily activity

patterns. Not only are the numbers of mobile devices increasing, sensor-based and internet-enabled devices, such

as smart TVs, internet-enabled thermostats, smartwatches, and household appliances, all belonging to this so-

called “Internet of Things” (IoT), are also increasing in numbers rapidly. These devices generate huge amounts of

data almost constantly as well.

3.3. Big Data Supported Urban Studies/Science

Through a meta-analysis of 48 urban big data studies, Wang and Yin  identified the essential qualities of urban

big data. In a nutshell, urban big data focuses on refined spatiotemporal features and individual attributes at very

fine levels (a street block, a building, etc.), and also has the capacity and impact to depict, predict, and manage

cities through the complex interactions among individual data points and the collective trend such interactions

demonstrate. This investigation agrees well with Batty  insightful observation that “cities are complex systems
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that mainly grow from the bottom up, their size and shape following well-defined scaling laws that result from

intense competition for space.” The emergence of urban big data provides a much-needed means to support the

investigation of cities from the “bottom-up,” and supplies a pathway to evaluate and investigate the scaling laws. An

integrated urban theory is being gradually developed based on centuries of investigations of urban economics,

urban land use, urban spatial and social structures, and urban transportation systems. Understanding the urban

landscape and inherent urban growth dynamics requires indepth investigation facilitated by modern network

science, allometric growth theory, and fractal geometry. With the arrival of mobile devices, the IoT stirred “urban big

data” and infuses enormous information to facilitate the theoretical breakthrough of urban science as well as the

socioeconomic environments of cities . In the forum Dialogues in Human Geography, Batty  argues that the

arrival of urban big data represents a sea change in understanding what happens where and when in cities. This is

especially true with new methodological advancements for analyzing social sensing data for urban studies, such as

temporal signature analysis, text analysis, and image analysis . In addition, due to the dynamic characteristics

of urban big data, it is shifting the emphasis of urban studies from longer term strategic planning to short-term

thinking about how cities function and can be managed. This is evident in recently published big-data driven urban

studies; see  for a few examples.

Long-term planning, missions, and visions for urban development are critical for sustainable urban development, in

both socioeconomic and environmental aspects. Long-term perspectives, however, are an averaged accumulation

of short-term dynamics. The advent of urban big data and available means to acquire the data enable the in-depth

exploration and understanding of short-term dynamics of the everyday urban landscape. Studies of urban vibrancy

have recently seen booming growth as a response to this change, which provides a chance for long-term planning

to set a more practical goal based on everyday dynamics. In a recent study, Jia, Liu, Du, Huang and Fei  argue

that urban vibrancy plays an important role in evaluating the quality of urban areas and guiding urban construction.

The concept of urban vibrancy was proposed in 1961 by an American writer and urban activist, Jane Jacobs ,

in an attempt to oppose the then modernist urban planning efforts that overlooked and oversimplified the

complexity of human lives in diverse communities within cities. In her mind, cities are prosperous, healthy, and

sustainable only when their neighborhoods are vibrant and lively. Instead of intensive, large-scale, city-wide

“renewal” or formulated planning practices, she valued urban vibrancy that originated from individual urban

communities as an integrated part of a truly sustainable city. Her advocation for dense mixed-use development and

walkable streets has influenced later urban sustainable planning practices that focus on walkability and compact

city spatial development in the US. The purpose of the vibrant planning idea is to bring “people” together instead of

structured and formulated, grey, and impervious land uses that signify what cities used to be.

3.4. Big Data Facilitated Urban and Rural Integrated Development

In the recent trend of urban development, urban agglomeration  becomes a focus for many urban

scholars. One of the key features within an urban agglomeration is the integrated development of urban centers

and peripheral areas, including the rural area within the urban agglomeration . In this trend of study, spatial big

data plays an increasingly important role in facilitating integrated development in both urban and rural areas. For

instance, in 2010, Wang and Kilmartin  analyzed the call detail record data generated by mobile networks to
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reflect the dynamic behavior of humans across a range of temporal and spatial scales in Uganda. They examined

the responses of subscribers to an economic incentive program regarding the mobile calling rate and identified

distinctive patterns of rural and urban areas. More importantly, the analysis of the call detail record also reveals

heightened economic activities in both urban and rural regions in Uganda. The approach reflects an objective

spatial pattern that was naturally reflected in people’s daily activities based on their economic status. In another

study, Fang, Yu, Zhang, Fang and Liu  designed a web crawler to acquire 500,000 sets of geotagged Sina

Weibo data in the Greater Beijing area (Beijing–Tianjin–Heibei) to study the spatial linkage between various places

within the urban agglomeration. The results from analyzing the Sina Weibo data suggest a strong hierarchical

structure existed within the urban agglomeration with the three cities (Beijing, Tianjin, and Shijiazhuang). The

strongest linkage presents at the centers, however, the rural areas are loosely connected, even to the urban

centers. They contended that the application of spatial big data reveals the need for more strategies to integrate

urban and rural development for the healthy construction of vibrant urban agglomerations.

3.5. Limitations and Challenges of Applying Spatial Big Data in Urban
Studies/Science

Conceptually, the availability and understandability of spatial big data, especially the ones acquired from social

media platforms and global search engines, are easy to grasp. The meaning of such data and what it poses for

urban science is also intriguing and informative. The hurdle is how to dig the stories out of the massive amount of

information. With the increasing availability of spatial data from various sources, such as satellites, vehicle-bound

sensors, social media, and search engines, the amount of data that needs to be processed and analyzed has

grown exponentially. This requires significant computational resources and expertise, which can be a challenge for

researchers with limited access to these resources or limited training in processing the data . In

addition, with the increased amount of data, the need for appropriate data management and quality control is also

increasing. Spatial data can be complex and often requires pre-processing and cleaning before it can be analyzed.

This is a time-consuming and challenging task, particularly when dealing with data from multiple sources or when

integrating data from different spatial scales as is often required in urban studies .
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