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Not all venoms contain the same constituents; not all sensory neurons or other components of the nervous system

are vulnerable to the same peptide or enzyme; not all tissues and organs have the same innervation or

vulnerability to venom constituents; and, lastly, snakes have incredibly diverse venom proteomes, a diversity driven

by geographical and other environmental factors. Documentation of specific pain syndromes in greater detail in

future epidemiological studies of snake bite is also critical. 
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1. Introduction

A primordial fear shared by humankind is often heralded by the sudden onset of intense pain in a limb—the

beginning of envenomation and neurotoxicity from a snake bite. This is only the onset of what may be a complex

experience composed of fear, injury to limb and potentially loss of life. However, in the maelstrom of this event, the

cause and nature of the painful experience associated with envenomation may be as varied as the biochemical

and proteomic composition of the venom  to which the bitten are exposed. Acute local pain  can spread

systemically, experienced as headache , eye pain ,

chest pain , focal back pain , abdominal pain  or

generalized pain  that may last only during the immediate episode or can progress into chronic pain

syndromes such as migraine headache or complex regional pain syndrome (CRPS) . Given the

complex and seemingly unpredictable outcome in the matter of snake venom induced pain, it would be important to

understand the molecular mechanisms underlying this experience that subsequently dictate appropriate

treatments.

2. Location: Molecular Mechanisms of Venom Mediated Pain

2.1. Overview

The first paradigm of location concerns the molecular site of action that causes pain. The molecular composition of

venom obtained from snakes can be remarkably complex, composed of biogenic amines, enzymes, peptides, and

other substances to incapacitate their prey . The

reader is referred to a few recent excellent reviews for greater detail . Examples of such compounds
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include proteins, small molecular weight, non-enzymatic compounds, serine proteases, metalloproteinases,

phospholipase A , and 3-finger toxins . These

venom components or their enzymatic byproducts interact with a variety of receptors on Aδ and C pain fibers as

recently reviewed . The following subsections outline the likely mechanisms by which these venom

components inflict pain in a myriad of ways.

The paradigm invoked by the aforementioned is that the venom proteins presented do in fact inflict pain either

directly by stimulating specific receptors by binding to the receptors or locally generating compounds that bind,

remotely by stimulating receptors distant from the bite site, or indirectly by causing pain syndromes as a result of

ischemia or relentless muscle activation. While the administration of antivenom does attenuate pain syndromes in

areas remote from the bite site by binding to and neutralizing circulating and locally presented venom compounds,

tissue edema and relative tissue ischemia surrounding the bite site may prevent attenuation of pain secondary to

antivenom not being able to be delivered to the envenomation strike point. Individual classifications of venom

compound and molecular site of action are subsequently presented.

2.2. Small Molecular Weight, Non-Enzymatic Compounds (Direct Effects)

This category includes compounds such as biogenic amines (e.g., histamine, serotonin), kinins, eicosanoids, and

other peptides that bind to their specific receptors . These are found as preformed

substances in venoms to varying degrees  and likely contribute to the initial pain sensations

after being bitten. Most of these substances are rapidly metabolized in the envenomed tissues, circulation, or lung

by enzymes such as histaminase, monoamine oxidase, 15-hydroxyprostaglandin dehydrogenase, and cytochrome

450s. Thus, without ongoing generation, the aforementioned preformed small molecular weight compounds would

be expected to contribute to pain experienced at the bite site but not at distant sites, and only for a brief time. An

exception could be non-enzymatic proteins, such as those in the venom of Echis coloratus, that activate the

transient receptor potential vanilloid 1 (TRPV1) channel , which could leave the bite site without being degraded

to cause pain elsewhere in the victim. Nevertheless, and critically, the vast majority of venomous snake bites are

not as severe initially as they are in the minutes or hours that follow envenomation . When considered as a

whole, it is likely that the formation of these and other compounds via catalysis of the envenomed tissues by

enzymes contained in venom contributes to progressively increasing local pain. However, as the subsequently

described venom proteins are released into the circulation and cause pain in distant organs in a syndromic fashion,

it should be remembered that as end-organ inflammation increases, so does release of the aforementioned small

molecular weight compounds that may contribute to pain systemically. In summary, while preformed substances in

venom likely cause early pain, it is the subsequently described enzyme classes contained in venom that contribute

to pain at the bite site and in locations distant from the initial strike point.

2.3. Phospholipase A  (PLA ) (Direct Effects)

While these snake venom enzymes are perhaps most feared for their properties as preganglionic neurotoxins (β-

neurotoxins) that inflict apneic death , they also cause edema, tissue injury and, critically, pain 
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. PLA  activity catalyzes phospholipids in the bite site and beyond after release into the

circulation, resulting in formation of bradykinin, biogenic amines, prostaglandins, and other compounds that inflict

pain . For example, PLA  isolated from Crotalus durissus species venom has been

demonstrated to activate C fibers, resulting in the release of substance P, mast cell degranulation, and finally,

release of histamine and serotonin . A similar release of substance P and bradykinin was observed following the

use of a secretory PLA  isolated from Naja mocambique mocambique venom in a model of acute pancreatitis .

In the same vein, a PLA  isolated from Micruruus lemniscatus, Lemnitoxin, was found to be a potent agent that

degranulated mast cells . A PLA  isolated from Bothrops atrox venom, BatroxPLA , caused release of IL-6 and

formation of prostaglandin E  (PGE ), leukotriene B  (LTB ), and cysteinyl leukotrienes (CysLTs) in mice .

Further, snake venom PLA  from Bothrops species also inflict pain via cellular release of adenosine triphosphate

and potassium . Of interest, a heteromeric toxin composed of a PLA  with minimal enzymatic activity with

Kunitz-like protein (MitTx) purified from the venom of Micrurus tener tener that activates acid-sensing ion channels

(ASICs) independent of enzymatic activity has been identified as a source of pain . Of equal importance, the role

of PLA  in the development of pain has been demonstrated by inhibition of these enzymes, which results in a

decrease in pain in vivo . For the interested reader, a more in-depth consideration of PLA  is recommended

. Thus, it is likely that PLA  significantly contribute to the pain syndromes subsequently presented.

2.4. Serine Proteases (Direct and Indirect Effects)

This class of snake venom enzyme is perhaps most notorious for inflicting coagulopathy following snake bite ;

however, these enzymes are also demonstrated to contribute to pain in more than one manner. Serine proteases

activate protease-activated receptor 2 (PAR2), which in turn generates pain in several settings . Using murine

models, human cancer cells secrete serine proteases that inflict pain when injected into the hind paw, and this pain

was reduced with serine protease inhibitors . In another investigation, the pain caused by injection of mice paws

with formalin, bradykinin, or PAR2-activating peptide was reduced in animals with PAR2 deletion . As for an

example with snake venom, serine proteases purified from the venom of Bothrops pirajai significantly contributed to

hyperalgesia in a murine paw bending model . A second mechanism by which serine proteases may inflict pain

is by causing regional arterial thrombosis via activation of coagulation , which would result in regional ischemic

pain. Examples of ischemic pain will be presented in detail in the following sections. In summary, serine proteases

likely play a significant role in envenomation associated pain.

2.5. Metalloproteinases (Direct and Indirect Effects)

Metalloproteinases also have a variety of proven or possible mechanisms by which they may contribute to snake

bite pain, and there are several examples found in the literature. A metalloproteinase purified from Bothrops atrox,

Batroxase, caused release of IL-6 and formation of PGE , LTB , and CysLTs in mice . Further,

metalloproteinases contained in Bothrops jararaca venom enhanced hyperalgesia in a murine model , as did a

purified metalloproteinase, BaP1, contained in Bothrops asper venom, via TNF-α and PGE -dependent

mechanisms . A final example is the hyperalgesic effect of a metalloproteinase, BpirMP, in a rat model that was

purified from the venom of Bothrops pirajai . As for other mechanisms, these enzymes have been associated
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with neuropathic pain, with cleavage of interleukin-1β resulting in the activation of microglial cells or astrocytes,

depending on the metalloproteinase involved . Further, similar to serine proteases, metalloproteinases are

capable of activating PAR2 . Lastly, this class of enzyme can exert potent procoagulant activity, resulting in

arterial thrombosis and ischemic pain .

2.6. Fasciculins (Indirect Effects)

Fasciculins, found in Dendroaspis species (mambas) venom, are a subclass of three-finger toxins that exert their

toxicity by causing uncontrollable fasciculations of skeletal muscle and subsequent paralysis and apneic death .

In addition to paralysis, fasciculations are painful, and continuous fasciculation can result in significant muscle

damage and pain after recovering from the snake bite despite mechanical ventilation and pharmacological

neuromuscular blockade . Fasciculins bind to circulating acetylcholinesterase and inactivate the enzyme,

allowing continuous exposure of the post synaptic membrane of neuromuscular junctions to acetylcholinesterase,

resulting in fasciculations . Similar pain, but to a far lesser degree, is observed postoperatively in muscular

patients after administration of succinylcholine during the conduct of anesthetic induction . This medication

briefly (1–2 min) depolarizes skeletal muscle to effect temporary paralysis to facilitate endotracheal intubation, and

the musculature is observed briefly to fasciculate . Therefore, it is not surprising that patients that survive a

mamba bite may complain of significant muscular pain afterwards . Thus, fasciculins are a unique indirectly

acting, pain-provoking agent in snake venom.

A diagrammatic and simplified summary of this section is provided in Figure 1. For a detailed review of the cellular

and molecular mechanisms of pain, the interested reader is referred to an excellent review .
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Figure 1. Location:

molecular mechanisms of venom mediated pain. Diagram of interactions of snake venom compounds and proteins

with nociceptive nerve endings and other key systems that result in pain. As explained in detail in the text, the

indicated compounds and proteins activate receptors either directly or via products of enzymatic catalysis. Further,

arterial thrombosis and ischemic pain remote from the bite are caused by serine proteases and metalloproteinases;

also, at neuromuscular junctions distant from the bite, fasciculins inactivate acetylcholinesterase activity, allowing

relentless activation of muscular activity via acetylcholine. AA—acetic acid; AChE—acetylcholinesterase; ASIC—

acid sensing ion channel; ATP—adenosine triphosphate; BaP1, Batroxase, BpirMP—examples of

metalloproteinases; BatroxPLA , Lemnitoxin—examples of PLA ; BDK—bradykinin; Ch—choline; CysLTs, LTB —

examples of leukotrienes; GPCR—G-protein coupled receptor; HIS—histamine; IL-6—interleukin 6; K —

potassium; K P—two-pore potassium channel; MitTx—a low activity PLA  molecule bound to a with Kunitz-like

protein that directly activates ASIC; P2X2/3—purinoceptors 2X2 and 2X3; PAR2—protease-activated receptor 2;

PGE —prostaglandin E ; RTK—receptor tyrosine kinase; and, TNF-α—tumor necrosis factor-α; TRP—transient

receptor potential channel.
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