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The innate immune system facilitates defense mechanisms against pathogen invasion and cell damage. Toll-like

receptors (TLRs) assist in the activation of the innate immune system by binding to pathogenic ligands. This leads to the

generation of intracellular signaling cascades including the biosynthesis of molecular mediators. TLRs on cell membranes

are adept at recognizing viral components. Viruses can modulate the innate immune response with the help of proteins

and RNAs that downregulate or upregulate the expression of various TLRs. In the case of COVID-19, molecular

modulators such as type 1 interferons interfere with signaling pathways in the host cells, leading to an inflammatory

response. Coronaviruses are responsible for an enhanced immune signature of inflammatory chemokines and cytokines.

TLRs have been employed as therapeutic agents in viral infections as numerous antiviral Food and Drug Administration-

approved drugs are TLR agonists. 
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1. Introduction

Toll-like receptors (TLRs) are central mediators of the innate and adaptive immune responses. The immune system

exhibits a defense mechanism for the host against pathogenic materials (exogenous and/or endogenous) at the cellular

level . Pattern recognition receptors (PRRs) including DNA sensors, RIG-1-like receptors, and TLRs are part of the

innate immune system that protects against microbial infection. PRRs recognize conserved pathogen-associated

molecular patterns (PAMPs) from microbes and endogenous danger-associated molecular patterns (DAMPs) produced by

necrotic cells . PAMPs are derived from viral, bacterial, parasitic, and fungal pathogens. The chemical nature of PAMPs

recognized by TLRs varies greatly among organisms. In phylogenetics, TLRs are considered the most ancient class of

PRRs. A large number of TLRs have been reported across a wide range of vertebrate and invertebrate species. The

signaling pathways and adaptor proteins related to TLRs are evolutionary conserved, from Porifera to mammals.

Moreover, similar domain patterns can be observed in most TLR homologs .

Viruses are responsible for initiating innate immunity through TLRs. Viruses, via a combination of small and unique

proteins, not only escape the innate immune system but also destabilize the paybacks of the virus . Similar to other

pathogens, viruses are sensed by TLRs. Some viruses encode unique proteins that target TLR signaling. The hepatitis C

virus encodes proteins that inhibit TLR-mediated signaling such as NS5A and protease NS3/4A , which inhibits MyD88

and cleaves TIR-domain-containing adapter-inducing interferon-β (TRIF), respectively. Moreover, the two vaccinia virus

proteins have been reported as inhibitors of the TLR system; for example, A52R was observed to inhibit TLR-mediated

NF-κB activation by targeting IRAK2 , whereas A46R exhibited a connection with TLR signaling downregulation by

employing Toll-interleukin-1 receptor (TIR) domain-containing adaptors . Intracellular TLRs not only sense viral and

bacterial nucleic acids, but also identify self-nucleic acids in cellular abnormalities such as autoimmunity .

A novel single-stranded RNA (ssRNA)-containing virus causes coronavirus disease (COVID-19), also referred to as

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which became a pandemic after the first case was

identified in Wuhan, China in December 2019. With the spread of COVID-19, the pandemic poses a global challenge 

. From a clinical point of view, the virus has various manifestations ranging from patients becoming critically ill with

acute respiratory distress syndrome to asymptomatic infection. In the intensive care unit, multiorgan support therapy has

been essential in almost every case of COVID-19 (Figure 1). The critical disease stage is typically observed at 7–10 days

of clinical infection . Hyperinflammatory outcomes (cytokine storm) are mainly associated with clinical impediments

and mortality . A possible treatment methodology in the form of vaccines is being employed for the prevention of SARS-

CoV-2 infection, but there is no operative therapeutic treatment option available.
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Figure 1. An overview of the SARS-CoV-2 infection pathway. During viral infection, immune cells are activated and

release several cytokines as required for the biological system. A high virus titer is associated with a cytokine storm, and

such dysregulation in the body of the patient may lead to multi-organ dysfunction syndrome. GIT—gastrointestinal tract.

Structurally, TLRs are type I transmembrane (TM) proteins with three distinct domains including an extracellular domain

(ectodomain) that contains tandem copies of leucine-rich repeats, a single-pass TM as well as a cytoplasmic TIR

downstream-signaling domain. TLRs experience either homodimerization or heterodimerization when encountering

PAMPs and/or DAMPs, and adaptor proteins are employed; subsequently, a complex cellular event of downstream signal

transduction is initiated, leading to the expression of inflammatory cytokines and interferons (IFN) that is observable at the

molecular level . The underlying TLR signaling cascades have been elucidated using structural, genetic, biochemical,

and in silico methodologies .

Downstream signaling is made possible by the presence of cytosolic TIR domain-adaptor proteins such as TRIF (also

known as TICAM1), TRAM (TICAM2), MyD88, and MAL . The involvement of TLRs with TIR adaptors leads to the

activation of cytosolic signaling complexes including IRAK and TRAF proteins. These entities are responsible for the

activation of transcription factors such as IRF and NF-κB. This executes the synthesis of type I IFNs and proinflammatory

cytokines . IRF7 is essential for IFN-α synthesis, NF-κB is necessary for TNF and IL-6 induction, and IRF3 and NF-κB

are required for IFN-β production .

2. Structure of Coronavirus

SARS-CoV-2, a member of the β-coronavirus genus in the family Coronaviridae, has an envelope and positive-sense

ssRNA genome of 29,891 nucleotides, encoding circular nucleocapsid proteins with 9860 amino acid residues . The

viral particle size ranges from 80 to 220 nm. Overall, 10 open reading frames (ORFs) have been identified in its genome

to date (approximately 26–32 kb). The first ORF (almost 2/3 of the viral RNA) encodes polyproteins 1a (ORF1a) and 1b

(ORF1b) . Furthermore, these ORFs are cleaved by proteases into 16 nonstructural proteins (NSPs) that are

responsible for genome replication and transcription . Structural proteins (SPs) are encoded by the remaining ORFs 

. The main SPs and NSPs of SARS-CoV-2 are summarized in Table 1 and Table 2, respectively. The name

coronavirus is derived from the appearance under the electron microscope, in which the presence of crown-like spikes on

the envelope resembles the corona of the sun . SPs form the viral envelope that holds the RNA genome, while NSPs

are expressed in host-infected cells but are not incorporated into virion infectious particles. These NSPs include various

transcription factors and enzymes such as RNA-dependent RNA polymerase (RdRp) and hemagglutinin esterase (HE).

Moreover, the virion employs enzymes such as RNA replicases and viral proteases to replicate itself .

Various SPs have been identified including the glycoprotein membrane (M), spike (S), small envelope (E), and

nucleoprotein (N), and other accessory proteins. M-glycoprotein is the most abundant, spanning the membrane bilayer

thrice . S-glycoprotein (150 kDa) is a type-I TM protein on the outer surface of the virus and is responsible for the
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binding of the virus to host cell receptors (ACE2). The S protein amino acid sequence of SARS-CoV-2 exhibits 86%

similarity to that of SARS-CoV . The S protein consists of oligosaccharides bound to serine amino acids through o-

glycosides. The three major segments of S protein are the ectodomain, TM, and intracellular regions. The intracellular

domain comprises the membrane fusion subunit S2 (trimeric stalk) as well as a short tail part known as the receptor-

binding S1 domain (RBD; three S1 heads) . Protein–protein interaction (PPI) between the human ACE2 and SARS-

CoV-2 S protein facilitates viral attachment as well as the cellular entry of coronaviruses; thus, small-molecule blockage of

these PPIs is a more inspiring therapeutic approach than inhibition via antibodies . The S1 subunit of the S protein

enables ACE2-mediated virus attachment, whereas the S2 subunit facilitates membrane fusion. Specifically, asparagine,

glutamine, serine, phenylalanine, and leucine residues present in the S protein boost ACE2 binding .

Moreover, N protein bound to nucleic acids is an important structural component of the virus, which is responsible for viral

replication and cellular response to infection in the host cellular machinery  (Table 1). The N protein comprises a

serine-rich linker region sandwiched between the N-terminal domain (NTD) and the C-terminal domain (CTD). These

termini are crucial for viral entry and processing in host cells. The CTD regulates nucleocapsid formation and the NTD

adheres to the viral genome in the form of orthorhombic crystals. Phosphorylation sites are also present in the linker

region, which control its function . In the case of SARS-CoV, the N protein enhances the activation of cyclooxygenase-2

(COX-2), resulting in the inflammation of pulmonary cells . Moreover, the N protein interacts with the p42 proteasome

subunit, which degrades the virion . This also disables type-I IFN, which is responsible for suppressing the host

immune responses produced by biological systems against viral infections . The interaction of the N protein with

heterogeneous nuclear ribonucleoproteins leads to increased viral RNA synthesis . The N protein sequence of SARS-

CoV-2 shows a 94.3% similarity to that of the SARS-CoV .

The smallest TM structural protein in coronaviruses is the E protein (Table 1), which comprises two different domains: the

NTD (1–9 residues) as well as a hydrophobic domain (10–37 residues), with a chain at the terminal (38–76 residues) 

. The E protein plays a crucial biological role, not only in the structural integrity of the virus, but also in host virulence

. The E protein sequence of SARS-CoV-2 shows a 96.1% similarity to that of SARS-CoV .

The M protein plays a crucial role in maintaining the shape of the viral envelope (Table 1). This function can be achieved

by interacting with other viral proteins that exhibit PPIs . The M protein is also known as the central organization of

coronavirus proteins. The binding of E to M produces the virus envelope, and this interaction is sufficient for the synthesis

and release of viruses . The binding of M with S is an important event for the retention of the S protein in the

endoplasmic reticulum–Golgi complex as well as its integration into new viruses . Moreover, the interaction of N with

M stabilizes the nucleocapsid (RNA–N protein complex) and the internal core of viruses, resulting in the completion of

viral assembly . The M protein amino acid sequence of SARS-CoV-2 exhibits a 96.4% similarity with that of SARS-

CoV .

Table 1. The structural proteins (SPs) of coronaviruses and their physiological significance.

Sr.

No.
SPs PDB ID Residues Physiological Significance Reference

1 E 7K3G 76–109
Virus assembly, morphogenesis, viral–host interaction,

membrane permeability

2 M 8CTK 220–260 Virus assembly, protein interactions (M–M, M–S, M–N)

3 N
6VY0,

6YUN
422 Abundant RNA-binding protein, virion genome packaging

4 S 6VYB 1273 Main antigen component, triggers the host immune response

Table 2. The non-structural proteins (NSPs) of coronaviruses and their physiological significance.
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Sr.

No.
NSPs PDB ID Residues Physiological Significance Reference

1 NSP1 7K3N 180
Protein synthesis, prevents antiviral activity of

host cells, degrades host mRNA

2 NSP2 7MSW 638
Genome replication, disruption of intracellular

host signaling

3
NSP3 (Papain-like

protease, PL )

7KAG,

6WEY,

6WUU, 7LG0

1945

Integral to viral replication, post-translational

processing of the two polyproteins,

suppresses host protein synthesis

4 NSP4 3GZF 500
Protects new replicated virions, replication and

assembly of viral structures in host cell

5
NSP5 (3C-like

protease, 3CL )
6LU7 306 Protein cleavage capacity (conserved feature)

6 NSP6 - 290
Induction of autophagosomes, inhibition of

viral components to reach host lysosomes

7 NSP7 7JLT 83

Primase complex (NSP7-NSP8), hetero-

oligomeric complex (NSP7-NSP8-RdRp), viral

replication

8 NSP8 7JLT 198

Primase complex (NSP7-NSP8), hetero-

oligomeric complex (NSP7-NSP8-RdRp), viral

replication

9 NSP9 6WXD 113
RNA synthesis, carries viral RNA to the host

cell, responsible for proliferation

10 NSP10 6ZPE 139

Cofactor activation for replicative enzymes,

complex NSP10-NSP14, viral RNA

proofreading

11 NSP11 - 13 Cleavage product of PP1a by 3CL /M

12

NSP12 (RNA

polymerase,

RdRp)

6YYT 932 RNA polymerase activity

13 NSP13 6JYT 601 Helicase activity

14 NSP14 7R2V 527
Viral RNA methylation, viral RNA proofreading,

methyltransferase activity

15 NSP15 6WXC 346 Endoribonuclease activity
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Sr.

No.
NSPs PDB ID Residues Physiological Significance Reference

16 NSP16 6WVN 298

Viral replication, immune response evasion

Viral RNA methylation, methyltransferase

activity

3. Overview of TLR Signaling

Invading pathogens stimulate the release of proinflammatory mediators in response to infection (Figure 1 and Figure 2).

Signaling networks are necessary for the protection of the host against invading microorganisms. TLR signaling

dysregulation plays a central role in the development and progression of infection. Inflammatory secretory molecules

including chemokines, ILs, IFNs, and tumor necrosis factor-alpha (TNF-α) are part and parcel of TLR signaling, resulting

in the modulation of cellular characteristics such as apoptosis, immune response, and proliferation . Mitogen-

activated protein kinases (MAPKs) and NF-κB are activated by TLRs. TLR3 and TLR4 are involved in the stimulation of

IRF3. In contrast, IRF7 is triggered by TLR7–9 . TLRs are stimulated by interactions with ligands to initiate an

intracellular downstream signaling cascade, leading to activation of the host defense system .

Figure 2. SARS-CoV-2 causes infection in the lungs mainly via DAMPs and PAMPs produced as a result of the action of

nearly all Toll-like receptors (TLRs). Only TLRs involved in virus sensing and/or signaling are displayed here.

The nature of the ligand and downstream adaptor molecules directs the TLR signaling cascade (Table 3). Two distinct

pathways play critical roles in TLR signaling: MyD88-dependent and -independent pathways  (Figure 2). The former

pathway employs all TLRs (except for TLR3), resulting in the biosynthesis of inflammatory cytokines . In contrast, the

latter pathway (also referred to as the TRIF-dependent pathway) involves TLR3 and TLR4, resulting in the expression of

IFN-I . In other words, the interaction of PAMP and PRR leads to the biosynthesis of proinflammatory cytokines as well

as IFN-1, which is a cellular indication of the immune response . Several negative regulators that enhance the

activation of the innate immune response are involved in TLR-dependent signaling cascades. Hence, the overactivation of
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TLRs can lead to the interruption of immune cell homeostasis, resulting in the risk of inflammatory disorders .

Consequently, inhibitors (antagonists) targeting these receptors and/or cascades can serve as novel therapeutics to treat

such disorders .

Table 3. Toll-like receptors (TLRs) and their physiological significance.

TLRs Ligand Recognition Form Localization
Adaptor

Molecules

Negative

Adaptors
Response Reference

TLR1
Triacyl lipopeptides,

soluble factors
Heterodimer Cell surface

MyD88,

Mal
-

NF-κB

activation and

proinflammatory

cytokines

TLR2

Hsp70, lipopeptide,

HCV, Nonstructural

protein 3

Heterodimer Cell surface
MyD88,

Mal
-

NF-κB

activation and

proinflammatory

cytokines

TLR3 dsRNA Homodimers
Endosomal

membrane
TRIF

SARM

negatively

regulates

TRIF

IRF activation,

production of

type 1 IFNs and

proinflammatory

cytokines

TLR4

Lipopolysaccharide,

Taxol, S protein of

SARS-CoV-2

Homodimers Cell surface

MyD88,

Mal, TRIF,

TRAM

SARM

negatively

regulates

TRIF and

TRAM to

consequently

reduce

inflammation

Activation of

NF-κB, pro-

inflammatory

cytokines, and

IFN-inducible

genes

TLR5 Flagellin Homodimers Cell surface MyD88 -

Activation of

NF-κB and

proinflammatory

cytokines

TLR6

Diacyl lipopeptides,

lipoteichoic acid,

fungal zymosan

Heterodimer Cell surface
MyD88,

Mal/TIRAP
-

Activation of

NF-κB and

proinflammatory

cytokines

TLR7

SARS-CoV-2

ssRNA,

imadozoquinoline

Homodimers
Endosomal

membrane
MyD88 -

IRF activation,

production of

Type 1 IFNs

and

proinflammatory

cytokines
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TLRs Ligand Recognition Form Localization
Adaptor

Molecules

Negative

Adaptors
Response Reference

TLR8
SARS-CoV-2

ssRNA  
Endosomal

membrane
MyD88 -

IRF activation,

production of

type 1 IFNs and

proinflammatory

cytokines

TLR9

Unmethylated

CPG-containing

ssDNA, hemozoin

from the malaria

parasite

Homodimers
Endosomal

membrane
MyD88 -

IRF activation,

production of

type 1 IFNs and

proinflammatory

cytokines

4. Role of Antiviral Drugs Employing TLRs

When a pathogen such as a virus invades, an antiviral immune response is evident in the host cells. Various conserved

molecular patterns of PAMPs have been identified. As discussed above, TLRs are the key constituents of the innate

immune system, and multiple TLRs (TLR1–4, TLR6–9) identify viral ligands . With respect to their functional

importance, TLRs might be potentially employed to treat not only inflammatory disorders but also viral diseases. This can

be explained by a deep insight into the positive and negative mediators of TLRs . TLR agonists lack accessory

molecules but can mimic natural ligands; hence, they exhibit a low molecular weight and have potential for expanded

pharmacokinetics and pharmacodynamics in comparison with the parent molecule. Moreover, TLR antagonists help to

deal with autoimmune and inflammatory disorders by defeating unnecessary inflammation, resulting in an antibody- or

cell-mediated response that suppresses disease progression .

Different approaches are employed by viruses in which they weaken their recognition by masking and/or increasing the

dysregulation of mediators. Viruses disturb TLR signaling through their own mechanisms. Thus, TLRs are largely involved

in the molecular interaction between viruses and host cells . Various PRRs are engaged in the response to viral

infection, which is also the case for TLRs. A thorough understanding of this interaction has facilitated the development of

various strategies to limit viral infection including antiviral immunity as well as therapeutics . Moreover, viral infection

activates TLRs to increase cytokine levels, resulting in an antiviral innate immune response. The interaction between

viruses and TLRs at every step of the signaling pathway plays an important role in developing effective antiviral therapies

as well as in identifying novel molecular targets for the advancement in antiviral drugs . The regulation of invasion,

replication, and immune responses is a significant factor in viral pathogenesis . Viral glycoproteins and NSPs released

in the extracellular region are responsible for the stimulation of TLR2 and TLR4 due to their presence on the cellular

surface . In contrast, TLR3, TLR7/8, and TLR9, which are present in the endosomal compartment, contain viral

double-stranded RNA (dsRNA) , ssRNA , and CpG DNA (unmethylated) , respectively.

TLR agonists have a positive effect on antiviral immunity and exhibit significant resistance against experimental infections

. The TLR–virus interaction involves a complex mechanism that is associated with the type of TLR as well as

the type of virus. Moreover, multiple PRRs are required to initiate an immune response to various viral infections.

Moreover, significant differences in TLR signaling have been reported between mice and humans. Therefore, therapeutic

manipulation of TLRs requires an understanding of human cellular immunity . Some examples are presented below.

TLR2 activation enhances the innate immune response to viral infections and can be used to treat viral respiratory

diseases. Using the shock-and-kill strategy, immune cell recognition is enhanced and latently infected cells are eliminated

. TLRs can be used to reverse HIV-1 latency and trigger innate immune responses. In an evaluation of the

effectiveness of SMU-Z1 (a novel TLR1/2 agonist), in addition to enhancing latent HIV-1 transcription (ex vivo), the NF-κB

and MAPK pathways were also targeted in cells . Latency-reversing agents have been employed for HIV reactivation,

resulting in enhanced immune activation . Dual TLR2/7 agonists were synthesized and characterized based on their

latency-reversing ability, which were found to effectively reactivate the latency. TLR2 components reactivate HIV by NF-κB

stimulation and the secretion of IL-22 (thereby enhancing the antiviral state and inhibiting HIV infection), whereas TLR7

components induce the secretion of TNF-α . The activation of TLR2 in vivo has been assessed against rhinovirus
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infection . Airway epithelial cells promote an extended immune response characterized by IFN-λ expression, NF-κB

activation, and lymphocyte recruitment, resulting in a reduction in viral-induced inflammation and continued antiviral innate

immunity .

TLR3 (the first identified antiviral TLR) in humans confers protective immunity against vaccinia virus (VACV) infection. In

contrast, TLR3 is responsible for the detrimental effects of VACV infection in mice and TLR4 has the same effect in

humans . The recognition of dsRNA by TLR3 is further evidence of the role of TLRs in the antiviral response 

. TLR3 signaling can be activated by a synthetic dsRNA agonist (a potent immune stimulant), resulting in

protective immunity against multiple viruses including coronaviruses . Viral-origin ssRNA sequences (rich

in GU- and AU-) are detected by TLR7 and TLR8, which are functionally similar and only differ with respect to their

expression patterns . TLR7/8 expression is evident in dendritic cells, monocytes, and macrophages . Additional

examples are listed in Table 4.

Table 4. Reported antiviral agonists employing Toll-like receptors (TLRs).

Drugs TLRs Viruses Significance References

Pam CSK TLR2 Parainfluenza Reduced virus replication

INNA-051 TLR2 SARS-CoV-2 Reduces viral RNA load

PIKA TLR3 Influenza A Reduces virus load

Poly ICLC TLR3 HIV Release of IFN-α/β/γ

NA6 TLR4 Norovirus Induction of IFN-β

MPL TLR4 VZV Stimulate cytokines

Flagellin TLR5 Influenza A Reduces virus replication

CBLB502 TLR5 ConA Activation of NF-κB

Pam CSK TLR6 Parainfluenza Reduces virus replication

INNA-051 TLR6 SARS-CoV-2 Reduces viral RNA load

GS-9620 TLR7 HIV Reactivates latency

Vesatolimod TLR7 HIV Modest delay in viral rebound

R848 TLR7/8 Zika Activation of NF-κB

GS-9688 TLR8 HBV Activation of dendritic and natural killer cells

ODN2395 TLR9 Parainfluenza Reduces viral replication

CBLB502—Entolimod; ConA—Concanavalin A; GS-9688—Selgantolimod; R848—Resiquimod; NA6—neoagarohexaose;

VZV—Varicella-Zoster virus.
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