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Microbial pigments play multiple roles in the ecosystem construction, survival, and fitness of all kinds of organisms.

Considerably, microbial (bacteria, fungi, yeast, and microalgae) pigments offer a wide array of food, drug,

colorants, dyes, and imaging applications.

Microbial Pigments  biological properties  fluorescent pigments

1. Introduction

The survival of life forms on earth is dependent on various pigments, including light-harvesting pigments like

chlorophylls, phycoerythrin, and phycobiliproteins ; harmful light-filtering pigments like proteorhodopsins ,

melanin’s, pyomelanin, pyocyanin, fluorescent proteins; predator defending pigments like aplysioviolin ,

cephalopods ink , Dendrobatidae frog toxins , microbial pigments and so on . The quantity, quality, and

attractiveness of pigments from various sources such as microbes, algae, invertebrates, and macro-organisms

may comprise either beneficial or toxic chemical constituents. Not all colors appealing to our eyes are beneficial to

humans. Therefore, investigations on the chemistry of pigment molecules are gaining more interest in the current

research. In 1666, Sir Isaac Newton had initiated the beginning of research on colors by developing the first

circular diagram of colors, and later various researchers like Harris (1776) and Goethe (1810). Sir Humphry Davy

demonstrated the causes of various colors of organic molecules . Later in 1820, Friedrich Accum revealed the

many side effects of synthetic colorants in various foods . Sir William Henry Perkin was the first man to develop

the first synthetic textile color compound “mauvine” in 1856. With this brief historical background, the visible

spectral pigments and invisible nonspectral pigments gain more attention due to numerous applications in ecology,

evolution, biomedical, and industrial perspectives. The international color symbolism chart indicates that each color

has a specific meaning in different countries and cultures. Despite numerous known applications, evidence shows

that visual pigments (color and light) can directly influence the brain , psychology , taste and flavor of humans

, and science communication . The lack of dietary pigments like carotenoids in our daily food intake may

lead to various diseases and in rare case death . Visual and food colorants are playing a significant role in

decision making in our life to choose different foods and many other things , through vision, flavor, olfaction,

gustation, and oral somatosensation ways .

Humans cannot see nonspectral colors due to a lack of trichromatic or tetrachromatic color vision-related cone

types in their eyes. A recent study demonstrated humming birds’ ability to perceive nonspectral colors via the

tetrachromacy phenomenon ; another example of categorical color perception was observed in Estrildid finches

. Numerous studies have been exploring the spectral pigments from microbes and higher organisms for various
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applications. Nevertheless, nonspectral pigments and their ecological importance in nature and biotechnological

applications are not well studied. Thus, studies on nonspectral pigments remain a research gap in the current

global science development scenario. Indeed, the planet earth is structured with visible and invisible micro and

macromolecules produced by prokaryotes and eukaryotes, regulating various physical, chemical, biological, and

geological processes. After going through a vast literature on microbial pigments, it is now understood that

microbes and macro-organisms produce varied pigment molecules with a specific purpose in the respective

milieus.

The resource of pigments, production rate, transport, price, sustainability, palatability, durability, effectiveness,

legislative and regulatory approval, and demand by consumers are the primary requisites for various

biotechnological applications in commercial industries. In this context, microbial pigments are attracting great

demand to develop food grade, textile grade, and drug grade natural pigments. The reasons for high demand for

microbial pigments are their promising unlimited resources, high production of required quantity of pigments, least

cost-effective, easy cultivation and can be harvested throughout the year, adaptability to various environments,

optimization, stability, genetic engineering, no side effects, eco-friendly, biodegradable, and indispensable

applications in multidisciplinary aspects such as ecological, evolutionary, biomedical, agriculture, and industrial

studies . Many microbes are known to produce a wide variety of pigment molecules with innumerable

biological properties and other industrial applications . Especially, natural pigments of microbial origin have

many advantages over synthetic pigments. Although artificial colors are more attractive and have been widely used

around the world market (42%) , they are found to have many side effects (e.g., teratogenic, cancer,

etc.) , and some are not biodegradable (e.g., textile dyes), causing health disorders to aquatic organisms

and humans . Hence, researchers are trying to find alternative physical, chemical, and biological methods

to degrade synthetic colors  to avoid the side effects posed to the public and environmental health.

Therefore, instead of developing synthetic colors and finding new methods for their degradation, exploring natural

pigments from microbes would bring about innumerable advantages for the public and the environment.

2. Classification of Pigments

Microbes display all kinds of color hues such as black, blue, bronze, brown, cream, grey, green, orange, purple,

indigo, pink, red, yellow, metallic green, red, yellow, and rainbow. These pigments can be classified into various

categories based on their visual, chemical, and spectral properties and source of origin (based on mobile genes)

. Based on visual appearance, prokaryotes and eukaryotes display monochromatic to polychromatic pigment

combinations within the Munsell color system. Some higher organisms like dragonfish  and hummingbirds 

exceptionally display or see colors beyond our visible spectrum and near-infrared spectrum. These incidents

suggest that humans lack nonspectral cones to perceive colors existing beyond the visible spectrum. Visually,

pigments represent the following phenomena on earth: (1) Natural pigments, (2) Bioluminescence, (3)

Fluorescence, and (4) Iridescence (structural colors), and (5) Non-spectral colors. Humans can perceive all the

color phenomena except non-spectral colors.
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Functionally, five different types of pigments are found in nature: (1) Biological pigments, (2) Fossil and

sedimentary pigments, (3) Mineral pigments, (4) Synthetic & identical natural pigments, and (5) Caramel pigments

(Figure 1). Biological pigments are derived from live microbes, plants, and animals. In contrast, fossil pigments are

indeed biologically originated but preserved in fossils for millions of years, acting as evolutionary evidence 

. In rare cases, fossil pigments can be of synthetic origin . Mineral pigments are inorganic insoluble

pigments used in artistic, cosmetic, archeological, and evolutionary studies . In contrast, synthetic

colorants are synthesized in the laboratory for food colorants and dyeing applications . Dozens of synthetic

colorants are being used in food and beverages . Caramel pigments are natural sugar-based colorants used

in a variety of food and beverage products. These caramel colors are classified into Caramel I, II, III, and IV

classes to fulfill the requirement of food systems . Solvatochromicity of these pigments varies according to the

extraction solvent.

Figure 1. A wide array of pigmented microbes seen in nature. The abundance of the type of pigmented bacteria is

depicted in bars based on the available literature. Rainbow bacteria are iridescent. Classification of pigments

based on various aspects of biochromes. Chlorophyll pigments are not included in the data as they are ubiquitous.

HGT: Horizontal gene transfer.

Based on chemical groups, microbial pigments are broadly differentiated into anthraquinones, carotenoids, indoles,

phycobiliproteins, prodigiosin, rhodopsins, melanins, and violacein . For understanding the evolutionary
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aspects, rhodopsins, melanins, and iridescent (structural) pigments are briefly discussed herein. Microbial

rhodopsins are light-harvesting photoproteins that bind to retinal and respond to light, which has evolutionary

importance. These rhodopsin are found in Archaea, bacteria, fungi, viruses , and some eukaryotes . Based

on the known functions, rhodopsins are classified as light sensors (rhodopsins, opsins), energy-conserving

transmembrane proton pumps (bacteriorhodopsins, proteorhodopsins, and xanthorhodopsins), and

transmembrane chloride pumps (halorhodopsins) . In Haloarchaea, a single cell can possess multiple rhodopsins

with varied functions . Melanins are biosynthetically, functionally, and structurally diverse pigments, including five

known groups of allomelanin, eumelanin, and neuromelanin pheomelanin, and pyomelanin . It is often easy to

isolate monochromatic pigment-producing microorganisms from different environments, but isolation of

polychromatic pigments producing bacteria such as Pseudomonas aeruginosa (blue and green pigments),

Streptomyces sp. (yellow, orange and brown)  and iridescent or shimmering bacteria (VIBGYOR) 

(https://www.hoekmine.com; accessed on 10 January 2021; Hoekmine BV, 2020) are rarely isolated. Structural

colors are also recorded in fossil feathers, suggesting the importance of evolutionary aspects .

In general, microbes possess innate pigment traits, but some non-pigmented microbes acquire pigment traits from

pigmented microbes (see the Section below: Horizontal Gene Transfer). For this reason, microbial pigments are

classified as innate pigments and acquired pigments. Often, pigmented microbes release diffusible and non-

diffusible pigments in culture media. However, rarely, some pigments are water-insoluble, for instance, blue

pigment indigoidine , red pigment , and violacein . Some pigments even do not dissolve in solvents; in

such incidents, resin extraction can be employed to extract pigments.

3. Functions of Microbial Pigments

Microbial pigments are known to play a variety of ecological functions in their milieus. (Figure 2). Antioxidant

properties of different microbial pigments are detailed in the supplementary file provided in the previous review

published in 2019 (see supplementary file) . Prodigiosin pigment produced by some strains of Vibrio sp. function

as photoprotectants against UV light . Violacein pigment of Janthinobacterium lividum and Chromobacterium

violaceum demonstrated antipredator activity against bacterivorous nanoflagellates, indicating its defensive

function . J. lividum associated with the skins of some frogs and salamanders, secretes violacein pigment to

protect them from pathogenic fungi, Batrachochytrium dendrobatidis . Phenazine compounds produced by

bacteria play multiple functions, including chemical signaling, biofilm formation, survival, and virulence .

Pyoverdine, a fluorescent yellow-green pigment, regulates iron transport and virulence functions in Pseudomonas

fluorescens . Tambjamine, a yellow pigment produced by Pseudoalteromonas tunicata , is suggested to help

its host prevent other predatory fouling organisms . Likewise, indigoidine, a blue pigment produced by

Phaeobacter strains, is suggested to inhibit competing bacteria in the environment . Bacterial melanin pigments

act as photoprotectants . For instance, Vibrio cholerae melanins serve as survival fitness factors

when physico-chemical factors become unfavorable . Some endophytic fungi releases anthraquinones, to

protect the host plant from damage due to insects and microbes ; while, fungal melanins demonstrate multiple

functions .
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Figure 2. Ecological functions and other applications of important microbial pigments.

Bacteriochlorophylls are photosensitizers (light harvesters) in photosynthetic bacteria but absent in non-

photosynthetic bacteria . Non-photosynthetic bacteria may utilize a self-photosensitization mechanism . In

photosynthetic and non-photosynthetic bacteria, carotenoids, the accessory photosynthetic pigments act as

photoprotectants and antioxidants, thus protecting cells from damage due to UV and sunlight illumination .

Bacterial communities in the air-water interface did produce more pigmentation to tolerate sunlight and are

relatively drug-resistant compared to non-pigmented bacteria . The extremophilic bacteria isolated from salt

lakes  and cold environments like Antarctica  adopt environmental stress with carotenoids and other

pigments. The yellow pigment of Thermus was proposed as a photoprotectant . Carotenoids of archaea ,

yeasts , cyanobacteria, and algae  also function as photoprotectants. Marennine, a blue pigment produced

by diatom Haslea is involved in greening on oysters , and displayed a prophylactic effect .
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