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Elevated concentrations of atmospheric carbon dioxide (CO2) and increased temperatures, carbon and nitrogen

metabolism will  affect the plant’s oxidative state in sunflower (Helianthus annus L.) plants

carbon metabolism  growth

1. Effects of Elevated CO  and Elevated Temperatures on
Sunflower Plants Growth

In general, elevated CO  levels, directly and indirectly affect plant growth and development, modifying numerous

physiological processes. Elevated concentrations of CO  tend to increase plant growth and produce large

quantities of biomass, especially C3 plants, since they provide additional C (fertilization effect) . Plant growth is

determined by cell division and expansion. These processes are coordinated and controlled during organogenesis

though a series of factors, including vegetable hormones, and they respond to environmental signals . An

elevated atmospheric CO  concentration level may positively influence cell division and expansion . Increased

cell expansion is associated with greater extensibility of the cell wall and increased activity of the enzymes that

fluidify the wall, such as xyloglucan endotransglucosylase (XET) . It has been found that in soy leaves and Betula

papyrifera, which are grown in a CO enriched environment, certain genes participating in the cell cycle (coding

histones) or fluidifying the cell wall (coding expansins and XET) increase their expression . It has been verified

that a major supplement of carbon at elevated CO  concentrations may contribute to accelerating cell division and

expansion in meristematic tissues and improves early plant growth and development . Sunflowers grown at

elevated CO  concentrations were shown to reveal improved growth, reflected in an increased specific leaf mass

(SLM), which refers to the dry weight of young leaves (16 days) . It is unclear whether or not this increased cell

cycle activity resulting from the increased CO  is due to the fact that the plant has more photoassimilates for

growth or whether it is because of the divergence produced in gene expression in response to the increased sugar

levels . However, in sunflower plants grown at elevated temperatures, a reduced growth has been observed, as

reflected when determining the SLM and area of the leaf as well as the soluble protein content . Elevated

temperatures negatively affect cell division as well as cell expansion since temperature is one of the main stresses

stimulating protein degradation and causing tissue senescence or death . Elevated CO  stimulates the root

and shoot growth of wheat, but this stimulation was found to reduce when plants were grown in combined elevated

temperature and elevated CO  . 

2. Elevated CO  Levels and Elevated Temperatures on
Carbon Metabolism in Sunflower Plants
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Elevated levels of CO  increase the photosynthetic rate; therefore, crop growth and productivity are increased .

It has been observed that an elevated concentration of CO  stimulates the photosynthetic fixation of CO , as well

as stoma transpiration and conductance in young sunflower plant leaves . Elevated levels of CO  concentration

increase the photosynthesis rate in C3 plants, since the Ribulose-1,5-bisphosphate carboxylase/oxygenase

(Rubisco) enzyme involved in the fixation process of CO  and photorespiration, is not saturated in the

environmental CO  concentration . Therefore, an increase in atmospheric CO  would increase the leaf’s level of

internal CO , as well as the CO /O  ratio, affecting the Rubisco and thereby favoring the carboxylation reaction as

compared with the oxygenation process. Elevated CO  concentrations may reduce the photorespiration process in

C3 plants and, therefore, the production of cellular hydrogen peroxide (H O ) derived from the metabolism of

glycolate . On the other hand, it has been shown that the efficiency of photosystem I and II (PSI and PSII)

increases at elevated levels of CO , producing more adenosine triphosphate (ATP) and reduced nicotinamide

adenine dinucleotide phosphate (NADPH) . In addition, increased efficiency in the use of light is observed as

a result of the increased flow of electrons between the PSII and PSI under circumstances of high CO  . Vicente

et al.  revealed an increased gene and protein expression related to light reactions of photosynthesis.

This stimulating effect of photosynthesis caused by elevated levels of CO  may be temporary, given the acclimation

of photosynthesis to elevated concentrations of CO , which initially stimulates the fixation of C but is followed by a

slow decrease in the C fixation process . Various studies have indicated that the acclimation of photosynthesis is

due to factors such as reduced content of Rubisco , the inhibition of the assimilation of C due to the

accumulation of non-structural carbohydrates that suppress the expression of genes related to photosynthesis 

, and a reduction in the concentration of nutrients, especially N in plant tissues, due to the inhibition of

photoassimilates of NO  . In Populus tremuloides and B. papyrifera in the presence of elevated CO , net

photosynthesis increased by 43–73% and the hexose ratio increased when compared with that of sucrose . This

was also observed in sunflower leaves . When cucumber plants were grown at high concentrations of CO  an

increase in the content of starch and soluble sugars was also observed in the leaf, as well as a decrease in the

content of nitrogen . However, the effect of the elevated CO  on the accumulation of hexose varied between

species , as did the sensitivity of the distinct plant tissues .

The plant growth and yield depend upon the species specific temperature optimum . An elevated temperature

conditions the rate of enzymatic reactions and modifies the structure and activity of macromolecules . In

addition, it is known that elevated temperatures modify the composition and structure of cell membranes,

increasing the fluidity of membrane lipids and decreasing electrostatic interactions between polar groups of the

proteins within the aqueous phase of the membrane and producing a loss of ions . Therefore, photosynthesis at

elevated temperatures is modified, since the thylakoid membrane is altered along with the thylakoid shape and

arrangement . On the other hand, high temperatures also cause photoinhibition of the PSII through the effect on

the oxygen emitter complex, which is destroyed by heat . The decreased photosynthetic rate may also be

due to the fact that elevated temperatures cause stomatal closure to prevent water loss, resulting in a decreased

exchange of gases between the leaf and the atmosphere . De la Mata et al. , attributed the lower net

photosynthesis to elevated temperatures in primary sunflower leaves, compared with a control group, causing a

reduction in photosynthetic pigments and partial stomatal closure. Greer and Weedon  observed that the
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average rates of photosynthesis of Vitis vinifera leaves decreased by 60% when temperatures increased from 25 to

45 ºC. This reduction in photosynthesis was attributed to 15–30% stomatal closure. The photosynthetic rate is also

determined by the capacity of carboxylation of Rubisco, which is highly dependent on temperature. Elevated

temperatures decrease the state of activation of Rubisco due to the inactivation of the Rubisco activase enzyme,

thereby affecting the carbamylation process of the Rubisco . When Rubisco acts as carboxylase,

products are frequently formed that prevent its activation, and these should be eliminated from the active site by

the Rubisco activase . Rubisco activase is relatively labile to heat ; therefore, its capacity to maintain

the Rubisco’s state of activation is expected to decrease with elevated temperatures. Plants expressing a more

thermotolerant Rubisco activase have higher net photosynthesis at elevated temperatures . On the other

hand, as the temperature increases, the rate of photosynthesis decreases, with the rate of photorespiration

increasing more rapidly . There are two reasons for this. First, as temperatures increase, Rubisco’s affinity for

CO  decreases compared with that of the O . Thus, the oxygenation reaction of the Rubisco is more frequent 

. Second, as the temperature increases, the O  solubility decreases more slowly than the CO  solubility .

Therefore, in warm environments, there is relatively more O  available to react with the Rubisco.

3. Elevated CO  Levels and Elevated Temperatures on
Nitrogen Metabolism in Sunflower Plants

Nitrogen is the mineral with the greatest impact in terms of limiting the primary growth and productivity of plants in

natural systems and in agriculture. In most soils, nitrogen tends to appear in the form of nitrate (NO ), since

ammonium (NH ), including that which is added to the soil as fertilizer, is rapidly oxidized to NO  by nitrifying

bacteria. In plants, nitric nitrogen converts into ammonium nitrogen, a process known as assimilatory reduction in

NO . The assimilation of NO  is regulated by endogenous and/or exogenous factors, such as NO , carbon

compounds, and light. NH  produced from the assimilatory reduction in NO , combined with that resulting from

other metabolic reactions, is added to the carbon compounds to synthesize nitrogenated compounds that the plant

uses for its growth .

Stitt and Krapp  initially assumed that some plant species required a higher rate of NO  assimilation to permit

increased plant growth under conditions of elevated CO  concentrations. However, it was found that

CO  enrichment inhibits the assimilation of NO  in sunflowers  as well as in wheat plants, Arabidopsis , and

field-grown wheat . The assimilation of NO  requires the reduced form of nicotinamide adenine dinucleotide

(NADH) in order for the nitrate reductase (NR) to catalyze the formation of NO  based on NO  Photorespiration

stimulates the release of malate from the chloroplasts and increases the availability of NADH in the cytosol,

thereby increasing the NR activity , which permits the first step in NO  assimilation . Elevated

CO  concentrations reduce photorespiration and thus, decrease the quantity of NADH available for the reduction in

NO  This may explain the decreased levels of NR activity observed in sunflower plants under conditions of

elevated CO  . However, six transporters from the Nar1 family are involved in the translocation of NO  from the

cytosol to the chloroplast in Chlamydomonas some of these transport both NO  as well as HCO  . Bloom et al.

 revealed that HCO  inhibits the entry of NO  in isolated chloroplasts of wheat and peas, indicating that an
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analogous system is operating in higher plants. Therefore, a decrease in the affluence of NO  to the chloroplast

may result from higher CO  levels, which may also explain the reduced glutamine synthetase (GS) activity

observed in sunflower plants grown under enriched CO  conditions . 

In sunflower plants grown at elevated CO  levels (800 μL L) and elevated nitrate availability (25 mM), the primary

leaves reveal an increased growth, photosynthetic capacity, assimilation of nitrogen, and antioxidant defenses

compared with plants grown at elevated CO  levels and limited nitrogen. This results in a delay in the leaf’s

senescence process, demonstrating that the induction of the senescence process is directly related to the C/N ratio

of the leaf . This C/N ratio should be balanced in order for the plant to be more productive. An elevated

CO  increases this ratio in plants due to the decrease in nitrogen content in the leaf . Sunflower plants that are

biofertilized via inoculation with mycorrhizal fungi (Rhizophagus irregularis) and are grown in environments of

elevated CO , and reveal a decrease in the C/N ratio compared with plants grown at elevated CO  levels and

without biofertilizers. 
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