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Elevated concentrations of atmospheric carbon dioxide (CO2) and increased temperatures, carbon and nitrogen

metabolism will  affect the plant’s oxidative state in sunflower (Helianthus annus L.) plants
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1. Effects of Elevated CO   and Elevated Temperatures on Sunflower
Plants Growth

In general, elevated CO   levels, directly and indirectly affect plant growth and development, modifying numerous

physiological processes. Elevated concentrations of CO   tend to increase plant growth and produce large quantities of

biomass, especially C3 plants, since they provide additional C (fertilization effect) . Plant growth is determined by cell

division and expansion. These processes are coordinated and controlled during organogenesis though a series of factors,

including vegetable hormones, and they respond to environmental signals . An elevated atmospheric

CO  concentration level may positively influence cell division and expansion . Increased cell expansion is associated

with greater extensibility of the cell wall and increased activity of the enzymes that fluidify the wall, such as xyloglucan

endotransglucosylase (XET) . It has been found that in soy leaves and Betula papyrifera, which are grown in a CO

enriched environment, certain genes participating in the cell cycle (coding histones) or fluidifying the cell wall (coding

expansins and XET) increase their expression . It has been verified that a major supplement of carbon at elevated

CO  concentrations may contribute to accelerating cell division and expansion in meristematic tissues and improves early

plant growth and development . Sunflowers grown at elevated CO   concentrations were shown to reveal improved

growth, reflected in an increased specific leaf mass (SLM), which refers to the dry weight of young leaves (16 days) . It

is unclear whether or not this increased cell cycle activity resulting from the increased CO  is due to the fact that the plant

has more photoassimilates for growth or whether it is because of the divergence produced in gene expression in response

to the increased sugar levels . However, in sunflower plants grown at elevated temperatures, a reduced growth has

been observed, as reflected when determining the SLM and area of the leaf as well as the soluble protein content .

Elevated temperatures negatively affect cell division as well as cell expansion since temperature is one of the main

stresses stimulating protein degradation and causing tissue senescence or death . Elevated CO  stimulates the root

and shoot growth of wheat, but this stimulation was found to reduce when plants were grown in combined elevated

temperature and elevated CO   . 

2. Elevated CO  Levels and Elevated Temperatures on Carbon Metabolism
in Sunflower Plants

Elevated levels of CO  increase the photosynthetic rate; therefore, crop growth and productivity are increased . It has

been observed that an elevated concentration of CO   stimulates the photosynthetic fixation of CO , as well as stoma

transpiration and conductance in young sunflower plant leaves . Elevated levels of CO   concentration increase the

photosynthesis rate in C3 plants, since the Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzyme involved

in the fixation process of CO   and photorespiration, is not saturated in the environmental CO   concentration .

Therefore, an increase in atmospheric CO  would increase the leaf’s level of internal CO , as well as the CO /O  ratio,

affecting the Rubisco and thereby favoring the carboxylation reaction as compared with the oxygenation process.

Elevated CO   concentrations may reduce the photorespiration process in C3 plants and, therefore, the production of

cellular hydrogen peroxide (H O ) derived from the metabolism of glycolate . On the other hand, it has been shown

that the efficiency of photosystem I and II (PSI and PSII) increases at elevated levels of CO , producing more adenosine

triphosphate (ATP) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) . In addition, increased

efficiency in the use of light is observed as a result of the increased flow of electrons between the PSII and PSI under

circumstances of high CO   . Vicente et al.  revealed an increased gene and protein expression related to light

reactions of photosynthesis.
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This stimulating effect of photosynthesis caused by elevated levels of CO  may be temporary, given the acclimation of

photosynthesis to elevated concentrations of CO , which initially stimulates the fixation of C but is followed by a slow

decrease in the C fixation process . Various studies have indicated that the acclimation of photosynthesis is due to

factors such as reduced content of Rubisco , the inhibition of the assimilation of C due to the accumulation of non-

structural carbohydrates that suppress the expression of genes related to photosynthesis , and a reduction in the

concentration of nutrients, especially N in plant tissues, due to the inhibition of photoassimilates of NO   .

In Populus tremuloides and B. papyrifera in the presence of elevated CO , net photosynthesis increased by 43–73% and

the hexose ratio increased when compared with that of sucrose . This was also observed in sunflower leaves .

When cucumber plants were grown at high concentrations of CO  an increase in the content of starch and soluble sugars

was also observed in the leaf, as well as a decrease in the content of nitrogen . However, the effect of the elevated

CO  on the accumulation of hexose varied between species , as did the sensitivity of the distinct plant tissues .

The plant growth and yield depend upon the species specific temperature optimum . An elevated temperature

conditions the rate of enzymatic reactions and modifies the structure and activity of macromolecules . In addition, it is

known that elevated temperatures modify the composition and structure of cell membranes, increasing the fluidity of

membrane lipids and decreasing electrostatic interactions between polar groups of the proteins within the aqueous phase

of the membrane and producing a loss of ions . Therefore, photosynthesis at elevated temperatures is modified, since

the thylakoid membrane is altered along with the thylakoid shape and arrangement . On the other hand, high

temperatures also cause photoinhibition of the PSII through the effect on the oxygen emitter complex, which is destroyed

by heat . The decreased photosynthetic rate may also be due to the fact that elevated temperatures cause

stomatal closure to prevent water loss, resulting in a decreased exchange of gases between the leaf and the atmosphere

. De la Mata et al. , attributed the lower net photosynthesis to elevated temperatures in primary sunflower leaves,

compared with a control group, causing a reduction in photosynthetic pigments and partial stomatal closure. Greer and

Weedon  observed that the average rates of photosynthesis of  Vitis vinifera  leaves decreased by 60% when

temperatures increased from 25 to 45 ºC. This reduction in photosynthesis was attributed to 15–30% stomatal closure.

The photosynthetic rate is also determined by the capacity of carboxylation of Rubisco, which is highly dependent on

temperature. Elevated temperatures decrease the state of activation of Rubisco due to the inactivation of the Rubisco

activase enzyme, thereby affecting the carbamylation process of the Rubisco . When Rubisco acts as

carboxylase, products are frequently formed that prevent its activation, and these should be eliminated from the active site

by the Rubisco activase . Rubisco activase is relatively labile to heat ; therefore, its capacity to maintain the

Rubisco’s state of activation is expected to decrease with elevated temperatures. Plants expressing a more

thermotolerant Rubisco activase have higher net photosynthesis at elevated temperatures . On the other hand, as

the temperature increases, the rate of photosynthesis decreases, with the rate of photorespiration increasing more rapidly

. There are two reasons for this. First, as temperatures increase, Rubisco’s affinity for CO  decreases compared with

that of the O . Thus, the oxygenation reaction of the Rubisco is more frequent . Second, as the temperature

increases, the O  solubility decreases more slowly than the CO  solubility . Therefore, in warm environments, there is

relatively more O  available to react with the Rubisco.

3. Elevated CO   Levels and Elevated Temperatures on Nitrogen
Metabolism in Sunflower Plants

Nitrogen is the mineral with the greatest impact in terms of limiting the primary growth and productivity of plants in natural

systems and in agriculture. In most soils, nitrogen tends to appear in the form of nitrate (NO ), since ammonium (NH ),

including that which is added to the soil as fertilizer, is rapidly oxidized to NO   by nitrifying bacteria. In plants, nitric

nitrogen converts into ammonium nitrogen, a process known as assimilatory reduction in NO . The assimilation of NO  is

regulated by endogenous and/or exogenous factors, such as NO , carbon compounds, and light. NH  produced from

the assimilatory reduction in NO , combined with that resulting from other metabolic reactions, is added to the carbon

compounds to synthesize nitrogenated compounds that the plant uses for its growth .

Stitt and Krapp  initially assumed that some plant species required a higher rate of NO   assimilation to permit

increased plant growth under conditions of elevated CO   concentrations. However, it was found that CO   enrichment

inhibits the assimilation of NO  in sunflowers  as well as in wheat plants, Arabidopsis  , and field-grown wheat .

The assimilation of NO  requires the reduced form of nicotinamide adenine dinucleotide (NADH) in order for the nitrate

reductase (NR) to catalyze the formation of NO  based on NO  Photorespiration stimulates the release of malate from

the chloroplasts and increases the availability of NADH in the cytosol, thereby increasing the NR activity , which

permits the first step in NO  assimilation . Elevated CO  concentrations reduce photorespiration and thus, decrease

the quantity of NADH available for the reduction in NO  This may explain the decreased levels of NR activity observed in

sunflower plants under conditions of elevated CO   . However, six transporters from the Nar1 family are involved in the
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translocation of NO  from the cytosol to the chloroplast in Chlamydomonas some of these transport both NO  as well as

HCO   . Bloom et al.  revealed that HCO   inhibits the entry of NO   in isolated chloroplasts of wheat and peas,

indicating that an analogous system is operating in higher plants. Therefore, a decrease in the affluence of NO  to the

chloroplast may result from higher CO   levels, which may also explain the reduced glutamine synthetase (GS) activity

observed in sunflower plants grown under enriched CO  conditions . 

In sunflower plants grown at elevated CO  levels (800 μL L) and elevated nitrate availability (25 mM), the primary leaves

reveal an increased growth, photosynthetic capacity, assimilation of nitrogen, and antioxidant defenses compared with

plants grown at elevated CO   levels and limited nitrogen. This results in a delay in the leaf’s senescence process,

demonstrating that the induction of the senescence process is directly related to the C/N ratio of the leaf . This C/N

ratio should be balanced in order for the plant to be more productive. An elevated CO  increases this ratio in plants due to

the decrease in nitrogen content in the leaf . Sunflower plants that are biofertilized via inoculation with mycorrhizal fungi

(Rhizophagus irregularis) and are grown in environments of elevated CO , and reveal a decrease in the C/N ratio

compared with plants grown at elevated CO  levels and without biofertilizers. 
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