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Computer vision (CV) is a field of artificial intelligence (Al) that deals with the automatic analysis of videos and
images. Recent advances in Al and CV methods coupled with the growing availability of surgical videos of

minimally invasive procedures have led to the development of Al-based algorithms to improve surgical care.

artificial intelligence surgery surgical data science

Al concepts and terms

Al is an umbrella term referring to the study of machines that emulate traits generally associated with human
intelligence, such as perceiving the environment, deriving logical conclusions from these perceptions, and
performing complex actions. Al applications in medicine are steadily increasing, and have already demonstrated

clinical impact in various fields including dermatology, pathology, and endoscopy.

Medical decisions are usually not binary, but highly complex and adaptable with regard to timing (i.e., oncological
treatment course, timing of diagnostic procedures), invasiveness (i.e., extent of surgery), and depend on available
human and technological resources. In most cases, such choices are made not only on the basis of logical rules
and guidelines, but also integrate professional experience. Given the plethora of variation possibilities, it would be
extremely complex, if not impossible, to explicitly program machines to perform complex medical tasks, such as
understanding free text in electronic health records to stratify patients or interpreting radiological images to make
diagnoses. However, the cornerstone of Al is the ability of machines to learn with experience. In machine learning
(ML), “experience” corresponds to data. In fact, ML algorithms are designed to iterate over large-scale datasets,
identify patterns, and optimize their parameters to better solve a specific problem. While the term strong or general
Al relates to the aspiration to create human-like intellectual competences and abstract thinking patterns, currently
available Al applications—not only in the field of medicine—are limited to very specific (and in many cases
simplified) problems, generally referred to as weak or narrow Al. In the last two decades, deep learning (DL), a
subset of ML, has shown unprecedented performances in the analysis of complex, unstructured data such as free
text and images. DL uses multilayer artificial neural networks (ANNSs), collections of artificial neurons or
perceptrons inspired by biological neural networks, to derive conclusions based on patterns in the input data. In
medicine and surgery, a large amount of data is visual, in the form of images (e.g., radiological, histopathological)
or videos (e.g., endoscopic and surgical videos). In addition, videos natively guide minimally invasive surgical
procedures and could be analyzed for intraoperative assistance and postoperative evaluations. This brief

introduction will hence focus on CV, the subfield of Al focusing on machine understanding of visual data.
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key steps and considerations for surgical Al research

Based on the schematic introduction of key Al-related concepts and terms, the following section will provide a brief
overview of a typical surgical Al pipeline in the field of CV (Figure 1). While automated surgical video analysis will
be used as an example in the following section, similar approaches can be applied to other types of medical

imaging and, in modified structure, to medical data in general.
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Figure 1. Schematic representation of the phases of surgical Al research.

Once a clinical need has been clearly defined, an appropriate, large-scale, and representative dataset needs to be
generated. To verify data appropriateness, it is good practice to see if subject-matter experts (i.e., surgeons)
routinely acquire such data and can consistently solve the identified problem using this type of data. For instance, if
we want to train a machine to automatically assess the critical view of safety in videos of laparoscopic
cholecystectomy, it is important to verify surgeons’ inter-rater agreement in assessing such view and, eventually,
devise strategies to formalize and improve such assessments. The inter-rater agreement of experts can also be
used to roughly estimate the amount of data necessary to train and test an Al model, as lower inter-rater
agreements are generally found in more complex problems that require larger datasets to solve. Finally, since Al
performance is heavily dependent on the quality of data used during training, it should be verified that the dataset
accurately represents the setting of foreseen clinical deployment. Using the same example of laparoscopic
cholecystectomy, acute and chronic cholecystitis cases should be included in the dataset if we want the Al to work

in both scenarios.

A further, essential step in generating a dataset for Al is annotation. The term annotation describes the process of
labeling data with the information the Al should learn to predict. The type of information to annotate depends on the
problem the algorithm is intended to solve. For instance, temporal annotations (e.g., timestamps) are needed to
train an Al model to classify surgical steps while spatial annotations (e.g., bounding boxes or segmentations) are
required to train an Al model to detect anatomical structures within an image. Regardless of the use case, high-
guality annotations are essential for training Al using supervised learning approaches, currently the most common
type of learning, as contrasting annotations will significantly hamper training of an Al algorithm. In the context of
evaluating the accuracy of an Al algorithm for image recognition, it is important to consider that annotations also
serve as “ground truth” for comparison. In fact, predictions of the previously trained Al are compared to experts’

annotations to compute performance metrics. The greater the overlap between the annotations and the predictions,
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the better the algorithm is. Consequently, the reliability of annotations defines the validity of Al assessments. The
development and improvement of methods to assess the quality of annotations are subject to ongoing scientific
discussion. Generally, reporting annotation protocols, details on annotators’ expertise, as well as integrating a
thorough annotation review process involving multiple annotators and expert reviewers while reporting inter-rater

agreements allow to scrutinize annotations.

The annotated dataset should then be split into a training set, used to develop the Al algorithm through multiple
iterations, and a test set, used to evaluate the Al performance on unseen data. Split ratio can vary, but it is
important to prevent data leaks between training and testing subsets. Of primary importance, test data should not
be exposed during training. In addition, testing data should remain as independent as possible from the training
dataset. Specifically, this means that not only all image data from one surgical video should be assigned to either
the training or the test dataset, but also that serial examinations from one patient (i.e., multiple colonoscopy videos
over time) should be treated as a coherent sequence that should not be separated between the training and test

dataset.

At this stage, the dataset and task of interest will be explored to select the best Al architecture or algorithm to then
refine, train, and test. In most cases, healthcare professionals and computer scientists collaborate in this process.
Interdisciplinary education is, therefore, critical to enable all partners to understand both the clinical and the
algorithmic perspectives, to critically appraise related literature, and to overall facilitate a constructive
interdisciplinary collaboration. Specifically, involved healthcare professionals should understand and participate in
the selection of metrics used to evaluate Al performance. The most commonly used metrics to evaluate how well
an Al solves a given task describe the overlap between the true outcome or the annotated “ground truth” and the Al
prediction. An important challenge in metric selection is the fact that these overlap metrics are merely surrogate
parameters for the clinical benefit. This underlines the need for continuous clinical feedback during the entire
process of conceptualization and evaluation of Al applications. Since events to be predicted are often rare (i.e.,
surgery complications), datasets are commonly unbalanced towards positive or negative cases and require
balanced metrics for reliable Al performance assessment. In addition, different clinical applications should optimize
different metrics. For instance, screening applications where the cost of a false negative is high, as in computer-
aided detection of polyps during screening colonoscopy, should value sensitivity over specificity. In turn, when
assessing safety measures such as the critical view in laparoscopic cholecystectomy, the cost of a false positive is
high, which is why specificity should be favored over sensitivity. Similar to reporting of annotations, the selected
metrics should be transparently reported including specifications about the computing process and underlying
assumptions about measured (surrogate) parameters. This is particularly important, as purely technical metrics
often fail to predict actual clinical value and ongoing research is looking at developing evaluation methods and

metrics specifically for surgical Al applications.

Regardless of how well surgical Als have been developed and tested, external validation and translational studies
are essential to evaluate the clinical potential. Since Al performance is notably dependent on training data, testing
on multicentric data reflecting different acquisition modalities, patient populations, and hospital settings is

necessary to evaluate how well Al systems generalize outside of the development setting. However, very few
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external validations studies have been performed to date since most open-access datasets only contain data from
single centers. In such scenarios, multi-institutional collaboration is one of the most influential prerequisites for the

development of clinically relevant Al applications.

To conclude, well designed implementation studies looking at how to integrate such technology in complex clinical
and surgical workflows and assessing how these changes impact patient care are crucial to measure actual value
for patients and healthcare systems. Translational studies exploring the clinical value of surgical Al still remain to
be published, but currently available guidelines can help designing protocols, early assessments, and reporting of

Al-based interventions.
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