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Very low-density lipoprotein (VLDL) and chylomicrons, which are known as TG-rich lipoproteins (TRLs), are

spherical particles with core lipids (TG and cholesterol esters), phospholipids, free cholesterol, and surface

apolipoproteins. The origins of TGs are generally exogenous or endogenous. Exogenous TG is mostly obtained

from daily diet and transported within chylomicrons, while endogenous TG circulates in VLDL and is mostly formed

in the hepatobiliary system.
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1. Introduction

During the past decades, the risk of atherosclerotic cardiovascular disease (ASCVD) and mortality has been much

reduced due to advances in pharmacotherapy, intervention devices, and techniques.  ASCVD risk is

significantly reduced by controlling blood low-density lipoprotein cholesterol (LDL-C) level . Statin is the drug of

choice to treat hypercholesterolemia. Non-statin medication including PCSK9 inhibitors and ezetimibe would further

reduce LDL-C level while added to a statin or act as statin alternatives. Bempedoic acid is a newly approved

effective non-statin LDL-C lowering agent . Bempedoic acid has been associated with increased incidence of

hyperuricemia, gout, and elevated serum creatinine level. On-going trials will clarify its long-term effect on

cardiovascular outcomes .

However, the risk of ASCVD has not been eliminated. In the CANTOS trial, patients with a history of myocardial

infarction (MI) had a 20% 5-year rate of recurrent major cardiovascular events (MACEs) despite statin treatment .

These residual risks can be caused by many factors, and methods to modify these factors have been proposed in

contemporary guidelines. For example, measuring the lipoprotein(a) (Lp(a)) level should be considered among

high-risk patients for a more precise reclassification and identification . Lipid and lipoprotein metabolism

disorders remain an unsolved problem. Whilst most guidelines encourage achieving target levels of specific

lipoproteins to reduce the risk of ASCVD, increasing evidence has shown that molecular modification of these

lipoproteins also has a critical impact on their atherogenecity and may contribute to residual ASCVD risk (Figure

1). For example, native low-density lipoproteins (LDLs) are much less atherogenic than those that have been

structurally modified, such as by oxidation . Apolipoproteins also play important roles in modulating lipid

homeostasis and may alter the functions of different lipoproteins. In this review, we aim to update the evidence on

modifications of major lipid components, including LDL, high-density lipoprotein (HDL), triglycerides (TGs),

apolipoprotein, and Lp(a). We also discuss examples of translating findings from basic research to potential

therapeutic targets for drug development.
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Figure 1. Schematic diagram showing the essential modifications of low-density lipoprotein (LDL) and high-density

lipoprotein (HDL) and potential therapeutic targets. HDL promotes cholesterol efflux from cells within

atherosclerotic plaques through reverse cholesterol transport (RCT) and transports excess cholesterol from

peripheral tissues to the liver for excretion. Post-translational modifications including oxidation, carbamylation,

glycation, and alterations of its lipidomic and proteomic structure result in dysfunctional HDL. Infusion of

reconstituted apolipoprotein A-I, CSL112, enhances RCT. Lipoprotein(a) (Lp(a)) promotes atherosclerosis through

its proinflammatory and antifibrinolytic effects. The production of Lp(a) in the liver can be reduced by the novel

antisense oligonucleotide, PELACARSEN. Angiopoietin-like protein 3 (ANGPTL3) produced in the liver inhibits

lipoprotein lipase (LPL)-induced lipolysis, resulting in increased circulating triglycerides carried by triglyceride-rich

lipoproteins (TRLs), and accelerated atherosclerosis . This process can be blocked by the ANGPTL3 inhibitor,

evinacumab. Native LDL is modified by oxidation, glycation, peroxidation, and apolipoprotein C-III (apoC-III)

adhesion and becomes more atherogenic. The expression of apoC-III can be suppressed by another novel

antisense oligonucleotide, AKCEA-ApoCIII-LRx.

2. Triglycerides

Hypertriglyceridemia is a prevalent condition observed in daily medical care. According to previous literature, its

prevalence in the adult population is approximately 10% . Moreover, the increasing trend of
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hypertriglyceridemia has been parallel to that of type 2 diabetes and obesity in the past decades . Very low-

density lipoprotein (VLDL) and chylomicrons, which are known as TG-rich lipoproteins (TRLs), are spherical

particles with core lipids (TG and cholesterol esters), phospholipids, free cholesterol, and surface apolipoproteins.

The origins of TGs are generally exogenous or endogenous. Exogenous TG is mostly obtained from daily diet and

transported within chylomicrons, while endogenous TG circulates in VLDL and is mostly formed in the hepatobiliary

system.

The levels of fasting and postprandial TGs depend on the balance between lipoprotein lipase-mediated lipolysis

and uptake in the human liver. VLDL overproduction is the most common upstream cause of hypertriglyceridemia,

and the inherited capacity of the lipoprotein lipase-mediated lipolysis pathway modulates the steady-state level.

Comprehensive evaluations are strongly suggested when hypertriglyceridemia is suspected. Furthermore, insulin

resistance, overweight, and type 2 diabetes mellitus may be detected simultaneously in this population. In clinical

practice, these conditions are usually treated as metabolic syndrome, which comprises the aforementioned three

conditions. Metabolic syndrome may increase VLDL levels, especially when free acids and insulin accumulate in

the circulation . An environment with an extremely high free acid concentration, hyperglycemia, and insulin

resistance, would result in increased chylomicron secretion, while glucagon-like peptide 1 would play a

counterbalancing role in the pathway . Moreover, apoC-III has been shown to decrease the removal of remnants

in individuals with high VLDL levels and a higher apoC-III concentration is an important factor leading to

dyslipidemia .

TG-rich VLDL particles and metabolic remnants are the main transporters of TGs in human circulation. The plasma

concentration of TGs has been shown to be parallel to the circulating apo B-containing TRL level, which is known

to be associated with ASCVD formation . A non-fasting TG level of 6.6 mmol/L was significantly associated with

a 5-fold higher risk of acute coronary syndrome, a 3-fold increased risk of stroke, and a 2-fold increased adjusted

risk of all-cause mortality compared to a level of 0.8 mmol/L in population-based cohort studies in Copenhagen 

. These results show the importance of monitoring the TG level in primary ASCVD risk modification. In another

study investigating secondary ASCVD risk after acute MI, TGs were found to be significantly associated with both

short-term and long-term ASCVD outcomes. Furthermore, most patients in the study had been treated with statins,

which further highlights the crucial role of TGs in secondary ASCVD prevention .

Several studies have used Mendelian randomization and shown that the association between TG concentrations

and ASCVD may be causal. Nevertheless, the evidence needs to be interpreted with caution, because nearly all

variants associated with TGs were also associated with the trends of HDL-C, LDL-C, and Lp(a) . In another

study, the authors used Mendelian randomization to show that TG-lowering lipoprotein lipase variants and LDL-C-

lowering LDL receptor variants had similar effects on the ASCVD risk per unit change in apo-B . Taken together,

these studies demonstrated the causality of TRLs and their remnants on the ASCVD risk, partly due to the plasma

level of apo B-containing particles. Another possible mechanism underlying the relationship between TGs and

atherosclerosis is the deposition of cholesterol-ester-enriched smaller TRLs on the arterial walls and the

subsequent initiation of pro-inflammatory/thrombotic pathways. Furthermore, high circulating TG levels have been

associated with pathological HDL-C particles, which could lead to an increased risk of ASCVD . In contrast, the
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correlation between circulating TG concentrations and ASCVD risk has varied among previous studies and was

lost in several multivariate analyses . Moreover, the correlation was reduced after adjusting for non-HDL-C or

apoB in an epidemiological study .

Collectively, the aforementioned studies demonstrate that TRLs and their remnants play a crucial role in ASCVD

risk assessment . According to current clinical guidelines, lowering LDL-C remains the primary treatment goal in

the management of dyslipidemia. In addition, clinicians should focus on modifications of TRLs, such as non-HDL-C

and apoB, which are highly recommended in the updated guideline . Previous studies on fibrates, niacin, and

cholesteryl ester transfer protein inhibitors did not demonstrate a robust or convincing reduction in the risk of

ASCVD in an optimal cholesterol-lowering population . Nevertheless, several ongoing trials are focusing on

the important roles of TRL with respect to the residual ASCVD risk in statin users. The results of these ongoing

clinical trials and upcoming evidence regarding omega-3 fatty acids (high-dose icosapent ethyl) , and the

selective peroxisome proliferator-activated receptor modulator pemafibrate may help to clarify which population will

benefit from a reduced risk of ASCVD by lowering TRL levels . The development of molecular technologies

has provided more detailed information on the pathways underlying TRL modulation. Several emerging therapeutic

molecules have been targeted, including inhibitors of angiopoietin-like protein 3 (evinacumab; allele-specific

oligonucleotide IONISANGPTL3-LRx) (Table 1) , and inhibitors of intestinal diacylglycerol acyltransferase

(pradigastat) , as well as those targeting apoC-II and A-V and angiopoietin-like protein 4 . TRL modification

strategies in specific patients can be expected to become a crucial part of lipid-directed treatment in the near

future.

Table 1. Potential therapeutic targets and emerging pharmacological lipid-lowering approaches.
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Potential
Therapeutic

Target

Pharmacological
Approach

Published
Clinical
Trials

Subjects Pros Cons Ongoing Trials and
The Aims of The Trials

Angiopoietin-like
protein 3

Evinacumab, a
recombinant
human
monoclonal
antibody that
inhibits
angiopoietin-like
protein 3

ELIPSE
HoFH
(phase 3)

Patients with
homozygous familial
hypercholesterolemia

47.1% reduction in

LDL-C levels

Evident LDL-C

reduction occurred

early after treatment

Approval on 11

February 2021 in the

USA for use as an

adjunct to other LDL-

C lowering therapies

for the treatment of

adult and paediatric

Influenza-like

illness, pain

in extremity,

asthenia,

constipation,

abdominal

pain,

anaphylaxis

High costs,

annual cost

of the drug

estimated to

be USD

NCT03409744To

evaluate the long-

term safety and

efficacy of

Evinacumab in

patients with

homozygous familial

hypercholesterolemia

NCT04233918To

evaluate the efficacy

and safety of

Evinacumab in

pediatric patients
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Potential
Therapeutic

Target

Pharmacological
Approach

Published
Clinical
Trials

Subjects Pros Cons Ongoing Trials and
The Aims of The Trials

patients aged 12

years and older with

homozygous familial

hypercholesterolemia

450,000 on

average .

with homozygous

familial

hypercholesterolemia

ApoC-III Volanesorsen, a
2ʹ-O-(2-
methoxyethyl)-
modified
antisense
oligonucleotide

APPROACH
(phase 3)

Patients with familial
chylomicronemia
syndrome

77% decrease in

mean TG levels.

25 (76%) in

the

volanesorsen

group had

platelet-level

decreases to

below

140,000 per

microliter

Decreases in

platelet

levels were

reversible

with an

interruption

in dosing

 

COMPASS
(phase 3)

Patients with severe
hypertriglyceridemia

73% decrease in TG

levels.

AKCEA-ApoCIII-
LRx, a GalNAc
modified
antisense
oligonucleotide

Phase 1/2a
trial 

Healthy volunteers Dose-dependent

reductions of TG

levels from -12% to

-77%

No significant effects

on the liver or kidney

function and no

thrombocytopenia

events occurred.

  NCT03385239To

evaluate the effect of

AKCEA-APOCIII-LRx

on TG levels in

patients with

hypertriglyceridemia

and established

cardiovascular

disease

NCT04568434To

evaluate the effect of

AKCEA-APOCIII-LRx

on TG levels in
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ABCA1, ATP binding cassette subfamily A member 1, ASCVD, atherosclerotic cardiovascular disease; GalNAc ,

triantennary N-acetyl galactosamine; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; Lp(a),

lipoprotein(a).

3. Conclusions

LDL may undergo structural change by oxidation, glycation, and peroxidation, and these modifications result in

progressive atherosclerosis. HDL may undergo post-translational modifications such as oxidation, carbamylation,

and glycation, and alteration of its cargo molecules such as SAA, LCAT, apoM, S1P, and PON1.

These modifications could decrease the atheroprotective function of HDL. Currently, no pharmacological approach

has been developed to block or reverse these modifications. Research on how these modifications are modulated

is still needed and will uncover more potential therapeutic targets. Pharmacotherapies targeting a reduction in TGs,

apoC-III, and Lp(a), and an increase in apoA-1, are currently under investigation, and promising preliminary results

have been reported. Clinical trials that assess the effects of these therapies on cardiovascular events are

underway. These targets may further shape the landscape of dyslipidemia treatment and decrease the residual risk

of cardiovascular events.
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