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Actin is one of the key and highly conserved elements of the cytoskeleton. It is indispensable for driving many

cellular processes, including cell migration, cytokinesis, vesicle transport, and contractile force generation. To

perform diverse functions, actin filaments assemble into higher-order structures such as branched actin networks

and actin bundles. This entry describes different types of actin bundles present in cells, their locations, and the

bundling proteins involved in their formation.

actin bundles  fascin  α-actinin  espin  plastin/fimbrin

1. Introduction

Actin, one of the key and highly conserved elements of the cytoskeleton, amounts to approximately 5–15% of total

cell proteins . It is indispensable for driving many cellular processes, including cell migration, cytokinesis,

vesicle transport, and contractile force generation . The globular actin monomers (G-actin) polymerize to form

semi-flexible double-stranded helical filaments (F-actin), also known as microfilaments. These filaments assemble

into higher-order structures, such as branched networks or bundles [5]. It is now recognized that complex actin

networks and bundles are essential for many cellular functions. Lately, actin-bundling proteins have been attracting

a lot of attention as their malfunction is linked to malignant cancers, muscular dystrophy, bone disease, and

immunological disorders .

More than 150 actin-binding proteins (ABPs) are known to associate with the actin cytoskeleton, and many of them

regulate actin functions . These proteins are involved in: (1) regulation of actin assembly and disassembly, (2)

actin-driven movements in cells, (3) connecting actin structures to plasma membrane/cell organelles or other

cytoskeleton proteins, and (4) organizing actin filaments (by their crosslinking) into higher-order structures, such as

branched actin networks or actin bundles . The proteins forming higher-order structures are among the

most represented and diverse functional families of actin-binding proteins.

2. Actin Bundles in the Cell

In the cells, actin is present either in monomeric, filamentous, or higher-order three-dimensional structures, such as

bundles and branched networks . The length of filaments varies from dozens of nanometers (e.g., in branched

networks) to several dozen micrometers (e.g., in stress fibers, filopodia, and stereocilia) . Together,

they form a continuum of systems enabling the reception and transduction of mechanical stimuli across the cell and

providing mechanical support for the shape and polarity of cells. The necessity of forming higher-order actin
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structures is dictated by the immense variety of cellular functions supported by the actin cytoskeleton and a broad

range of mechanical forces required to carry them out. Forces generated by these higher-order actin networks,

ranging from piconewtons to nanonewtons, aid in cell migration and invasion, internal vesicle movements,

endocytosis, exocytosis, phagocytosis, and cell division .

Actin bundles are linear arrays of actin filaments crosslinked by one or, more often, several different actin-bundling

proteins (Figure 1 A,B). The length and width of such bundles, and the number of filaments present in them are

dictated by their unique set of proteins and by kinetic conditions under which these bundles are formed ,

giving each bundled complex a specific structure with different mechanical properties , Figure 2, Table 1. The

size of the bundling proteins plays an important role in the topology and the compactness of the bundles (Figure 1

B,C). For example, fascin, plastins/fimbrins, and small espins are small sized actin-bundling proteins that crosslink

actin filaments to form compact and tighly packed bundles, whereas α-actinin is a larger-sized crosslinker inducing

widely spaced bundles with distorted square lattice (Figure 1 B,C).

There are two main types of actin bundles, with either parallel or mixed polarity filament orientations. In parallel (or

uniform polarity) actin bundles, the filaments are ordered with consistent polarity, allowing them to conduct work

(e.g., membrane deformation) due to the directional F-actin elongation. Parallel actin bundles are present in

chemosensory and mechanosensory cell protrusions (microvilli) of most cell types , stereocilia of inner ear

hair cells , bristles in the thorax of Drosophila melanogaster , and in ectoplasmic specializations of Sertoli

cells (Figure 2, ). Filopodia, microspikes, focal adhesions, and distal ends of dorsal stress fibers, found in most

cell types, consist also of parallel actin bundles (Figure 2, ). These bundles create the force for localized

membrane protrusions, while helping cells to resist compressive forces from the membrane . They facilitate cell

movement in response to extracellular stimuli or intracellular signaling . The length (1 to 100 μm) and number

(one to hundreds) of these bundles per cell, their diameter and the number of actin filaments in them (a few to

~1000) vary depending on the cell type and the structures they support (microvilli, stereocilia, bristles, filopodia,

(Figure 2, Table 1), and invadosomes (podosomes/invadopodia) .

More than two actin-bundling proteins are often associated with these actin structures. Filopodia, a thin actin-rich

plasma-membrane protrusions, help in chemosensing during cell migration, wound healing, and cell adhesion to

the extracellular matrix . They are enriched in fascin, but additional bundling proteins, such as α-actinin,

fimbrin/plastin, filamin, and espin are also present in them under certain conditions . Podosomes are actin-

based dynamic structures near the plasma membrane of various cells (such as monocytic, endothelial, and smooth

muscle cells). They contribute to cell migration, matrix invasiveness, bone remodeling, and mechanosensing 

 and contain fascin, L-plastin (a hematopoietic cell-specific plastin isoform), and α-actinin .

Invadopodia are functionally and structurally similar to podosomes of normal cells, but they are present in tumor

cells . Additionally, podosomes and invadopodia are unique in their ability to degrade ECM material by locally

releasing proteolytic enzymes . Ectoplasmic specializations of Sertoli cells, which are hybrid testis-specific cell–

cell contacts (contributing to the blood–testis barrier), contain espin and T-plastin (a most abundant plastin isoform

found in cells of most solid tissues) . Microvilli—the finger-like projections on the surface of several

types of cells - increase the total cell surface without substantially increasing its volume . Most microvilli
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contain I-plastin (a plastin isoform found in the intestinal and kidney microvilli and stereocilia of the inner ear), small

isoforms of espin, and villin. Similarly, stereocilia are the modified microvilli that transduce mechanical signals into

stimulus-dependent electrical signals. They predominantly contain I-plastin and fascin, but also have isoforms of

espin and other proteins expressed in smaller quantities .

Figure 1. Overview of actin organization in the cell. (A) Assembly of actin monomers into linear filaments and

higher-order actin structures. Actin monomers bind nucleation and elongation factors, such as Ena/VASP and

formins, that assist in these processes, usually near the cytosolic side of plasma membranes. To form actin

bundles in a spatially and temporally controlled manner, bundling proteins are recruited to crosslink these

filaments. Actin filaments and bundles disassemble into actin oligomers (via severing) and monomers (via

accelerated depolymerization) with the help of several disassembly/severing proteins, which contribute to actin

turnover in cells. (B) EM micrographs of negatively stained actin filaments alone and in the presence of fascin or T-

plastin. The magnification of the images is shown on the top of each micrograph. A high-magnification image (0.05

μm) shows an ordered fascin–actin bundle with periodic striations (indicated by arrows). These striations are

formed by fascin bound to actin filaments. (C) Model of bundle lattices formed in the presence of different bundling
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proteins. The black circles denote the actin filaments, and the colored lines denote the actin-bundling proteins.

Notably, in the case of a hexagonal lattice, the inter-filament distance varies with the size of the bundling proteins

involved.

Figure 2. Schematic representation of a cell with different architectures of actin bundles. The blue lines show the

actin bundles’ location in different types of cells. In the sarcomere, “thick filaments” (purple) are composed of

myosin, while “thin filaments” (blue) are actin bundles decorated with troponin and tropomyosin (decoration is not

shown). The different actin bundles structures in migratory cells are shown using different colors. The thick brown

line surrounding the perimeter of the cell denotes the cell cortex. This figure was created using BioRender.com.

Table 1. Properties of actin bundles in different structures.

Location Microvilli Stereocilia Filopodia Stress fibers Bristles (drosophila)

Cell type

Most cells
(frequent in

epithelial
cells)

Auditory and
vestibular
sensory

cells

Motile cells

Most cells
(prominent in
fibroblasts,

smooth muscle,
and endothelial

cells)

Sensory organ
precursor cells

Function

Increase
apical

surface area
for absorption

Mechano-
electrical
signaling

Sensory
and guiding

Contraction and
adhesions

Mechanosensing



Actin Bundles | Encyclopedia.pub

https://encyclopedia.pub/entry/42112 5/10

In antiparallel (or mixed polarity) bundles, actin filaments are typically organized by bundling proteins with a longer

distance between their actin-binding domains (e.g., α-actinin). Therefore, these filaments are typically packed less

densely than in parallel bundles, leaving space for the intercalation of myosin thick filaments. Mixed polarity

bundles are the constituents of stress fibers of non-muscle cells, myofibrils in muscle cells, cytokinetic contractile

rings, and the cell cortex (Figure 2). The filament-forming motor protein myosin II is usually associated with these

actin bundles and enables their contractile functions . Stress fibers are the primary mediators of cell

contraction in non-muscle cells, governing some of their vital processes, including migration, adhesion, and

mechanosensing. Although α-actinin is the major actin-bundling protein identified in stress fibers, other bundling

proteins (fascin, espin, fimbrin/plastin, and filamin) can also be present (Table 1, ). A likely role of fascin and

espin in such bundles is the stabilization of a subset of filaments with uniform polarities; fimbrin/plastin, despite

their compact size, can directly stabilize antiparallel actin assemblies . Based on their origin, subcellular

location, and protein composition, stress fibers can be grouped into four classes: ventral, dorsal, transverse arcs,

and perinuclear actin caps (Figure 2).

Ventral stress fibers are >2 µm long thick actomyosin bundles, whereas dorsal fibers are shorter (~1 µm), devoid of

myosin, and unable to contract . These fibers usually contain 10–30 actin filaments per cross-section .

Ventral stress fibers anchor to focal adhesions from both ends, while dorsal stress fibers anchor to them only from

one end, with the other end being embedded into transverse arcs. Ventral stress fibers are the most abundant

contractile structures in the cell. They are made of bipolar actin filaments that display alternating patterns of

myosin- and α-actinin-enriched regions. In migration, they help retract the motile cells’ trailing edge and establish

the cells’ front–rear polarity . Transverse arcs are curved, thin actin filament bundles with repeated α-actinin–

myosin patches formed just behind the lamellipodia . They are mainly involved in the persistence of cell motility

by acting as a link between the lamella and the focal adhesion-connected dorsal stress fibers . The perinuclear

actin cap is a contractile structure (surrounding the nucleus) that emanates from focal adhesions at the leading

edge. It influences the nucleus shape and position in the cell by transducing environmental signals to the nucleus

of cells via LINC complexes .

Location Microvilli Stereocilia Filopodia Stress fibers Bristles (drosophila)

Length 100 nm to 2
µm

1.5–15 µm ≤10 µm ≥2 µm

Macrochaetes: 250–
300 μm, Microchaetes:
70 μm (non-continuous

1–5 µm units)

Diameter 50–100 nm ~200 nm 20–200 nm
Varies from cell to

cell
Varies

Number of
actin

filaments
30–40 ~400–3000 10–30 10–30

7–18 bundles with
hundreds of filaments

Actin filament
organization

Parallel
(unipolar)

Parallel
(unipolar)

Parallel
(unipolar)

Mixed (bipolar) Parallel

Bundling
proteins

Espin,
plastin, villin

Fascin,
espin,
plastin

Fascin, α-
actinin,
plastin,
espin

α-Actinin,
fascin filamin

singed (fascin), forked
(espin)
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Myofibrils of cardiac and skeletal muscles are assembled into highly organized periodic structures (sarcomeres;

Figure 2). In contrast to that, myofibrils in smooth muscles are less ordered and more reminiscent of the ventral

stress fibers of non-muscle cells. However, these three types of myofibrils share a striated pattern when immuno-

stained with antibodies against myosin II and α-actinin. Each sarcomere contains thick (myosin) filaments in the

center and is flanked by regions that contain thin filaments (actin filaments decorated by tropomyosin and troponin)

(Figure 2). Actin filaments are embedded with their barbed (plus) ends in the Z-band regions separating

sarcomeres and containing α-actinin as the major crosslinking protein (Figure 2, ). Therefore, while notably

more ordered and with a better-controlled filament length, sarcomeres are organized similarly to stress fibers,

which may serve as precursors of sarcomere assembly .

In cytokinetic contractile rings of dividing cells, actin filaments form bundles at the division plane (Figure 2) along

with the intercalated myosin II filaments. The motor activity of myosin drives the contraction and separation of cells

into two daughter cells. α-Actinin, fimbrin/plastin, and anillin are the bundling proteins identified in these structures

. In addition to these actin-rich structures, actin bundles are also present in the cell cortex (Figure 2). The

cell cortex is clearly detectable in rounded mitotic or amoeboid cells, as a continuous layer of actin and non-muscle

myosin II-enriched networks under the cell membrane. Its thickness varies from ~190 nm in human mitotic cells to

4 µm in some oocyte cells . The actin-bundling proteins associated with the cell cortex include α-actinin,

fimbrin/plastin, fascin, and filamin .
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