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The noradrenergic system is one of four primary neuromodulatory systems. It plays an important function in

altering basic synaptic transmission patterns. The groups of neurons responsible for the delivery of the

neuromodulators are known as ascending neuromodulatory systems. Norepinephrine (NE) has classically been

viewed as a major mediator of arousal that plays an important role in regulating cognition, perception, and sensory

processing.
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1. Introduction

The central nervous system performs an incredibly large number of continuous computations, the result of which is

to efficiently process the external world and execute a relevant response. In the human brain, an estimated

10  neurons make approximately 1000 average connections to other neurons, forming up to 10  distinct sites for

information transmission. That is likely an order of magnitude higher than the total number of cells in the entire

human body . Even this staggering number of physical connections understates the complexity of information

handling in the brain. Beyond simple neuron-to-neuron connections, multiple subtypes of glial cells are also known

to play a role in synaptic transmission . This ever-shifting structural background, across which the flow of

information proceeds throughout an individual’s life, is then capable of giving rise to a diverse array of orchestral

melodies through the 100+ endogenous substances that play a role in modulating synaptic transmission . Some

of these substances, known as neurotransmitters, can act over varying physical distances through their interaction

with a much larger number of receptors.

Since the discovery of the first neurotransmitter, acetylcholine, in 1926 by Otto Loewi, there has been an explosion

in the identification and understanding of chemical neurotransmission. Conceptually simplified, information transfer

occurs in two modes: electrical propagation within neurons or chemical propagation outside neurons.

Neurotransmitters are the chemicals that traverse the physical division between cells connecting the postsynaptic

cell with information from the presynaptic cell. This is primarily mediated through an array of specific receptors on

the postsynaptic cell. For any given neuron, the combination of presynaptic inputs will determine if a message is

electrically transcribed and transmitted. If it is transmitted, an action potential will travel down the length of a

neuron, resulting in the release of extracellular neurotransmitter onto the dendrites of postsynaptic cells. The

substances released are usually tightly regulated and reuptaken or degraded to limit the action of the substance on

its target.
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Generally, neurotransmitters may have excitatory, inhibitory, and neuromodulatory effects on neurons through the

action of their receptors. Excitatory receptors, when activated by corresponding neurotransmitters, result in a

membrane depolarization and the propagation of an action potential. Glutamate is the neurotransmitter that

predominately mediates excitatory effects through its receptor, which is nearly ubiquitously expressed in all types of

neurons and many types of glial cells . Inhibitory receptors exert an opposing effect, with the binding of

corresponding neurotransmitters resulting in a membrane hyperpolarization that limits the ability of a neuron to

initiate an action potential. In the mature brain, γ-aminobutyric acid (GABA) is the primary neurotransmitter that

exerts inhibitory effects on neurons through GABAergic receptors . The interplay between these two competing

systems has been studied in a variety of contexts  and provides the foundation for how neurotransmission is

thought to occur in the brain. The summation of excitatory and inhibitory inputs at every connection point in the

brain determines the direction and pattern of information propagation in complex networks of neurons. The third

type of neurotransmitters, known as neuromodulators, add an additional, but important, complexity to this paradigm

by altering the balance of transmission on a micro, meso, or macroscale.

2. Anatomical Overview of the Noradrenergic System

2.1. Sources

Noradrenergic projection to the forebrain is exclusively provided by a single source, the locus coeruleus (LC),

which is a small, bilateral nucleus located in the pons . A complete review of the LC was provided by

Poe et al. in 2020 , but a brief description is provided here. Traditional investigations of the LC presumed it to be

a broadly acting, primarily homogenous source of norepinephrine (NE) with wide implications , but more

recent research has shown that the LC is composed of many distinct modules with highly specific functional roles

throughout the brain . There are two major, complementary theories on how a diffusely projecting single source

of norepinephrine can achieve such disparate functional results. The first is that the function of NE release relies on

regional differences in postsynaptic receptor distribution and resulting differences in spatiotemporal NE reuptake

. The second is a corollary to the function of the noradrenergic system in the periphery, in which the

sympathetic nervous system has discrete efferent limbs that are organ specific but capable of acting in a unified

manner . In this theory, the LC provides localized neuromodulation to well-defined target regions and spiking

is synchronized in highly specific subsets of LC neurons. For a more complete review, see Totah et al., 2019 .

2.2. Inputs

An important step in understanding the regional and modular functionality of the LC was achieved through an in-

depth characterization of the afferent and efferent projections to and from the LC. The LC itself consists of a small,

dense core, where cell bodies are found, and a peri-LC shell in which LC dendrites reside . There are

prominent afferent inputs to the LC core originating from the paragigantocellularis nucleus and the prepositus

hypoglossi nuclei—both structures in the rostral medulla . There are also additional inputs from the insular

cortex, central nucleus of the amygdala, preoptic area, and the lateral and paraventricular hypothalamic areas 
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. Cerebellar Purkinje cells and neurons from deep cerebellar nuclei also provide synaptic inputs onto the core

of the LC .

Although the projections of sensory afferents from the mesencephalic trigeminal sensory nucleus (Me5)  and

the nucleus of tractus solitarius (NTS)  to the LC exert influences on cognitive functions , an important

regulatory component on the core noradrenergic neurons in the LC include the peri-LC afferent innervations.

Noradrenergic LC neurons possess long dendrites that pass through the surrounding small nuclei-like regions

around the LC, which receive separate inputs from a variety of brain regions, including the prefrontal and

infralimbic cortex, the amygdala, and the dorsal raphe nucleus . There are additionally cholinergic, serotonergic,

and adrenergic inputs to the peri-LC area, representing potential points of indirect regulation from other

neuromodulatory systems . The peri-LC zone also gives rise to several GABAergic inputs into the LC .

2.3. Outputs

The efferent projections from the LC are widespread but nonuniform to the neocortex in both rodents  and

primates . Collateral axons from the LC are distributed in a coordinated fashion to target circuits with a

specific function . The efferent projections from the LC travel throughout the brain, providing NE

input to the cortex, insula, hippocampus, thalamus, amygdala, and cerebellum. A full review of this system was

provided by Schwarz and Luo in 2015 . Though the projections are widespread, the selective activation of

specifically patterned noradrenergic neurons is poorly understood and likely involves a complex interplay between

inputs into the LC and interacting systems . Nevertheless, it has been shown that genetically distinct groups of

noradrenergic neurons project to regionally and functionally specific circuits . Understanding the anatomically

distinct efferent circuits underlying specific functional consequences is an ongoing area of research that will likely

improve our understanding of the role of the LC in the context of localized function.

As an important aspect of neuromodulation, the LC also directly projects to serotonergic, cholinergic, and

dopaminergic nuclei, providing a centralized locus of control over, or feedback with, other neuromodulators .

3. Role of Norepinephrine in the Brain

3.1. Major Noradrenergic Receptor Subtypes

The noradrenergic system exerts influence over brain function through three receptor classes: α , α , and β

receptors. Each of these receptors has control over specific processes of neurotransmission and sympathetic

nervous system regulation. α  receptors are members of the adrenoreceptor family, a subset of G-protein coupled

receptors . They have been further classified into three distinct subtypes: α , α , and α . Each subreceptor

has demonstrated unique quantitative differences in effect . Several experiments have explored the different

concentrations of these subtypes throughout the brain. Specifically, it has been shown that α   was more

prominent in the thalamus, lateral amygdaloid nuclei, and cortical laminar areas, while α   was higher in the

entorhinal cortex, amygdala, and general cerebral cortex areas . Furthermore, transgenic mouse experiments
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have allowed for specific receptors to be knocked out, uncovering that both α  and α  have a similar expression

throughout the central nervous system, just with different abundances . Around 55% of the brain was shown to

express α , 35% α , and less than 10% was found to express α   . The function of α   receptors is

implicated in a variety of cognitive processes and synaptic efficacies. Beginning with synaptic involvement,

α   receptors have been shown to increase the firing frequency of pyramidal and somatosensory neurons of the

visual cortex through the protein kinase C signaling (PKC) pathway . They have also been implicated in the

enhancement of glutamate and acetylcholine release as well as neuronal excitation via PKC pathways, calcium

pathways, and excitatory synapses . α  has also been shown to affect non-neuronal function as well,

with the modulation of synaptic transmission through astrocytes and glial cells . With regards to cognitive

functions, α1 receptors have been shown to be implicated in memory, motor and motivational behavior, memory

retention, and storage, but most of these are associated with general norepinephrine release in the brain .

α  receptors are also a type of G-protein coupled adrenoreceptor, classified into three subtypes: α , α , and α .

Specifically, α  receptors have been implicated in orchestrating the presynaptic inhibition of norepinephrine in the

central and peripheral nervous system . This inhibition is critical for regulation of normal involuntary

processes including physiological functions of the heart, vision, and gastrointestinal systems. Using

pharmacological agents such as prazosin or oxymetazoline, α   and α   receptors have been shown to have

significant control over sympathetic outflow and blood pressure . Several other studies have shown α  receptor

agonists enhance both serotonin and norepinephrine release . Interestingly, the abundance of α   receptor

subtypes is much more localized than α . While literature here is limited, studies have shown that α  receptors are

found almost exclusively in the thalamus, while α   receptors are found in the olfactory bulb, cerebral cortex,

hippocampal formation, and dorsal root ganglia .

The final type of noradrenergic receptors, classified as β, are also a G-protein coupled receptor, divided into three

subtypes: β , β , β   . There have been studies linking β receptors to synaptic plasticity, with norepinephrine

acting on β receptors to dictate synaptic strength in hippocampal neurons, as well as NE released from the locus

coeruleus enhancing LTD-related memory processing .

3.2. Noradrenergic Involvement in Learning and Decision Making

The noradrenergic system has been implicated in a variety of decision-making paradigms as well as throughout the

learning process. Studies using optogenetics, pharmacological agents, and lesioning have brought to light the

effect norepinephrine has on cognition and higher-order thought processes. One theory regarding the role of NE in

decision making involves the idea of network reset, acting as an “internal interrupt” signal . Here, it is

explained that the phasic activation of locus coeruleus noradrenergic neurons causes an increase of NE

throughout the cortex, invoking cognitive shifts and the potential reorganization of neural networks . This shifted

brain state is hypothesized to be better equipped for rapid behavioral adaptation and enhanced decision making

. Other theories point out how stimulus-induced firing patterns of the LC are closely attuned to behavioral

performance, hypothesized from LC primate recordings in visual discrimination tasks . Similar phasic activation

in primates has shown how the LC can respond to specific task-related decisions, modulating NE release and
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adapting future task-relevant decisions , as well as showcasing coordinated activity patterns in cortical networks

derived from ascending NE projections . Studies invoking NE release through an agonist have shown

enhancements in sensory stimulation, allowing more rapid synaptic plasticity and faster behavioral responses .

Several pharmacological experiments have investigated the specific role that α   receptors play in the decision-

making process. Studies using NE antagonists have shown α   receptor knockout leading to more risk-on

behavior, with rats exhibiting greedier decisions . α  agonists have been proven to enhance the efficiency of

working memory and reduce impulsivity in primates . This increased receptor uptake in the prefrontal cortex

seems to be part of the shifted network brain state described earlier. The agonist guanfacine, another α  agent,

was also shown to improve visual object discrimination performance during a reversal learning paradigm in

primates .

3.3. Noradrenergic Involvement in Attention

The noradrenergic modulation of attention has been studied for several decades . Studies have

established the theory that the LC-NE system regulates the efficacy of information processing during neural coding

of sensory signals . During behavioral tasks, selective attention enhances neuronal responsiveness to

sensory cues . The firing rates of LC neurons are correlated with attentive behavior in an odd-ball task , in

which either high or low tonic firing rates correspond to inattentive states and medium firing rates are associated

with animals’ best performance. In a novel environment where more adaptive behaviors are required, changes in

electrotonic coupling among LC neurons regulate goal-directed exploration and preserve attentional selectivity .

In addition, some studies have investigated the effects of NE agonists. It is shown that in a cued target detection

task (CTD), the application of α  receptor agonists clonidine or guanfacine significantly impaired alerting behavior,

and the effect was dose-dependent , while the effect was blocked by the α  antagonists idazoxan or yohimbine.

Most recent studies also show an association between the NE system and impulsivity control . It was

observed from the superior frontal theta band activity that the NE system dynamically gains and loses relevance to

regulate inhibitory control under different responding modes . This work has led to the use of the NE-specific

reuptake inhibitor atomoxetine as a treatment of pediatric attention-deficit/hyperactivity disorder (ADHD) .

Furthermore, it is demonstrated that ADHD patients have a higher positron emission tomography (PET)-measured

NET availability in comparison to healthy individuals, suggesting that there are underlying genetic and epigenetic

mechanisms.
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