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Delivery of small interfering RNA (siRNA) provides one of the most powerful strategies for downregulation of therapeutic

targets. Despite the widely explored capabilities of this strategy, intracellular delivery is hindered by a lack of carriers that

have high stability, low toxicity and high transfection efficiency. Here we propose a layer by layer (LBL) self-assembly

method to fabricate chitosan-coated gold nanoparticles (CS-AuNPs) as a more stable and efficient siRNA delivery

system. 
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1. Introduction

Small interfering RNA (siRNA) is a powerful therapeutic technology which induces post-transcriptional gene silencing via

translation inhibition or by cleavage of the target mRNA by incorporating into the RNA-induced silencing complex (RISC)

in the cytoplasm . Fast enzymatic digestion, limited cellular uptake, inefficient release from endosomes, and lack of

cell-specific targeting are the major obstacles of using naked (free) siRNA . Thus, the therapeutic application of

siRNA molecules requires suitable carriers to allow them to be delivered inside target cells in a safe and effective manner.

Many different delivery systems have been explored to date. These include viral  and non-viral vectors , each of

which come with their own set of advantages and disadvantages. For example, although viral vectors are highly efficient,

they are associated with safety concerns such as inherent immunogenicity , mutagenesis , oncogenic potential, and

inflammation . These concerns have triggered the development of non-viral vectors for siRNA delivery including

cationic lipids, polymers, peptides and inorganic nanoparticles . While non-viral vectors are considered to be safer

with a reduced immunogenic response, they come with their own drawbacks. For instance, cationic liposomes can suffer

from low colloidal stability, difficulties in controlled release, fast elimination in the body, and poor targeting .

Polypeptides for gene delivery have limited efficiency and are associated with toxic side effects . In addition, cationic

polymer-based carriers can suffer from low stability  as well as poor cell recognition and internalization . In spite of

those challenges, non-viral vectors remain of great current interest given their better safety profiles and ease of production

at an affordable costs .

One of the most widely used polymers for the design of nanocarriers for siRNA delivery is chitosan . Chitosan is a

linear biopolymer consisting of randomly repeating D-glucosamine and N-acetyl-d-glucosamine units . Chitosan is a

weak polybase with a pKa around 6.5 which offers the advantage of being biodegradable and biocompatible while at the

same time being highly positively charged at a pH below the pKa so that it can easily form electrostatic complexes with

nucleic acids . On the downside, it suffers from poor stability  and an undefined structural composition . While

improvements have been suggested by making blends with other polymers or modifying its chemical structure ,

there is still a need for increasing the stability of chitosan as a gene delivery vehicle. Inorganic nanoparticles like gold

nanoparticles (AuNPs) have attracted great interest because of several advantages including their simple synthesis,

tunable size and surface properties, good biocompatibility, and multifunctional capabilities . These unique

properties make AuNPs attractive stabilizing scaffolds for gene delivery vehicles. In particular, AuNPs can be used as

scaffolds for layer-by-layer (LBL) self-assembly, which is a widely used technique to deposit multiple layers of positively

and negatively charged polymers onto surfaces of films or nanoparticles . Such hybrids of cationic polymers and

inorganic nanoparticles combine the advantages of both systems to achieve increased gene delivery efficacy . For

instance, LBL assembled AuNP-siRNA have been prepared with polymers that can induce endosomal escape, such as

polyethylenimine (PEI) . However, release of siRNA in the cellular cytoplasm remains limited due to the high

binding affinity between AuNPs-PEI and siRNA . In addition, PEI is often associated with high cytotoxicity due to

inducing membrane perturbations and chromosome aberrations .

Therefore, in this study we propose LBL assembled AuNP-siRNA in combination with chitosan as a biocompatible and

biodegradable cationic polymer to obtain highly stable gene delivery carriers for efficient intracellular siRNA delivery.

AuNPs capped with chitosan (CS-AuNPs) are synthesized by using chitosan as both the reducing and stabilizing agent
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. Next, negatively charged siRNA is incorporated as the next layer on top of the positively charged CS-AuNPs.

Finally, a third chitosan layer is applied to protect the siRNA and endow the particles with a net positive charge which

allows them to easily adsorb to the negatively charged cell membrane, hence facilitating endocytic uptake.

Long term stability in storage buffer, stability in different media, and siRNA release are investigated. siRNA gene silencing

is subsequently evaluated in H1299 cells stably expressing green fluorescent protein (H1299-eGFP) (as shown

in  Scheme 1) as a model that allows for an easy readout of siRNA silencing. Cellular uptake, endosomal escape

transfection efficiency and cell viability are all studied. We find that the here presented AuNP-based carriers show better

stability and efficacy than commercial transfection agents (Lipofectamine (cationic lipid mediated transfection) and

jetPEI  (cationic polymer)) or nanocarriers prepared from chitosan alone (CSNPs).

Scheme 1. Schematic representation of LBL-CS-AuNPs for siRNA delivery. Under normal conditions, H1299-eGFP

cells continuously express enhanced Green Fluorescent Protein (eGFP). When LBL-CS-AuNPs are taken up by cells via

endocytosis, chitosan can induce endosomal escape. Then, the released siRNA (si-eGFP) is processed by the RNA-

induced silencing complex (RISC), which targets and cleaves GFP-mRNA. The cleavage of GFP-mRNA leads to

decreased GFP expression and a diminished green fluorescence intensity of H1299-eGFP cells.

2. Nanoparticle Formation, Characterization and Stability

CS-AuNPs have been synthetized in a one-step synthetic method which used chitosan (CS) both as the reducing agent

and stabilizer to generate CS-capped AuNPs. The appearance of a LSPR peak at 524 nm in the UV-Visible spectrum and

the absence of plasmonic bands associated with agglomeration of nanoparticles confirmed that the CS-AuNPs are stable

and do not show aggregation. For the second layer of the LBL coating, different ratios of siRNA were evaluated for siRNA

attachment on the surface of the CS-AuNPs. Then, a final CS layer was applied to protect the loaded siRNA from

preventing fast release and ensuring efficient uptake by cells and efficient endosomal escape.

Evaluation of siRNA release profiles and colloidal stability indicated that LBL-CS-AuNPs were more stable than CSNPs

which are composed of chitosan alone. We hypothesize that the macromolecular organization of the polymer layer on the

surface of the gold nanoparticles confers to their high colloidal stability due to the high cationic charge and the steric effect

of the chitosan.

3. Uptake and Transfection Efficiency of Nanoparticles

The biocompatibility of a vector for siRNA delivery is an important consideration. Investigation of metabolic activity and

induction of apoptosis showed that CSNPs induced very little toxicity, even at the highest concentration, while for LBL-CS-

AuNPs, the toxicity gradually increased with increasing concentration. Chitosan is known to be a biocompatible polymer

so the low toxicity by CSNPs is not surprising. The fact that LBL-CS-AuNP induced more toxicity is very likely due to

enhanced cellular uptake, as we indeed could observe by using fluorescently labeled siRNA. For CSNPs, the rMFI did not

increase substantially with increasing NP concentration, indicating that under the studied concentrations, the uptake

machinery was already saturated. Indeed, it has been previously suggested that endocytic uptake pathways may be

different for particles of different sizes . Therefore, it cannot be excluded that the larger CSNPs are taken up via a
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different endocytic pathway, which perhaps may saturate more quickly, than the smaller LBL-CS-AuNPs. Regardless of

the underlying mechanism, enhanced uptake of LBL-CS-AuNPs resulted in a maximum gene silencing of 76% for LBL-

CS-AuNP with 24 nM siRNA, while this remained limited to 49% for CSNPs with 50 nM siRNA.

When comparing transfection efficiencies with two commercial transfection reagents, jet-PEI and Lipofectamine, it was

found that CSNPs showed similar effects as jetPEI , while being much less effective than Lipofectamine. LBL-CS-AuNPs

at 8 nM, on the other hand, performed even better than Lipofectamine, with similar knockdown efficiencies at higher

siRNA concentrations. Importantly, unlike the other carriers (commercial transfection reagents or CSNPs), LBL-CS-AuNPs

were still as functional 7 days after synthesis, which is yet another demonstration of superior stability of LBL-CS-AuNPs.

4. Endosomal Escape Efficiency

In order to explain the experimental observations of the silencing effect, we proceeded to determine and quantify the

endosomal escape capacity of all the NPs evaluated. After image analysis (~500 cells for each sample), a direct

correlation was found between the extent of endosomal escape and the transfection efficiencies, indicating that the

escape from endosomes is one of the main factors in the effectiveness of the siRNA delivery carriers evaluated here.
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