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Multidisciplinary management of patients with liver metastases (LM) requires a precision medicine approach,

based on adequate profiling of tumor biology and robust biomarkers. Radiomics, defined as the high-throughput

identification, analysis, and translational applications of radiological textural features, could fulfill this need. The

present review aims to elucidate the contribution of radiomic analyses to the management of patients with LM. We

performed a systematic review of the literature through the most relevant databases and web sources. English

language original articles published before June 2020 and concerning radiomics of LM extracted from CT, MRI, or

PET-CT were considered. Thirty-two papers were identified. Baseline higher entropy and lower homogeneity of LM

were associated with better survival and higher chemotherapy response rates. A decrease in entropy and an

increase in homogeneity after chemotherapy correlated with radiological tumor response. Entropy and

homogeneity were also highly predictive of tumor regression grade. In comparison with RECIST criteria, radiomic

features provided an earlier prediction of response to chemotherapy. Lastly, texture analyses could differentiate LM

from other liver tumors. The commonest limitations of studies were small sample size, retrospective design, lack of

validation datasets, and unavailability of univocal cut-off values of radiomic features. In conclusion, radiomics can

potentially contribute to the precision medicine approach to patients with LM, but interdisciplinarity, standardization,

and adequate software tools are needed to translate the anticipated potentialities into clinical practice.

radiomics  texture analysis  computer-assisted diagnosis  liver metastases

gray level matrices  response to chemotherapy  overall and recurrence-free survival

1. Introduction

The liver is a frequent target for distant metastases from several tumors. Liver metastases (LM) are associated with

poor prognosis and may occur early in gastrointestinal malignancies because of hematogenous spread through the

portal venous system . Selected patients with LM, mainly those with liver-only metastases, can be

considered for aggressive systemic and loco-regional treatments to prolong survival expectancy and optimize

quality of life. Several studies have focused on LM from colorectal cancer, for which significant progress has been

achieved. Effective chemotherapy may lead to a relevant improvement in survival, exceeding 30 months in the

most favorable reports . Liver resection in selected patients obtained 5-year survival rates as high as 50%

; percutaneous ablation gained consensus, as it can grant effectiveness approaching that of surgery in

small LM . The treatment of non-colorectal LM is also evolving, but therapies other than chemotherapy are still

less codified . 
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Such an aggressive policy, including several therapeutic options, requires a precision medicine approach. The

selection of the appropriate course of action should rely on an adequate understanding of tumor biology and robust

clinical biomarkers. However, the availability of reliable prognostic indices is currently an unmet need. Pathologic

details of LM can be identified only ex-post after resection. Response of LM to chemotherapy is strongly associated

with prognosis , but it is overestimated by standard imaging modalities . Genetic mutations are

promising biomarkers, but they are still under evaluation .  

In recent decades, we became aware that imaging contains a great amount of data, namely in the form of grey

level patterns, which are invisible to the human eye . These texture characteristics can be correlated with

pathology data and outcomes , potentially allowing diagnostic and prognostic evaluation. The analysis of textural

features in medical images, which rely on mathematical functions, such as histogram analysis and matrices, is

termed radiomics . Recently, radiomic features have been standardized by the imaging biomarker research

initiative . This technology is attractive because it could be used to extract biological data directly from the

radiological images, without invasive procedures, thus sparing costs and time and avoiding any risk for the

patients. It would ideally embody the concept of "virtual biopsy." For many tumors, radiomic analyses have already

provided an accurate evaluation of biology, allowing the identification of indices correlated with clinical outcomes

. In LM, where multiple therapeutic options are often available, a radiomics-based approach could be

used to attain the most appropriate treatment decision. Based on the available literature, the present systematic

review aims to elucidate the contribution of radiomic analyses to the management of patients with LM.

2. General Characteristics of the Studies

Figure 1 depicts the selection process. After screening for duplicates and eligibility, 32 studies were included in the

qualitative synthesis. More than half of the publications (n = 18, 56%) were published in the last eighteen months.

Most papers (n = 28) described retrospective analyses, while four reported planned secondary analyses of

prospectively acquired data . Nineteen authors analyzed computed tomography (CT)

, eight magnetic resonance imaging (MRI) , three positron-

emission tomography (PET)/CT , and two multiple imaging modalities (CT and MRI; PET and MRI,

respectively) . Various software applications were used for texture analysis, with these being custom-made in

a large proportion of cases (n = 10).

[17][18] [19][20][21]

[22][23]
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[32][33][34][35] [32][33][34][35][36][37][38]

[39][40][41][42][43][44][45][46][47][48][49][50] [51][52][53][54][55][56][57][58]

[59][60][61]

[62][63]
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Figure 1. PRISMA Flowchart of study selection.

For the qualitative synthesis, we distinguished four groups of studies according to their subject: 1) radiomics of

colorectal LM; 2) radiomics of non-colorectal LM; 3) capability of radiomics to perform differential diagnosis of focal

liver lesions, distinguishing LM from other tumors (benign and malignant); 4) technical aspects of radiomics of LM.

In the first group (radiomics of colorectal LM), we further distinguished four subgroups of studies according to their

endpoints: prediction of survival, prediction of response to chemotherapy, correlation with pathological data, and

miscellaneous. For details, refer to Section 4.3. Figure 2 summarizes the organization of qualitative analysis. Most

papers (n = 18) analyzed radiomics of colorectal metastases. Due to the heterogeneity of studies, some papers

fitted into more categories.
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Figure 2. Outline of the selected studies organization. CRC: colorectal cancer, GLSZM: gray level size zone

matrices, GLCM: gray level co-occurrence matrices, GLRLM: gray-level run-length matrices.

3. Assessment of Study Quality  

The average radiomic quality score (RQS)  was in the 10 ± 6.5 (range 1–22), roughly 25% of the maximum score

(n = 36). Only four studies (16%)  had a score higher than 18 (>50% of the maximum score). The main

limitations in quality were the following: no cost-effectiveness analysis (32 studies, 100%); lack of open-data

repositories (n = 31, 97%); no phantom calibration (n = 31, 97%); failure to include a calibration statistic (n = 30,

94%); lack of prospective design (n = 28, 87%); and missing validation cohort (n = 18, 56%). At the transparent

reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) checklist  (31

elements), studies had an average score of 18 ± 3 points (range 14–29), i.e., 58 ± 10% of the maximum possible

score. According to the quality assessment of diagnostic accuracy studies (QUADAS-2) , there was a high risk of

a patient selection bias in 34% of papers because of selection/inclusion criteria in most cases. One-fourth of

studies had a high risk of bias related to the index test or the reference standard, while only one study (3%) had a

high risk of bias in flow and timing. The RQS and TRIPOD scores of studies are reported in Table 1. Details of

QUADAS-2 assessment and summary of its findings are presented in Table 2 and Supplementary Table S1.

 

Table 1. Details of studies included in the review.

[64]

[34][35][39][40]

[65]

[66]

First

Author

Year Diagnosis # Radiological

Technique

Analyzed

Series

Radiomics

Software

Program

Analysis

of

Second-

Order

Relevant

Radiomics

Features

RQS

(%)

TRIPOD

(%)
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Radiomic

Features

Ahn SJ

[37]
2016 CRC 235 CT PVP C++ based N Skewness

4

(11%)

18

(58%)

Ahn SJ

[36]
2019 NS 259 CT PVP

Custom

C++
Y

Skewness,

kurtosis,

entropy,

uniformity,

and GLCM

4

(11%)

20

(65%)

Andersen

IR [32]
2019 CRC 27 CT

Dynamic

contrast,

PVP

MatLab-

based
N

Skewness,

entropy,

and

uniformity

12

(33%)

19

(61%)

Beckers

RCJ [38]
2018 CRC 70 CT PVP

MatLab-

based
N

Entropy

and

uniformity

5

(14%)

21

(68%)

Chatterjee

A [57]
2018 NS 69 MRI

T1, Fast

spin-echo

T2, DWI

NS Y
GLCM,

GLRLM

17

(47%)

15

(48%)

Cheng J

[39]
2019 CRC 94 CT

Arterial,

PVP
NS Y

GLSZM,

GLNU

21

(58%)

20

(65%)

Dercle L

[40]
2020 CRC 667 CT PVP NS Y

Entropy,

GTDM,

Shape

22

(61%)

13

(42%)
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Dercle L

[35]
2017 NS 14 CT PVP TexRAD N Entropy

11

(31%)

22

(71%)

Dohan A

[33]
2019 CRC 230 CT PVP TexRAD N Kurtosis

21

(58%)

20

(65%)

Gatos I

[51]
2017 Multiple 22 MRI 1,5 T

T2- and

DWI
NS Y

GLCM,

GLRLM

7

(19%)

14

(14%)

Jansen

MJA [52]
2019 Multiple 95 MRI 1,5 T

T2-

weighted
NS Y

Entropy,

GLCM

15

(42%)

16

(52%)

Klaassen

R [41]
2018 EC 18 CT

Late

contrast

phase

MatLab-

based
Y GLCM

14

(39%)

23

(74%)

Li Y [42] 2019 CRC 24 CT PVP ITK-SNAP Y

Entropy,

uniformity,

and

GLRLM

15

(42%)

18

(58%)

LI Z [53] 2017 NS 67 MRI 3 T

T2-

weighted

SPAIR

NS Y

GLCM,

GLRLM,

GLSZM

14

(39%)

17

(55%)

Liang HY

[54]
2016 CRC 53 MRI 1,5 T

ADC

maps,

arterial,

PVP

MaZda N
None

significant

2

(5%)

16

(52%)

Lubner

MG [43]
2015 CRC 77 CT PVP TexRAD N

Entropy,

Energy

5

(14%)

18

(58%)
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Table 1. Cont.

Martini I

[44]
2019 NET 48 CT

Arterial

and PVP
TexRAD N

Skewness,

Kurtosis,

and

Entropy

1

(3%)

16

(52%)

Meyer M

[34]
2019 CRC 78 CT PVP Radiomics Y

Kurtosis,

energy,

GLCM,

GLRLM,

and

GLSZM

20

(56%)

16

(52%)

Peerlings

[58]
2019 Multiple 30

MRI 1,5 and

3 T
DWI

MatLab-

based
Y

GLCM,

GLRLM,

GTDM,

GLSZM

6

(16%)

18

(58%)

Rahmim A

[59]
2019 CRC 52 PET/CT

18F-FDG

PET
NS N Uniformity

6

(16%)

19

(61%)

Rao SX

[45]
2015 CRC 21 CT PVP

MatLab-

based
N

Entropy

and

uniformity

1

(3%)

19

(61%)

Ravanelli

M [46]
2019 CRC 43 CT PVP

MatLab-

based
N Uniformity

16

(45%)

17

(55%)

Reimer

RP [55]

2018 Multiple 37 MRI 1,5

T

T1, PVP and

hepatocellular

Mint Lesion N Skewness

and

5

(14%)

17

(55%)
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Kurtosis

Shur J

[62]
2019 CRC 102

CT; 1,5/3

T MRI

PVP (CT); T1

FS and

hepatocellular

MRI

Pyradiomics Y GLSZM
7

(19%)

29

(94%)

Simpson

AL [47]
2017 CRC 198 CT PVP NS Y GLCM

5

(14%)

19

(61%)

Song S

[48]
2019 Multiple 20 CT Arterial phase

Omni-

Kinetic
Y

Kurtosis,

GLCM

15

(42%)

15

(48%)

Trebeschi

[49]
2019 Multiple NS CT NS NS Y GLSZM

17

(47%)

16

(52%)

Van

Helden

EJ [61]

2018 CRC 47 PET/CT
18F-FDG

PET
NS  

Entropy

and

Shape

8

(25%)

17

(55%)

Velichko

YS [50]
2020 BC 54 CT PVP LIFEX Y

Uniformity

and

GLCM

5

(14%)

15

(48°

%)

Wagner F

[60]
2017 CRC 18

CT;

PET/CT

PVP (CT),

18F-FDG

PET

Pmod 3.5 N

Skewness

and

kurtosis

1

(3%)

19

(61%)

Weber M

[63]
2019 NET 100 PET/MRI

68Ga-

DOTAPET;

MRI ADC

LIFEX Y

Entropy,

uniformity,

and

GLCM

5

(14%)

16

(52%)
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CRC: Colorectal Cancer, NET: Neuroendocrine Tumor, EC: esophageal cancer, BC: breast cancer, PVP: portal

venous phase, FS: fat suppression, DWI: diffusion-weighted images, SPAIR: spectral-attenuated inversion

recovery, ADC: apparent diffusion coefficient, GLCM: gray level co-occurrence matrix, GLRLM: gray-level run-

length matrix, GTDM: gray-tone difference matrix, GLSZM: gray level size zone matrix, GLNU: gray-level non-

uniformity, NS: not specified.

 

Table 2. QUADAS-2 evaluation of studies.

Evaluation

Risk of Bias Applicability Concerns

Patient

Selection

Index

Test

Reference

Standard

Flow

and

Timing

Patient

Selection

Index

Test

Reference

Standard

Low Risk 15 (47%)
18

(56%)
18 (56%)

28

(87%)
21 (65%)

21

(65%)
19 (59%)

High Risk 11 (34%)
8

(25%)
8 (25%) 1 (3%) 8 (25%)

6

(19%)
6 (19%)

Unclear 6 (19%)
6

(19%)
6 (19%)

3

(10%)
3 (10%)

5

(16%)
7 (22%)

Before analyzing the studies' results in detail, it is helpful to elucidate terminology that is commonly used in

radiomics. The definition of radiomic features investigated in the studies is detailed in Table 3. In addition, region of

interest (ROI) is defined as the selected area or volume of any imaging modality to analyze for the extraction of

radiomic features.

Table 3. Overview of the analyzed radiomic characteristics.

Zhang H

[56]
2018 CRC 26 MRI 3 T T2-weighted

MatLab-

based
Y GLCM

9

(25%)

17

(55%)
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Feature Family General Description Common Features Specific Description

Shape & Size 2D/3D geometric

properties of the

region of interest

Area
 

Volume
Number of voxels in the

ROI

Maximum 3D diameter

The maximum distance

between any two voxels

on the surface of the

ROI

Major axis length
 

Minor axis length
 

Surface Area
 

Compactness

How compact the

region is independent of

scale and orientation
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Elongation
The inverse of

compactness

Flatness
Absence of curvature in

an ROI

Sphericity

The roundness of the

shape of the ROI

relative to a sphere

Spherical disproportion

ROI surface area

/surface area of a

sphere based on ROI

radius

First Order

Statistics

Intensity distribution

in the ROI based on

the intensity

histogram, regardless

of the spatial

relationships

Intensity

Includes mean, min,

max, SD, and

percentiles

Energy

The magnitude of voxel

intensities (sum of

square voxel values)
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Uniformity/homogeneity

The sum of the squares

of each intensity value

in the ROI

Entropy
Amount of information

in voxel values

Skewness

Asymmetry of values.

Negative skewness:

data are skewness to

the right of the mean

(higher values). Positive

skewness: data are

skewed to the left of the

mean (lower values).

Kurtosis Distribution of voxel

values. Low kurtosis:

most data points are

close to the mean (few

outliers). High kurtosis:

data are spread far

from the mean (more

outliers).
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Second-Order

Statistics

Textural features

quantifying tumor

heterogeneity by

analyzing the spatial

distribution of

pixel/voxel intensities Gray level co-occurrence matrix (GLC

M)

Measures the

arrangements of voxel

pairs along a fixed

direction (homogeneity,

contrast, correlation,

entropy, dissimilarity,

and angular second

moment/energy)

Gray level run length matrix (GLRLM)

Consecutive voxels with

the same intensity

along with fixed

directions (can have

long- or short-run, as

well as low- and high-

gray level emphasis).

Gray level size zone matrix (GLSZM)

Clusters of connected

pixels with the same

grey value. They can

have small- and large-

area as well as low- or

high-gray emphasis.
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Neighborhood gray tone/level

difference matrix (NGTDM/NGLDM)

The difference in gray

level between one voxel

and its 8/26directions

(in 2D/3D). Includes

rate, intensity, and

frequency of intensity

change.

Model-or

transform-based

Statistics

Relationship between

three or more pixels

or voxels

Autoregressive model

Filters or mathematical

transforms to the

images identifying

repetitive or non-

repetitive patterns,

suppressing noise, or

highlighting details,

extract areas with

increasingly coarse

texture patterns

Wavelet transform

Fractal analysis

Minkowski functionals

Fourier transform

 

2.3. Radiomics of LM From Colorectal Cancer

2.3.1. Prediction of Survival

Ten studies analyzed radiomic features' ability to predict the outcome of patients with colorectal LM

[32,33,38,40,43,46,47,59,61,62]. Four included training and validation datasets [33,37,40,46]. The endpoint was
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overall survival (OS) in nine studies [32,33,38,40,43,46,47,59,61], progression-free survival (PFS) in four

[46,59,61,62], hepatic PFS in one [47], and event-free survival in one [59]. In six papers, patients underwent

chemotherapy [32,33,40,43,46,61], in two, liver surgery [47,62], and in two, either chemotherapy or surgery [38,59].

Six studies analyzed imaging modalities before treatment [38,43,47,59,61,62], while four performed comparative

analyses of imaging modalities before and after chemotherapy [32,33,40,46]. Two studies performed texture

analysis not only of LM but also of non-tumoral liver [38,47]. Finally, six studies analyzed the prognostic role of

radiomic features in comparison or combination with traditional biomarkers [33,38,46,47,59,62].

Four studies demonstrated an association between the homogeneity/heterogeneity of LM and survival. Ravanelli et

al. reported lower OS and PFS in patients with a higher uniformity of LM at CT scan (cut-off ≥0.42; relative risk

(RR) = 6.94; 95% confidence intervals (95%CI) = 1.79–26.79 for OS; RR = 5.05, 95%CI = 1.74–14.66 for PFS)

[46]. Andersen et al. described an association between shorter OS and tumor homogeneity at CT (hazard ratio

(HR) ranging from 1.5 × 10  to 1.3 × 10 , according to the filter used) [32]. Comparing imaging before and after

chemotherapy, Dercle et al. identified a radiomic signature associated with OS based on two measures of

heterogeneity (spatial heterogeneity and Graytone Difference Matrix contrast, HR = 44.3, 95%CI = 6.4–307.7 for

patients with high imaging quality; HR = 6.5, 95%CI = 1.8–23.6 for patients with standard imaging quality) [40]. In

the validation setting, the radiomic signature predicted survival better than KRAS-mutational status and 8-week

tumor shrinkage evaluated according to RECIST criteria (AUC = 0.80 vs. AUC = 0.67 for KRAS and AUC = 0.75 for

RECIST, p < 0.001). Finally, in the study by Rahmim et al., at multivariable analysis, LM heterogeneity at F-FDG

PET/CT was a predictor of shorter OS (included into a predictive model, HR = 4.29, 95%CI = 2.15–8.57) [59]. The

authors also depicted a model including histogram uniformity, number of metastases, and metabolic tumor volume

that was predictive of a shorter event-free survival (HR = 3.20, 95%CI 1.73–5.94, p < 0 .001) [59].

Three studies showed an association between entropy and prognosis. Andersen et al. and Lubner et al. reported

that the higher the entropy of LM, the better the OS (HR ranging from 0.16 to 0.63 in the Andersen et al. study,

according to the filter used; HR = 0.65, 95%CI = 0.44–0.95 at coarse filter level in the Lubner et al. study) [32,43].

On the other hand, Beckers et al. reported some prognostic value of the ratio between entropy of LM and entropy

of parenchyma (the higher the value, the shorter the OS, HR = 1.9, 95%CI = 0.95–3.78) [38].

Additional radiomic features have been reported. In the Simpson et al. study, LM correlation and contrast

(combined into a single texture parameter) were associated with OS (HR = 2.35, 95%CI = 1.21–4.55) [47]. Dohan

et al. analyzed imaging modalities before and after treatment and identified three predictors of OS: a decrease in

the sum of the target liver lesions, high baseline density of dominant liver lesion, and drop in kurtosis [33]. Those

three features (combined into a texture analysis score) evaluated after two months of chemotherapy had a strong

association with OS (SPECTRA Score >0.02 vs. ≤0.02, HR = 2.82, 95%CI = 1.85–4.28 in the training dataset; HR

= 2.07, 95%CI = 1.34–3.20 in the validation dataset). Radiomic score at two months had the same prognostic value

of RECIST criteria after six months of chemotherapy. Shur et al. reported an association of minimal pixel value

(negative prognostic factor, HR = 1.66, 95%CI = 1.28–2.16) and gray level size zone matrix (GLSZM) small area

emphasis (positive prognostic factor, HR = 0.62, 95%CI = 0.47–0.83) with the PFS [62]. Finally, the following

features have been associated with OS: standard deviation [32], LM density at CT scan [46], future liver remnant

20 49

18
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energy and entropy combined into a single linear predictor [47], ShapeSI4 (included in a radiomic signature) [40],

and area under the curve of volume histograms at PET-CT [61].

 

The results of studies about radiomic features associated with the prediction of survival are summarized in Table 4

and Supplementary Table S2.

2.3.2. Prediction of Response to Systemic Chemotherapy

Ten studies analyzed the association between radiomic features and response to chemotherapy

[32,33,37,38,40,45,46,54,56,61]. Evidence mainly regarded patients receiving anti-VEGF treatment. had training

and validation datasets [33,37,40,46]. The reference standard was RECIST criteria in all but one study, which used

tumor regression grade (TRG) [45]. Half of the studies analyzed the imaging modalities before and after treatment

[32,33,40,45,46], while the other half considered only baseline imaging [37,38,54,56,61]. Four studies focused on

targeted therapies associated with systemic chemotherapy [32,33,45,46].

In the Rao et al. paper, the entropy of LM after chemotherapy decreases in responders, while uniformity increases

(entropy: −5.13 in responders vs. +1.27 in non-responders, OR = 1.34, 95%CI = 0.92–1.93; uniformity: +30.84 vs.

−0.44, respectively, OR = 0.95, 95%CI = 0.89–1.01) [45]. Ravanelli et al. associated a good response with low

baseline uniformity (cut-off ≥0.42; OR = 20, 95%CI = 1.85–217.4) [46]. In the study by Beckers et al., treatment

success was slightly associated with higher entropy (6.65 ± 0.26 in responders vs. 6.51 ± 0.34 in non-responders,

p = 0.08) [38]. The Zhang et al. analysis of T2 MRI images before chemotherapy showed that responding lesions

had a higher variance and lower angular second moment (two measures of homogeneity) than non-responding

ones (variance: 446.07 ± 329.60 in responders vs. 210.23 ± 183.39 in non-responders, p < 0.001; angular second

moment: 0.96 ± 0.02 vs. 0.98 ± 0.01, respectively, p < 0.001) [56]. Dercle et al. built a signature, based on two

measures of entropy, gray-tone difference matrix contrast and shape, which allowed to predict responsiveness to

anti-angiogenic treatment (AUC = 0.80, CI95% = 0.69–0.94 for patients with high imaging quality; AUC = 0.72,

CI95% = 0.59–0.83 for patients with standard imaging quality) [40]. Andersen et al. depicted LM modification after

treatment with regorafenib. They observed data discordant with previous analyses (increase in entropy and

decrease in uniformity), but none of the patients displayed a measurable response (85% had stable disease, while

the remaining ones had progression) [32]. Considering skewness, in the study of Ahn et al., low baseline values

(indicating a higher spread towards higher gray levels) were associated with response (0.02 ± 0.32 in responders

vs. 0.33 ± 0.44 in non-responders, p = 0.001) [37]. One study demonstrated a skewness increase during treatment

[32]. In opposition to CT and MRI, high entropy detected at F-FDG PET images before treatment predicted a

worse response to therapy (AUC = 0.74, 95%CI = 0.52–0.97) [61].

Other features have been associated with response: high mean attenuation [37]; narrow standard deviation [37];

high baseline density of dominant liver lesion [33]; and mean values of histogram parameters for apparent diffusion

coefficient maps [54].

18
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The results of studies about radiomic features associated with the prediction of response to chemotherapy are

summarized in Table 4 and Supplementary Table S3.

2.3.3. Prediction of Pathology Data

Three studies evaluated the association between radiomic features and pathology data [39,43,45]. Lubner et al.

demonstrated that entropy, mean of positive pixels, and standard deviation are inversely associated with tumor

grading (p = 0.007 for entropy, p = 0.002 for mean positive pixels, and p = 0.004 for standard deviation), while

skewness and kurtosis showed a trend for an inverse association with KRAS mutation (p = 0.04 for skewness, and

p = 0.058 for kurtosis) [43]. Cheng et al. reported that growth patterns of LM (desmoplastic, replacing, and pushing)

can be successfully discerned on CT images by using second-order radiomic features, in particular gray level size

zone matrix and gray level non-uniformity (AUC = 0.926, 95%CI = 0.875–0.978 in the training dataset; AUC =

0.939, 95%CI = 0.859–1.000 in the external validation dataset) [39]. In Rao et al.’s paper, the delta in entropy and

uniformity values between pre- and post-chemotherapy imaging modalities were predictors of TRG values in

patients receiving oxaliplatin-based chemotherapy with or without bevacizumab (entropy variation: −5.13 in TRG 1–

2 vs. +1.27 in TRG 3–5, OR = 1.34, CI95% = 0.92–1.93; uniformity variation: +30.84 vs. −0.44, respectively, OR =

0.95, CI95% = 0.89–1.01), while RECIST criteria were not [45].

2.3.4. Other Papers

Three additional papers studied the radiomic features of colorectal LM. Reimer et al. analyzed the evaluation of

response of LM undergoing trans-arterial radio-embolization [55]. In post-treatment MRI, higher kurtosis in arterial

and portal phases and higher skewness in portal phase identified patients with a progressive disease earlier than

standard RECIST criteria. Li Y et al. reported a model based on radiomic features of the primary tumor and LM

before resection (heterogeneity, entropy, energy of vertical wavelet, emphasis) that was able to predict the future

appearance of further LM [42]. Wagner et al. analyzed CT and PET-CT imaging of primary tumor and LM [60].

They demonstrated that colon cancer and LM have different skewness and kurtosis at both imaging modalities (CT

and PET-CT), while colon cancers with or without LM have similar features.

Table 4. summarizes the data of studies dealing with colorectal LM.

 

 

Table 4. Studies on radiomics in patients with liver metastases from colorectal cancer.

First

Author
Year Design # Imaging

Analyzed

Imaging

Main

Intervention

Intervention

Type

Pathology

Data

Validation

Cohort

Outcome

Measures

Synopsis of

Findings
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Survival

Lubner

MG [43]
2015 R 77 CT

Pre-

therapy

Systemic

therapy
NS Y N OS

 Entropy

correlated with

longer OS

Simpson

AL [47]
2017 R 198 CT

Pre-

therapy
Surgery Metastasectomy N N OS/HDFS

Tumor

correlation and

contrast were

associated with

OS; future liver

remnant energy

and entropy

were

associated with

OS and HDFS

Andersen

IR [32]
2019 P 27 CT

Pre/post-

therapy

Systemic

therapy
Regorafenib N N OS

LM uniformity

predicted

shorter OS; LM

entropy

predicted longer

OS

Beckers

RCJ [38]
2018 R 70 CT

Pre-

therapy

Systemic

therapy or

surgery

XELOX with or

w/o Bevacizumab
N N OS

LM/parenchyma

entropy ratio

correlated with

disease burden

and OS.

Dercle L

[40]

2020 R 667 CT Pre/post-

therapy

Systemic

therapy

FOLFIRI with-w/o

Cetuximab

N Y OS A signature

using Shape

SI4, Log Z/X

Entropy, GTDM

Contrast can

predict OS.
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Dohan A

[33]
2019 P 230 CT

Pre/post-

therapy

Systemic

therapy

FOLFIRI and

Bevacizumab
N Y OS

A radiomic

score granted

earlier OS

prediction than

RECIST 1.1

Rahmim

A [59]
2019 R 52

FDG

PET

Pre-

therapy
Mixed

Systemic, RF, or

Metastasectomy
N N OS, EFS

LM

heterogeneity

predicts OS;

histogram

uniformity

predicts EFS

Ravanelli

M [46]
2019 R 43 CT

Pre/post-

therapy

Systemic

therapy

FOLFIRI/FOLFOX

with-w/o

Bevacizumab

N N OS, PFS

Uniformity was

related to PFS;

uniformity and

CT density

were

associated with

OS in the

EGFR group

Shur J

[62]
2019 R 102 CT; MRI

Pre-

surgery

Neoadjuvant

therapy and

surgery

NS,

Metastasectomy
N N DFS

Minimum pixel

value and

GLSZM small

area emphasis

are associated

with DFS.

Van

Helden

EJ [61]

2018 R 47
FDG

PET

Pre-

therapy

Systemic

therapy

XELOX with or

w/o Bevacizumab

or Cetuximab

N N OS, PFS

AUC-ISH

predicted OS

and PFS
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Table 4. Cont.

Response to chemotherapy

Ahn SJ

[36]
2016 R 235 CT

Pre-

therapy

Systemic

therapy

FOLFIRI or

FOLFOX
N Y RECIST

Lower

skewness on

2D, higher

attenuation in

3D, narrower

SD on 3D

predict the

therapy

response

Andersen

IR [32]
2019 P 27 CT

Pre/post-

therapy

Systemic

therapy
Regorafenib N N RECIST

Entropy and

skewness

increased;

uniformity

decreased

after

treatment

Beckers

RCJ [38]
2018 R 56 CT

Pre-

therapy

Systemic

therapy

XELOX with-w/o

Bevacizumab
N N RECIST

LM entropy

showed a

trend for

being higher

in responders

Dercle L

[40]

2020 R 667 CT Pre/post-

therapy

Systemic

therapy

FOLFIRI with-w/o

Cetuximab

N Y RECIST Shape SI4,

Log Z/X

Entropy,

GTDM

Contrast can

predict
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Cetuximab

sensitivity.

Dohan A

[33]
2019 P 230 CT

Pre/post-

therapy

Systemic

therapy

FOLFIRI and

Bevacizumab
N Y RECIST

LM density,

integrated into

a radiomics

score,

identified

responders.

Liang HY

[54]
2015 R 53 MRI

Pre-

therapy

Systemic

therapy

Fluorouracil-based

chemotherapy
N N RECIST

Mean ADC

values are

lower in

responders.

Rao SX

[45]
2015 R 21 CT

Pre/post-

therapy

Systemic

therapy

XELOX with-w/o

Bevacizumab
Y N TRG

A decrease in

entropy and

uniformity

increase after

treatment

correlates

with

response.

Ravanelli

M. [46]
2019 R 43 CT

Pre/post-

therapy

Systemic

therapy

FOLFIRI/FOX

with-w/o

Bevacizumab

N N RECIST

Uniformity

discriminated

EGFR

responders

from non-

responders

Van

Helden

EJ [61]

2018 R 47
FDG

PET

Pre-

therapy

Systemic

therapy

XELOX with or

w/o Bevacizumab

or Cetuximab

N N RECIST

Entropy was

higher in

patient non-

responders
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Table 4. Cont.

Zhang H

[56]
2018 R 26 MRI

Pre-

therapy

Systemic

therapy

FOLFORI or

FOLFOX or

XELOX

N N
Size

change

Responding

LM had a

higher

variance and

lower angular

second

moment

Miscellaneous

Cheng J

[39]
2019 R 94 CT

Pre-

therapy
Surgery

Partial

hepatectomy
Y Y HGP

A clinic-

radiomics

model

(GLSZM and

gray level

non-

uniformity)

can predict

growth

patterns.

Li Y [42] 2019 R 24 CT
Pre-

therapy
Surgery

Colectomy,

lymphadenectomy,

metastasectomy

N Y
LM

occurrence

Heterogeneity,

entropy,

energy, and

GLRLM_LGE

predicted the

risk of LM

Reimer

RP [55]

2018 R 16 MRI Post-

therapy

TARE TARE with

90Y-

microspheres

N N RECIST High kurtosis

(arterial/venous)

and low

skewness
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R: Retrospective, P: Prospective, CRC: Colorectal Cancer, NET: Neuroendocrine Tumor, LM: liver metastases, RF:

radiofrequency, XELOX: Capecitabine and Oxaliplatin, FOLFIRI: Fluorouracil and Irinotecan, FOLFOX: Fluorouracil

and Oxaliplatin, TARE: trans-arterial radioembolization, OS: overall survival, HDFS: hepatic disease-free survival,

EFS: event-free survival, PFS: progression-free survival, RECIST: response evaluation criteria in solid tumors,

HGP: histological growth patterns, GLSZM: gray level size zone matrix, GTDM: gray-tone difference matrix, ADC:

apparent diffusion coefficient, AUC-ISH: area-under-the-curve of cumulative SUV/Volume histograms, NS: not

specified.

4. Radiomics of Non-Colorectal LM

Four papers focused on non-colorectal LM. A single study assessed CT-based radiomic indices in LM from

esophageal cancer [41]. The study found that the characteristics of pre-treatment CT related to heterogeneity and

gray-level intensity, such as wavelet gray level co-occurrence matrix correlation and gray level distance zone

matrix with large dependence emphasis, were predictors of response to chemotherapy. Two studies explored

radiomic analyses in LM from neuroendocrine tumors (NET) . Martini et al. analyzed a small series of patients

(n = 49) but observed a number of associations: pancreatic NET had lower skewness and higher mean HU than

non-pancreatic ones; entropy in the arterial phase was negatively associated with PFS in pancreatic NET and with

OS in non-pancreatic NET; kurtosis was associated with lower OS in pancreatic NET, while skewness with higher

one . Weber et al. investigated the correlation between parameters derived from the somatostatin receptor

agonist ( Ga-DOTATOC) PET and MRI with the proliferation index Ki67 . Entropy and dissimilarity (from both

PET and MRI) had a direct correlation with Ki67, while homogeneity had an inverse one. Moreover, it was possible

to distinguish G1 and G2 LM on the basis of entropy, homogeneity, and dissimilarity (on PET data only). Finally,

Trebeschi et al. reported heterogeneity-related radiomics parameters as predictors of response to immunotherapy

in LM of melanoma and non-small-cell lung carcinoma .

2.5. Differentiation of LM From Other Hepatic Lesions

(venous)

identified

progression

Wagner

F [60]
2017 R 18

CT;

FDG

PET

Pre-

therapy

Systemic

therapy
NS N N Primary/LM

Skewness and

kurtosis (CT)

and kurtosis

(PET) are

different in

primary and LM

[44][63]

[44]

68 [63]

[49]
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Four studies investigated whether radiomic features could discriminate LM from other hepatic lesions. Jansen et al.

analyzed metastases, primary hepatic tumors, and benign lesions (adenomas, cysts, and hemangiomas) on MRI

images . A model using, among other features, the time to peak histograms and the sum of squared variance

could distinguish different liver lesions. In the paper by Gatos et al., selected texture characteristics (inverse

different moment, sum variance, and long-run emphasis) could differentiate metastases, hepatocellular carcinoma

(HCC), and benign lesions . Li et al. tested a model to distinguish hemangiomas, LM, and HCC, using second-

order features (gray level co-occurrence matrix, gray-level run-length matrix, and intensity-size zone matrix) . In

their model, no feature combination could differentiate the three types of lesion at the same time. Differential

diagnosis of the two malignant entities (LM and HCC) required a more complex model, with a higher number of

features, than differential diagnosis between benign and malignant lesions (LM vs. hemangiomas or HCC vs.

hemangiomas). Finally, a study by Song et al. identified kurtosis, variance, and inverse difference moment as

distinguishing criteria between benign and malignant hypervascular lesions . Only the latter study used pathology

data as the reference standard for all the analyzed patients.

Figure 3 provides an overview of the potential contribution of radiomics to the management of patients with LM.

Figure 3. Present and potential future contribution of radiomics to clinical practice.

5. Influence of Technical Features on Radiomic Analyses

Some studies set off to investigate whether acquisition or reconstruction parameters could influence the values of

texture analysis indices. Ahn et al. tested three different reconstruction modes of CT images, i.e., filtered back-

projection, iterative reconstruction model, and hybrid iterative reconstruction. The reconstruction method affected

numerous parameters, including entropy, homogeneity, skewness, kurtosis, and gray-level co-occurrence matrices

. Lubner et al. compared the effect of 2D and 3D reconstruction on radiomic parameters by performing a Bland–

Altman analysis on a subset of 20 patients . The results were similar for the two methods. Those results were

[52]

[51]

[53]

[48]

[36]

[43]
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confirmed by a further investigation by Ahn et al. . The latter study also compared the influence of different CT

scanners, ranging from 8 to 64 rows, on the radiomic parameters, without finding any significant difference. Similar

results were reported in the MRI setting: Peerlings et al. used the concordance correlation coefficient to test the

reproducibility of an array of first- and second-level radiomics parameters over time (multiple MRI) and different

MRI systems on apparent diffusion coefficient maps, finding good stability with most parameters . Conversely,

two studies reported that radiomic parameters derived from CT scans are affected by slice thickness setting and

ROI size . Dercle et al. demonstrated that ROI area size, metastatic site, and the individual characteristics of

image acquisitions should be considered as confounding factors in the evaluation of tumor entropy .

Inter-observer agreement was assessed by four studies [33,52,54,60]. Although they used different indices, such

as K-statistic, intra-class correlation, and correlation index (r-value), all studies reported a substantial or excellent

agreement among different readers. Finally, one study by Chatterjee et al. devised a method to reduce the rate of

false discovery when analyzing radiomic parameters in small datasets .
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