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Multidisciplinary management of patients with liver metastases (LM) requires a precision medicine approach, based on

adequate profiling of tumor biology and robust biomarkers. Radiomics, defined as the high-throughput identification,

analysis, and translational applications of radiological textural features, could fulfill this need. The present review aims to

elucidate the contribution of radiomic analyses to the management of patients with LM. We performed a systematic review

of the literature through the most relevant databases and web sources. English language original articles published before

June 2020 and concerning radiomics of LM extracted from CT, MRI, or PET-CT were considered. Thirty-two papers were

identified. Baseline higher entropy and lower homogeneity of LM were associated with better survival and higher

chemotherapy response rates. A decrease in entropy and an increase in homogeneity after chemotherapy correlated with

radiological tumor response. Entropy and homogeneity were also highly predictive of tumor regression grade. In

comparison with RECIST criteria, radiomic features provided an earlier prediction of response to chemotherapy. Lastly,

texture analyses could differentiate LM from other liver tumors. The commonest limitations of studies were small sample

size, retrospective design, lack of validation datasets, and unavailability of univocal cut-off values of radiomic features. In

conclusion, radiomics can potentially contribute to the precision medicine approach to patients with LM, but

interdisciplinarity, standardization, and adequate software tools are needed to translate the anticipated potentialities into

clinical practice.

Keywords: radiomics ; texture analysis ; computer-assisted diagnosis ; liver metastases ; gray level matrices ; response to
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1. Introduction

The liver is a frequent target for distant metastases from several tumors. Liver metastases (LM) are associated with poor

prognosis and may occur early in gastrointestinal malignancies because of hematogenous spread through the portal

venous system . Selected patients with LM, mainly those with liver-only metastases, can be considered for

aggressive systemic and loco-regional treatments to prolong survival expectancy and optimize quality of life. Several

studies have focused on LM from colorectal cancer, for which significant progress has been achieved. Effective

chemotherapy may lead to a relevant improvement in survival, exceeding 30 months in the most favorable reports .

Liver resection in selected patients obtained 5-year survival rates as high as 50%  ; percutaneous ablation

gained consensus, as it can grant effectiveness approaching that of surgery in small LM . The treatment of non-

colorectal LM is also evolving, but therapies other than chemotherapy are still less codified . 

Such an aggressive policy, including several therapeutic options, requires a precision medicine approach. The selection of

the appropriate course of action should rely on an adequate understanding of tumor biology and robust clinical

biomarkers. However, the availability of reliable prognostic indices is currently an unmet need. Pathologic details of LM

can be identified only ex-post after resection. Response of LM to chemotherapy is strongly associated with prognosis

, but it is overestimated by standard imaging modalities . Genetic mutations are promising biomarkers, but they

are still under evaluation .  

In recent decades, we became aware that imaging contains a great amount of data, namely in the form of grey level

patterns, which are invisible to the human eye . These texture characteristics can be correlated with pathology data and

outcomes , potentially allowing diagnostic and prognostic evaluation. The analysis of textural features in medical

images, which rely on mathematical functions, such as histogram analysis and matrices, is termed radiomics .

Recently, radiomic features have been standardized by the imaging biomarker research initiative . This technology is

attractive because it could be used to extract biological data directly from the radiological images, without invasive

procedures, thus sparing costs and time and avoiding any risk for the patients. It would ideally embody the concept of

"virtual biopsy." For many tumors, radiomic analyses have already provided an accurate evaluation of biology, allowing the

identification of indices correlated with clinical outcomes . In LM, where multiple therapeutic options are often

available, a radiomics-based approach could be used to attain the most appropriate treatment decision. Based on the

available literature, the present systematic review aims to elucidate the contribution of radiomic analyses to the

management of patients with LM.
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2. General Characteristics of the Studies

Figure 1 depicts the selection process. After screening for duplicates and eligibility, 32 studies were included in the

qualitative synthesis. More than half of the publications (n = 18, 56%) were published in the last eighteen months. Most

papers (n = 28) described retrospective analyses, while four reported planned secondary analyses of prospectively

acquired data . Nineteen authors analyzed computed tomography (CT)

, eight magnetic resonance imaging (MRI) , three positron-emission tomography

(PET)/CT , and two multiple imaging modalities (CT and MRI; PET and MRI, respectively) . Various software

applications were used for texture analysis, with these being custom-made in a large proportion of cases (n = 10).

Figure 1. PRISMA Flowchart of study selection.

For the qualitative synthesis, we distinguished four groups of studies according to their subject: 1) radiomics of colorectal

LM; 2) radiomics of non-colorectal LM; 3) capability of radiomics to perform differential diagnosis of focal liver lesions,

distinguishing LM from other tumors (benign and malignant); 4) technical aspects of radiomics of LM. In the first group

(radiomics of colorectal LM), we further distinguished four subgroups of studies according to their endpoints: prediction of

survival, prediction of response to chemotherapy, correlation with pathological data, and miscellaneous. For details, refer

to Section 4.3. Figure 2 summarizes the organization of qualitative analysis. Most papers (n = 18) analyzed radiomics of

colorectal metastases. Due to the heterogeneity of studies, some papers fitted into more categories.

Figure 2. Outline of the selected studies organization. CRC: colorectal cancer, GLSZM: gray level size zone matrices,

GLCM: gray level co-occurrence matrices, GLRLM: gray-level run-length matrices.

3. Assessment of Study Quality  

The average radiomic quality score (RQS)  was in the 10 ± 6.5 (range 1–22), roughly 25% of the maximum score (n =

36). Only four studies (16%)  had a score higher than 18 (>50% of the maximum score). The main limitations in

quality were the following: no cost-effectiveness analysis (32 studies, 100%); lack of open-data repositories (n = 31, 97%);

no phantom calibration (n = 31, 97%); failure to include a calibration statistic (n = 30, 94%); lack of prospective design (n =

28, 87%); and missing validation cohort (n = 18, 56%). At the transparent reporting of a multivariable prediction model for

individual prognosis or diagnosis (TRIPOD) checklist  (31 elements), studies had an average score of 18 ± 3 points
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(range 14–29), i.e., 58 ± 10% of the maximum possible score. According to the quality assessment of diagnostic accuracy

studies (QUADAS-2) , there was a high risk of a patient selection bias in 34% of papers because of selection/inclusion

criteria in most cases. One-fourth of studies had a high risk of bias related to the index test or the reference standard,

while only one study (3%) had a high risk of bias in flow and timing. The RQS and TRIPOD scores of studies are reported

in Table 1. Details of QUADAS-2 assessment and summary of its findings are presented in Table 2 and Supplementary

Table S1.

 

Table 1. Details of studies included in the review.

First
Author

Year Diagnosis #
Radiological
Technique

Analyzed
Series

Radiomics
Software
Program

Analysis
of
Second-
Order
Radiomic
Features

Relevant
Radiomics
Features

RQS
(%)

TRIPOD
(%)

Ahn SJ

[37]
2016 CRC 235 CT PVP C++ based N Skewness

4

(11%)

18

(58%)

Ahn SJ

[36]
2019 NS 259 CT PVP

Custom

C++
Y

Skewness,

kurtosis,

entropy,

uniformity,

and GLCM

4

(11%)

20

(65%)

Andersen

IR [32]
2019 CRC 27 CT

Dynamic

contrast,

PVP

MatLab-

based
N

Skewness,

entropy,

and

uniformity

12

(33%)

19

(61%)

Beckers

RCJ [38]
2018 CRC 70 CT PVP

MatLab-

based
N

Entropy

and

uniformity

5

(14%)

21

(68%)

Chatterjee

A [57]
2018 NS 69 MRI

T1, Fast

spin-echo

T2, DWI

NS Y
GLCM,

GLRLM

17

(47%)

15

(48%)

Cheng J

[39]
2019 CRC 94 CT

Arterial,

PVP
NS Y

GLSZM,

GLNU

21

(58%)

20

(65%)

Dercle L

[40]
2020 CRC 667 CT PVP NS Y

Entropy,

GTDM,

Shape

22

(61%)

13

(42%)

Dercle L

[35]
2017 NS 14 CT PVP TexRAD N Entropy

11

(31%)

22

(71%)

Dohan A

[33]
2019 CRC 230 CT PVP TexRAD N Kurtosis

21

(58%)

20

(65%)

Gatos I

[51]
2017 Multiple 22 MRI 1,5 T

T2- and

DWI
NS Y

GLCM,

GLRLM

7

(19%)

14

(14%)

[66]



Jansen

MJA [52]
2019 Multiple 95 MRI 1,5 T

T2-

weighted
NS Y

Entropy,

GLCM

15

(42%)

16

(52%)

Klaassen

R [41]
2018 EC 18 CT

Late

contrast

phase

MatLab-

based
Y GLCM

14

(39%)

23

(74%)

Li Y [42] 2019 CRC 24 CT PVP ITK-SNAP Y

Entropy,

uniformity,

and

GLRLM

15

(42%)

18

(58%)

LI Z [53] 2017 NS 67 MRI 3 T

T2-

weighted

SPAIR

NS Y

GLCM,

GLRLM,

GLSZM

14

(39%)

17

(55%)

Liang HY

[54]
2016 CRC 53 MRI 1,5 T

ADC

maps,

arterial,

PVP

MaZda N
None

significant

2

(5%)

16

(52%)

Lubner

MG [43]
2015 CRC 77 CT PVP TexRAD N

Entropy,

Energy

5

(14%)

18

(58%)

Martini I

[44]
2019 NET 48 CT

Arterial

and PVP
TexRAD N

Skewness,

Kurtosis,

and

Entropy

1

(3%)

16

(52%)

Meyer M

[34]
2019 CRC 78 CT PVP Radiomics Y

Kurtosis,

energy,

GLCM,

GLRLM,

and

GLSZM

20

(56%)

16

(52%)

Peerlings

[58]
2019 Multiple 30

MRI 1,5 and

3 T
DWI

MatLab-

based
Y

GLCM,

GLRLM,

GTDM,

GLSZM

6

(16%)

18

(58%)

Rahmim A

[59]
2019 CRC 52 PET/CT

18F-FDG

PET
NS N Uniformity

6

(16%)

19

(61%)

Rao SX

[45]
2015 CRC 21 CT PVP

MatLab-

based
N

Entropy

and

uniformity

1

(3%)

19

(61%)

Ravanelli

M [46]
2019 CRC 43 CT PVP

MatLab-

based
N Uniformity

16

(45%)

17

(55%)
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Reimer

RP [55]
2018 Multiple 37

MRI 1,5

T

T1, PVP and

hepatocellular
Mint Lesion N

Skewness

and

Kurtosis

5

(14%)

17

(55%)

Shur J

[62]
2019 CRC 102

CT; 1,5/3

T MRI

PVP (CT); T1

FS and

hepatocellular

MRI

Pyradiomics Y GLSZM
7

(19%)

29

(94%)

Simpson

AL [47]
2017 CRC 198 CT PVP NS Y GLCM

5

(14%)

19

(61%)

Song S

[48]
2019 Multiple 20 CT Arterial phase

Omni-

Kinetic
Y

Kurtosis,

GLCM

15

(42%)

15

(48%)

Trebeschi

[49]
2019 Multiple NS CT NS NS Y GLSZM

17

(47%)

16

(52%)

Van

Helden

EJ [61]

2018 CRC 47 PET/CT 18F-FDG PET NS  

Entropy

and

Shape

8

(25%)

17

(55%)

Velichko

YS [50]
2020 BC 54 CT PVP LIFEX Y

Uniformity

and

GLCM

5

(14%)

15

(48°

%)

Wagner F

[60]
2017 CRC 18

CT;

PET/CT

PVP (CT),

18F-FDG PET
Pmod 3.5 N

Skewness

and

kurtosis

1

(3%)

19

(61%)

Weber M

[63]
2019 NET 100 PET/MRI

68Ga-

DOTAPET;

MRI ADC

LIFEX Y

Entropy,

uniformity,

and

GLCM

5

(14%)

16

(52%)

Zhang H

[56]
2018 CRC 26 MRI 3 T T2-weighted

MatLab-

based
Y GLCM

9

(25%)

17

(55%)

CRC: Colorectal Cancer, NET: Neuroendocrine Tumor, EC: esophageal cancer, BC: breast cancer, PVP: portal venous

phase, FS: fat suppression, DWI: diffusion-weighted images, SPAIR: spectral-attenuated inversion recovery, ADC:

apparent diffusion coefficient, GLCM: gray level co-occurrence matrix, GLRLM: gray-level run-length matrix, GTDM: gray-

tone difference matrix, GLSZM: gray level size zone matrix, GLNU: gray-level non-uniformity, NS: not specified.

 

Table 2. QUADAS-2 evaluation of studies.

Evaluation

Risk of Bias Applicability Concerns

Patient

Selection

Index

Test

Reference

Standard

Flow and

Timing

Patient

Selection

Index

Test

Reference

Standard

Low Risk 15 (47%)
18

(56%)
18 (56%) 28 (87%) 21 (65%)

21

(65%)
19 (59%)

High Risk 11 (34%) 8 (25%) 8 (25%) 1 (3%) 8 (25%) 6 (19%) 6 (19%)

Unclear 6 (19%) 6 (19%) 6 (19%) 3 (10%) 3 (10%) 5 (16%) 7 (22%)



Before analyzing the studies' results in detail, it is helpful to elucidate terminology that is commonly used in radiomics. The

definition of radiomic features investigated in the studies is detailed in Table 3. In addition, region of interest (ROI) is

defined as the selected area or volume of any imaging modality to analyze for the extraction of radiomic features.

Table 3. Overview of the analyzed radiomic characteristics.

Feature Family General Description Common Features Specific Description



Shape & Size

2D/3D geometric

properties of the region

of interest

Area  

Volume
Number of voxels in the

ROI

Maximum 3D diameter

The maximum distance

between any two voxels

on the surface of the ROI

Major axis length  

Minor axis length  

Surface Area  

Compactness

How compact the region

is independent of scale

and orientation

Elongation
The inverse of

compactness

Flatness
Absence of curvature in

an ROI

Sphericity

The roundness of the

shape of the ROI relative

to a sphere

Spherical disproportion

ROI surface area /surface

area of a sphere based

on ROI radius



First Order

Statistics

Intensity distribution in

the ROI based on the

intensity histogram,

regardless of the

spatial relationships

Intensity
Includes mean, min, max,

SD, and percentiles

Energy

The magnitude of voxel

intensities (sum of square

voxel values)

Uniformity/homogeneity

The sum of the squares

of each intensity value in

the ROI

Entropy
Amount of information in

voxel values

Skewness

Asymmetry of values.

Negative skewness: data

are skewness to the right

of the mean (higher

values). Positive

skewness: data are

skewed to the left of the

mean (lower values).

Kurtosis

Distribution of voxel

values. Low kurtosis:

most data points are

close to the mean (few

outliers). High kurtosis:

data are spread far from

the mean (more outliers).



Second-Order

Statistics

Textural features

quantifying tumor

heterogeneity by

analyzing the spatial

distribution of

pixel/voxel intensities

Gray level co-occurrence matrix (GLC M)

Measures the

arrangements of voxel

pairs along a fixed

direction (homogeneity,

contrast, correlation,

entropy, dissimilarity, and

angular second

moment/energy)

Gray level run length matrix (GLRLM)

Consecutive voxels with

the same intensity along

with fixed directions (can

have long- or short-run,

as well as low- and high-

gray level emphasis).

Gray level size zone matrix (GLSZM)

Clusters of connected

pixels with the same grey

value. They can have

small- and large-area as

well as low- or high-gray

emphasis.

Neighborhood gray tone/level difference

matrix (NGTDM/NGLDM)

The difference in gray

level between one voxel

and its 8/26directions (in

2D/3D). Includes rate,

intensity, and frequency

of intensity change.



Model-or

transform-based

Statistics

Relationship between

three or more pixels or

voxels

Autoregressive model

Filters or mathematical

transforms to the images

identifying repetitive or

non-repetitive patterns,

suppressing noise, or

highlighting details,

extract areas with

increasingly coarse

texture patterns

Wavelet transform

Fractal analysis

Minkowski functionals

Fourier transform

 

2.3. Radiomics of LM From Colorectal Cancer

2.3.1. Prediction of Survival

Ten studies analyzed radiomic features' ability to predict the outcome of patients with colorectal LM

[32,33,38,40,43,46,47,59,61,62]. Four included training and validation datasets [33,37,40,46]. The endpoint was overall

survival (OS) in nine studies [32,33,38,40,43,46,47,59,61], progression-free survival (PFS) in four [46,59,61,62], hepatic

PFS in one [47], and event-free survival in one [59]. In six papers, patients underwent chemotherapy [32,33,40,43,46,61],

in two, liver surgery [47,62], and in two, either chemotherapy or surgery [38,59]. Six studies analyzed imaging modalities

before treatment [38,43,47,59,61,62], while four performed comparative analyses of imaging modalities before and after

chemotherapy [32,33,40,46]. Two studies performed texture analysis not only of LM but also of non-tumoral liver [38,47].

Finally, six studies analyzed the prognostic role of radiomic features in comparison or combination with traditional

biomarkers [33,38,46,47,59,62].

Four studies demonstrated an association between the homogeneity/heterogeneity of LM and survival. Ravanelli et al.

reported lower OS and PFS in patients with a higher uniformity of LM at CT scan (cut-off ≥0.42; relative risk (RR) = 6.94;

95% confidence intervals (95%CI) = 1.79–26.79 for OS; RR = 5.05, 95%CI = 1.74–14.66 for PFS) [46]. Andersen et al.

described an association between shorter OS and tumor homogeneity at CT (hazard ratio (HR) ranging from 1.5 × 10  to

1.3 × 10 , according to the filter used) [32]. Comparing imaging before and after chemotherapy, Dercle et al. identified a

radiomic signature associated with OS based on two measures of heterogeneity (spatial heterogeneity and Graytone

Difference Matrix contrast, HR = 44.3, 95%CI = 6.4–307.7 for patients with high imaging quality; HR = 6.5, 95%CI = 1.8–

23.6 for patients with standard imaging quality) [40]. In the validation setting, the radiomic signature predicted survival

better than KRAS-mutational status and 8-week tumor shrinkage evaluated according to RECIST criteria (AUC = 0.80 vs.

AUC = 0.67 for KRAS and AUC = 0.75 for RECIST, p < 0.001). Finally, in the study by Rahmim et al., at multivariable

analysis, LM heterogeneity at F-FDG PET/CT was a predictor of shorter OS (included into a predictive model, HR =

4.29, 95%CI = 2.15–8.57) [59]. The authors also depicted a model including histogram uniformity, number of metastases,

and metabolic tumor volume that was predictive of a shorter event-free survival (HR = 3.20, 95%CI 1.73–5.94, p < 0 .001)

[59].

Three studies showed an association between entropy and prognosis. Andersen et al. and Lubner et al. reported that the

higher the entropy of LM, the better the OS (HR ranging from 0.16 to 0.63 in the Andersen et al. study, according to the

filter used; HR = 0.65, 95%CI = 0.44–0.95 at coarse filter level in the Lubner et al. study) [32,43]. On the other hand,

Beckers et al. reported some prognostic value of the ratio between entropy of LM and entropy of parenchyma (the higher

the value, the shorter the OS, HR = 1.9, 95%CI = 0.95–3.78) [38].

Additional radiomic features have been reported. In the Simpson et al. study, LM correlation and contrast (combined into a

single texture parameter) were associated with OS (HR = 2.35, 95%CI = 1.21–4.55) [47]. Dohan et al. analyzed imaging

modalities before and after treatment and identified three predictors of OS: a decrease in the sum of the target liver

lesions, high baseline density of dominant liver lesion, and drop in kurtosis [33]. Those three features (combined into a

texture analysis score) evaluated after two months of chemotherapy had a strong association with OS (SPECTRA Score

>0.02 vs. ≤0.02, HR = 2.82, 95%CI = 1.85–4.28 in the training dataset; HR = 2.07, 95%CI = 1.34–3.20 in the validation

dataset). Radiomic score at two months had the same prognostic value of RECIST criteria after six months of

chemotherapy. Shur et al. reported an association of minimal pixel value (negative prognostic factor, HR = 1.66, 95%CI =

1.28–2.16) and gray level size zone matrix (GLSZM) small area emphasis (positive prognostic factor, HR = 0.62, 95%CI =

20

49

18



0.47–0.83) with the PFS [62]. Finally, the following features have been associated with OS: standard deviation [32], LM

density at CT scan [46], future liver remnant energy and entropy combined into a single linear predictor [47], ShapeSI4

(included in a radiomic signature) [40], and area under the curve of volume histograms at PET-CT [61].

 

The results of studies about radiomic features associated with the prediction of survival are summarized in Table 4 and

Supplementary Table S2.

2.3.2. Prediction of Response to Systemic Chemotherapy

Ten studies analyzed the association between radiomic features and response to chemotherapy

[32,33,37,38,40,45,46,54,56,61]. Evidence mainly regarded patients receiving anti-VEGF treatment. had training and

validation datasets [33,37,40,46]. The reference standard was RECIST criteria in all but one study, which used tumor

regression grade (TRG) [45]. Half of the studies analyzed the imaging modalities before and after treatment

[32,33,40,45,46], while the other half considered only baseline imaging [37,38,54,56,61]. Four studies focused on targeted

therapies associated with systemic chemotherapy [32,33,45,46].

In the Rao et al. paper, the entropy of LM after chemotherapy decreases in responders, while uniformity increases

(entropy: −5.13 in responders vs. +1.27 in non-responders, OR = 1.34, 95%CI = 0.92–1.93; uniformity: +30.84 vs. −0.44,

respectively, OR = 0.95, 95%CI = 0.89–1.01) [45]. Ravanelli et al. associated a good response with low baseline

uniformity (cut-off ≥0.42; OR = 20, 95%CI = 1.85–217.4) [46]. In the study by Beckers et al., treatment success was

slightly associated with higher entropy (6.65 ± 0.26 in responders vs. 6.51 ± 0.34 in non-responders, p = 0.08) [38]. The

Zhang et al. analysis of T2 MRI images before chemotherapy showed that responding lesions had a higher variance and

lower angular second moment (two measures of homogeneity) than non-responding ones (variance: 446.07 ± 329.60 in

responders vs. 210.23 ± 183.39 in non-responders, p < 0.001; angular second moment: 0.96 ± 0.02 vs. 0.98 ± 0.01,

respectively, p < 0.001) [56]. Dercle et al. built a signature, based on two measures of entropy, gray-tone difference matrix

contrast and shape, which allowed to predict responsiveness to anti-angiogenic treatment (AUC = 0.80, CI95% = 0.69–

0.94 for patients with high imaging quality; AUC = 0.72, CI95% = 0.59–0.83 for patients with standard imaging quality)

[40]. Andersen et al. depicted LM modification after treatment with regorafenib. They observed data discordant with

previous analyses (increase in entropy and decrease in uniformity), but none of the patients displayed a measurable

response (85% had stable disease, while the remaining ones had progression) [32]. Considering skewness, in the study

of Ahn et al., low baseline values (indicating a higher spread towards higher gray levels) were associated with response

(0.02 ± 0.32 in responders vs. 0.33 ± 0.44 in non-responders, p = 0.001) [37]. One study demonstrated a skewness

increase during treatment [32]. In opposition to CT and MRI, high entropy detected at F-FDG PET images before

treatment predicted a worse response to therapy (AUC = 0.74, 95%CI = 0.52–0.97) [61].

Other features have been associated with response: high mean attenuation [37]; narrow standard deviation [37]; high

baseline density of dominant liver lesion [33]; and mean values of histogram parameters for apparent diffusion coefficient

maps [54].

The results of studies about radiomic features associated with the prediction of response to chemotherapy are

summarized in Table 4 and Supplementary Table S3.

2.3.3. Prediction of Pathology Data

Three studies evaluated the association between radiomic features and pathology data [39,43,45]. Lubner et al.

demonstrated that entropy, mean of positive pixels, and standard deviation are inversely associated with tumor grading (p
= 0.007 for entropy, p = 0.002 for mean positive pixels, and p = 0.004 for standard deviation), while skewness and kurtosis

showed a trend for an inverse association with KRAS mutation (p = 0.04 for skewness, and p = 0.058 for kurtosis) [43].

Cheng et al. reported that growth patterns of LM (desmoplastic, replacing, and pushing) can be successfully discerned on

CT images by using second-order radiomic features, in particular gray level size zone matrix and gray level non-uniformity

(AUC = 0.926, 95%CI = 0.875–0.978 in the training dataset; AUC = 0.939, 95%CI = 0.859–1.000 in the external validation

dataset) [39]. In Rao et al.’s paper, the delta in entropy and uniformity values between pre- and post-chemotherapy

imaging modalities were predictors of TRG values in patients receiving oxaliplatin-based chemotherapy with or without

bevacizumab (entropy variation: −5.13 in TRG 1–2 vs. +1.27 in TRG 3–5, OR = 1.34, CI95% = 0.92–1.93; uniformity

variation: +30.84 vs. −0.44, respectively, OR = 0.95, CI95% = 0.89–1.01), while RECIST criteria were not [45].

2.3.4. Other Papers

Three additional papers studied the radiomic features of colorectal LM. Reimer et al. analyzed the evaluation of response

of LM undergoing trans-arterial radio-embolization [55]. In post-treatment MRI, higher kurtosis in arterial and portal phases

and higher skewness in portal phase identified patients with a progressive disease earlier than standard RECIST criteria.

Li Y et al. reported a model based on radiomic features of the primary tumor and LM before resection (heterogeneity,

entropy, energy of vertical wavelet, emphasis) that was able to predict the future appearance of further LM [42]. Wagner et

18



al. analyzed CT and PET-CT imaging of primary tumor and LM [60]. They demonstrated that colon cancer and LM have

different skewness and kurtosis at both imaging modalities (CT and PET-CT), while colon cancers with or without LM have

similar features.

Table 4. summarizes the data of studies dealing with colorectal LM.

 

 

Table 4. Studies on radiomics in patients with liver metastases from colorectal cancer.

First
Author

Year Design # Imaging
Analyzed
Imaging

Main
Intervention

Intervention
Type

Pathology
Data

Validation
Cohort

Outcome
Measures

S
F

Survival

Lubner

MG [43]
2015 R 77 CT

Pre-

therapy

Systemic

therapy
NS Y N OS

 

c

lo

Simpson

AL [47]
2017 R 198 CT

Pre-

therapy
Surgery Metastasectomy N N OS/HDFS

T

c

c

a

O

r

a

w

a

O

Andersen

IR [32]
2019 P 27 CT

Pre/post-

therapy

Systemic

therapy
Regorafenib N N OS

L

p

s

e

p

lo

Beckers

RCJ [38]
2018 R 70 CT

Pre-

therapy

Systemic

therapy or

surgery

XELOX with or

w/o Bevacizumab
N N OS

L

e

c

d

a

Dercle L

[40]
2020 R 667 CT

Pre/post-

therapy

Systemic

therapy

FOLFIRI with-w/o

Cetuximab
N Y OS

A

u

S

E

C

p

Dohan A

[33]
2019 P 230 CT

Pre/post-

therapy

Systemic

therapy

FOLFIRI and

Bevacizumab
N Y OS

A

s

e

p

R



Rahmim

A [59]
2019 R 52

FDG

PET

Pre-

therapy
Mixed

Systemic, RF, or

Metastasectomy
N N OS, EFS

L

h

p

h

u

p

Ravanelli

M [46]
2019 R 43 CT

Pre/post-

therapy

Systemic

therapy

FOLFIRI/FOLFOX

with-w/o

Bevacizumab

N N OS, PFS

U

r

u

C

w

a

O

E

Shur J

[62]
2019 R 102 CT; MRI

Pre-

surgery

Neoadjuvant

therapy and

surgery

NS,

Metastasectomy
N N DFS

M

v

G

a

a

w

Van

Helden

EJ [61]

2018 R 47
FDG

PET

Pre-

therapy

Systemic

therapy

XELOX with or

w/o Bevacizumab

or Cetuximab

N N OS, PFS

A

p

a

 

 

Table 4. Cont.

Response to chemotherapy

Ahn SJ

[36]
2016 R 235 CT

Pre-

therapy

Systemic

therapy

FOLFIRI or

FOLFOX
N Y RECIST

Lower

skewness on

2D, higher

attenuation in

3D, narrower

SD on 3D

predict the

therapy

response

Andersen

IR [32]
2019 P 27 CT

Pre/post-

therapy

Systemic

therapy
Regorafenib N N RECIST

Entropy and

skewness

increased;

uniformity

decreased

after

treatment

Beckers

RCJ [38]
2018 R 56 CT

Pre-

therapy

Systemic

therapy

XELOX with-w/o

Bevacizumab
N N RECIST

LM entropy

showed a

trend for

being higher

in responders



Dercle L

[40]
2020 R 667 CT

Pre/post-

therapy

Systemic

therapy

FOLFIRI with-w/o

Cetuximab
N Y RECIST

Shape SI4,

Log Z/X

Entropy,

GTDM

Contrast can

predict

Cetuximab

sensitivity.

Dohan A

[33]
2019 P 230 CT

Pre/post-

therapy

Systemic

therapy

FOLFIRI and

Bevacizumab
N Y RECIST

LM density,

integrated into

a radiomics

score,

identified

responders.

Liang HY

[54]
2015 R 53 MRI

Pre-

therapy

Systemic

therapy

Fluorouracil-based

chemotherapy
N N RECIST

Mean ADC

values are

lower in

responders.

Rao SX

[45]
2015 R 21 CT

Pre/post-

therapy

Systemic

therapy

XELOX with-w/o

Bevacizumab
Y N TRG

A decrease in

entropy and

uniformity

increase after

treatment

correlates

with

response.

Ravanelli

M. [46]
2019 R 43 CT

Pre/post-

therapy

Systemic

therapy

FOLFIRI/FOX

with-w/o

Bevacizumab

N N RECIST

Uniformity

discriminated

EGFR

responders

from non-

responders

Van

Helden

EJ [61]

2018 R 47
FDG

PET

Pre-

therapy

Systemic

therapy

XELOX with or

w/o Bevacizumab

or Cetuximab

N N RECIST

Entropy was

higher in

patient non-

responders

Zhang H

[56]
2018 R 26 MRI

Pre-

therapy

Systemic

therapy

FOLFORI or

FOLFOX or

XELOX

N N
Size

change

Responding

LM had a

higher

variance and

lower angular

second

moment

Miscellaneous



Cheng J

[39]
2019 R 94 CT

Pre-

therapy
Surgery

Partial

hepatectomy
Y Y HGP

A clinic-

radiomics

model

(GLSZM and

gray level

non-

uniformity)

can predict

growth

patterns.

Li Y [42] 2019 R 24 CT
Pre-

therapy
Surgery

Colectomy,

lymphadenectomy,

metastasectomy

N Y
LM

occurrence

Heterogeneity,

entropy,

energy, and

GLRLM_LGE

predicted the

risk of LM

 

Table 4. Cont.

Reimer

RP [55]
2018 R 16 MRI

Post-

therapy
TARE

TARE with

90Y-

microspheres

N N RECIST

High kurtosis

(arterial/venous)

and low

skewness

(venous)

identified

progression

Wagner

F [60]
2017 R 18

CT;

FDG

PET

Pre-

therapy

Systemic

therapy
NS N N Primary/LM

Skewness and

kurtosis (CT)

and kurtosis

(PET) are

different in

primary and LM

R: Retrospective, P: Prospective, CRC: Colorectal Cancer, NET: Neuroendocrine Tumor, LM: liver metastases, RF:

radiofrequency, XELOX: Capecitabine and Oxaliplatin, FOLFIRI: Fluorouracil and Irinotecan, FOLFOX: Fluorouracil and

Oxaliplatin, TARE: trans-arterial radioembolization, OS: overall survival, HDFS: hepatic disease-free survival, EFS: event-

free survival, PFS: progression-free survival, RECIST: response evaluation criteria in solid tumors, HGP: histological

growth patterns, GLSZM: gray level size zone matrix, GTDM: gray-tone difference matrix, ADC: apparent diffusion

coefficient, AUC-ISH: area-under-the-curve of cumulative SUV/Volume histograms, NS: not specified.

4. Radiomics of Non-Colorectal LM

Four papers focused on non-colorectal LM. A single study assessed CT-based radiomic indices in LM from esophageal

cancer [41]. The study found that the characteristics of pre-treatment CT related to heterogeneity and gray-level intensity,

such as wavelet gray level co-occurrence matrix correlation and gray level distance zone matrix with large dependence

emphasis, were predictors of response to chemotherapy. Two studies explored radiomic analyses in LM from

neuroendocrine tumors (NET) . Martini et al. analyzed a small series of patients (n = 49) but observed a number of

associations: pancreatic NET had lower skewness and higher mean HU than non-pancreatic ones; entropy in the arterial

phase was negatively associated with PFS in pancreatic NET and with OS in non-pancreatic NET; kurtosis was

associated with lower OS in pancreatic NET, while skewness with higher one . Weber et al. investigated the correlation

between parameters derived from the somatostatin receptor agonist ( Ga-DOTATOC) PET and MRI with the proliferation

index Ki67 . Entropy and dissimilarity (from both PET and MRI) had a direct correlation with Ki67, while homogeneity

had an inverse one. Moreover, it was possible to distinguish G1 and G2 LM on the basis of entropy, homogeneity, and

dissimilarity (on PET data only). Finally, Trebeschi et al. reported heterogeneity-related radiomics parameters as

predictors of response to immunotherapy in LM of melanoma and non-small-cell lung carcinoma .

2.5. Differentiation of LM From Other Hepatic Lesions

[44][63]

[44]

68

[63]

[49]



Four studies investigated whether radiomic features could discriminate LM from other hepatic lesions. Jansen et al.

analyzed metastases, primary hepatic tumors, and benign lesions (adenomas, cysts, and hemangiomas) on MRI

images . A model using, among other features, the time to peak histograms and the sum of squared variance could

distinguish different liver lesions. In the paper by Gatos et al., selected texture characteristics (inverse different moment,

sum variance, and long-run emphasis) could differentiate metastases, hepatocellular carcinoma (HCC), and benign

lesions . Li et al. tested a model to distinguish hemangiomas, LM, and HCC, using second-order features (gray level co-

occurrence matrix, gray-level run-length matrix, and intensity-size zone matrix) . In their model, no feature combination

could differentiate the three types of lesion at the same time. Differential diagnosis of the two malignant entities (LM and

HCC) required a more complex model, with a higher number of features, than differential diagnosis between benign and

malignant lesions (LM vs. hemangiomas or HCC vs. hemangiomas). Finally, a study by Song et al. identified kurtosis,

variance, and inverse difference moment as distinguishing criteria between benign and malignant hypervascular

lesions . Only the latter study used pathology data as the reference standard for all the analyzed patients.

Figure 3 provides an overview of the potential contribution of radiomics to the management of patients with LM.

Figure 3. Present and potential future contribution of radiomics to clinical practice.

5. Influence of Technical Features on Radiomic Analyses

Some studies set off to investigate whether acquisition or reconstruction parameters could influence the values of texture

analysis indices. Ahn et al. tested three different reconstruction modes of CT images, i.e., filtered back-projection, iterative

reconstruction model, and hybrid iterative reconstruction. The reconstruction method affected numerous parameters,

including entropy, homogeneity, skewness, kurtosis, and gray-level co-occurrence matrices . Lubner et al. compared

the effect of 2D and 3D reconstruction on radiomic parameters by performing a Bland–Altman analysis on a subset of 20

patients . The results were similar for the two methods. Those results were confirmed by a further investigation by Ahn

et al. . The latter study also compared the influence of different CT scanners, ranging from 8 to 64 rows, on the radiomic

parameters, without finding any significant difference. Similar results were reported in the MRI setting: Peerlings et al.

used the concordance correlation coefficient to test the reproducibility of an array of first- and second-level radiomics

parameters over time (multiple MRI) and different MRI systems on apparent diffusion coefficient maps, finding good

stability with most parameters . Conversely, two studies reported that radiomic parameters derived from CT scans are

affected by slice thickness setting and ROI size . Dercle et al. demonstrated that ROI area size, metastatic site, and

the individual characteristics of image acquisitions should be considered as confounding factors in the evaluation of tumor

entropy .

Inter-observer agreement was assessed by four studies [33,52,54,60]. Although they used different indices, such as K-

statistic, intra-class correlation, and correlation index (r-value), all studies reported a substantial or excellent agreement

among different readers. Finally, one study by Chatterjee et al. devised a method to reduce the rate of false discovery

when analyzing radiomic parameters in small datasets .
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