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Oceans are a rich source of structurally unique bioactive compounds from the perspective of potential therapeutic

agents. Marine peptides are a particularly interesting group of secondary metabolites because of their chemistry

and wide range of biological activities. Among them, cyclic peptides exhibit a broad spectrum of antimicrobial

activities, including against bacteria, protozoa, fungi, and viruses. Moreover, there are several examples of marine

cyclic peptides revealing interesting antimicrobial activities against numerous drug-resistant bacteria and fungi,

making these compounds a very promising resource in the search for novel antimicrobial agents to revert

multidrug-resistance.

marine peptides  cyclic peptides  cyclic depsipeptides  antimicrobial resistance

peptide synthesis

1. Introduction

Despite great advances in the pharmaceutical and medicine fields, contagious diseases induced by bacteria, fungi,

viruses, and protozoa are still a significant threat to public health, as evidenced by the SARS-Cov-2 pandemic .

Due to the emergence of new pathogenic agents, extensive resistance, and the lack of new drugs, contagious

diseases affect both developed and developing countries .

The golden age of antibacterial agents began in the 1940–1960s, and many antibiotics dating from that period are

still used in therapy today. Due to the high rate of antibiotics discovery, during this period, it was believed that

infectious diseases would soon be controlled in the population . A line of research on antimicrobial discovery and

development was identified from many natural small-molecule products that were clinically proved to have

antibacterial activity. Among these small molecules, penicillins, cephalosporins, macrolides, glycopeptides,

tetracyclines and aminoglycosides stand out. On the other hand, another line of research was found from the

structures of the chemical dye industry, leading to the discovery of aromatic sulfa compounds with antibiotic activity

. In 1960, the fluoroquinolones emerged, which are the second example of synthetic antibiotics used in therapy.

Later, in the 2000s, the first generation of oxazolidinone linezolid, a synthetic derivative structurally different from

the previous ones, was approved in the USA . In addition, new generations of cephalosporins, macrolides,

fluoroquinolones, and tetracyclines appeared with significant therapeutic use. It is important to highlight that the

development of new synthetic methodologies has allowed the synthesis of pentacyclines, derived from

tetracyclines, which may be considered as a fourth generation of this class of antibiotics .
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Regarding the treatment of systemic mycoses, such as candidiasis, aspergillosis, and cryptococcosis, antifungals

can be organized into four classes—polyenes, azoles, flucytosine, and echinocandins—in which they are

distinguished by the mode of formulation, bioavailability, pharmacological interactions, adverse effects, and

mechanism of action . Although commensals in humans, Candida species are a cause of various infections in

susceptible patients, including elderly, hospitalized, and immunosuppressed patients. Invasive Candida infection is

one of the most common fungal infections globally . Less common, but responsible for greater treatment

concerns, are systemic infections caused by fungi of the genera Aspergillus, Fusarium and Scedosporium,

considering their susceptibility profile to the available antifungals .

Over the course of human civilization, viral infections have caused millions of human casualties worldwide, driving

the development of antiviral drugs in a pressing need . As of April 2016, antiviral drugs have been approved to

treat nine human infectious diseases: hepatitis B, hepatitis C, and infections caused by human immunodeficiency

virus (HIV), human cytomegalovirus, herpes simplex virus (HSV), human papillomavirus, respiratory syncytial virus,

varicella-zoster virus, and influenza virus . Nevertheless, there is still no antiviral drug or vaccine for over 200

human viruses afflicting populations worldwide . In addition, the current pneumonia outbreak caused by the

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was declared a pandemic by the World Health

Organization on 11 March 2020 .

Parasitic diseases are a critical health concern with a profound impact on the global human population . It was

found that protozoans, such as Trypanosoma cruzi, Leishmania mexicana, Plasmodium falciparum, Giardia

intestinalis, and Trichomonas vaginalis, are the major disease-causing parasites. The spread of infectious diseases

is especially prevalent in underdeveloped countries characterized by tropical or temperate climate, as well as poor

sanitary and hygienic conditions . Parasite infections are the cause of 500 million deaths worldwide ,

and although there are drugs to fight parasite infections, these have drawbacks such as toxicity and the emergence

of resistance .

Antimicrobial resistance (AMR) is another significant threat to public health systems all over the world . Infection

caused by microorganisms resistant to antimicrobial drugs leads to serious illnesses and elevated costs associated

with more expensive antibiotics (when infections become resistant to first-line antimicrobials, treatment has to be

switched to second- or third-line drugs, which are nearly always more expensive), specialized equipment, longer

hospital stay, and isolation procedures for the patients. Societal costs include loss of productivity and death .

Every year, more than 2 million North Americans acquire infectious diseases associated with antibiotic-resistant

microorganisms, resulting in 23,000 deaths . In Europe, nearly 700 thousand cases of antibiotic-resistant

infections develop directly into over 33,000 deaths yearly . Despite a 36% increase in human use of antibiotics

from 2000 to 2010 , approximately 20% of deaths worldwide are related to infectious diseases today .

Statistical models predicted that there were an estimated 4.95 million deaths associated with AMR in 2019,

including 1.27 million deaths associated with bacterial AMR . The six leading pathogens associated with AMR in

2019 (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus

pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 3.57 million deaths .
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AMR can occur through several mechanisms, whether intrinsic or acquired. Intrinsic resistance occurs naturally, as

part of a microbial evolution process. Acquired resistance, on the other hand, is a consequence of the

indiscriminate use of antimicrobials, and genetic mutations may occur, originating resistance genes that can be

transferred between microbial species. AMR mechanisms fall into four main categories , as shown in Figure 1.

Figure 1. Antimicrobial resistance mechanisms.

Ocean water covers about 70% of the Earth’s surface and contains several potential bioactive compounds to be

discovered. Marine organisms have been considered to be a promising source of numerous nutraceutical and

pharmaceutical compounds . Over the last few decades, new marine-derived compounds have been

considered not only as lead compounds for drug discovery, but also as bioactive agents in pharmaceutical

research, possessing antifungal, antibacterial, cytotoxic and anti-inflammatory properties, among others 

.

Specific chemical and physical properties, such as water salt concentrations, pressure, temperature (including

extreme), light penetration, ocean currents, oxygen concentrations, and radiation exposure characterize different

underwater habitats (environment) of marine organisms . Due to this extreme environment, marine organisms

are forced to produce a chemical diversity of bioactive compounds that are considered essential for the discovery

and development of new agents for the treatment and prevention of various fungal, bacterial, viral, and protozoal

infections .

In particular, several peptides have been isolated from marine sources and demonstrated to be promising drug

candidates based on their significance of the bioregulatory role and unique molecular mechanisms of action .
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Researchers' group also described the isolation and stereochemical analysis of marine peptides . Compared

to small-molecule drugs, peptides are highly selective and efficacious and, at the same time, relatively safe and

well tolerated . The high degree of selectivity in their interactions is the result of millions of years of evolutionary

selection for complementary shapes and sizes from among a large array of structural and functional diversity .

Despite the applicability of peptides and proteins in medicine, it has been limited by their high manufacturing costs,

the low bioactivity of peptides when administered orally, and their low membrane permeability, low systemic

stability, and high clearance rates . The low stability under physiological conditions is one of the main obstacles

to the therapeutic use of linear peptides, as they easily lose their biological activity because they are rapidly

cleaved by enzymes in vivo . To overcome this obstacle, diverse peptide modifications have been proposed

. Linear peptide cyclization has recently been considered one of the most promising approaches, due to

several advantages in surpassing both pharmacokinetic and pharmacodynamic limitations. A cyclic structure

reduces the conformational freedom for each constituent within the cycle and forces the molecule into a more rigid

secondary structure . The increase in rigidity is an advantage that is translated into a decrease in the entropic

term of Gibbs energy, improving binding affinities higher than some natural ligands to a biotarget .

Common motifs in the formation of proteins and polypeptides, β-turn, are other advantages of cyclization, as it is

believed that this improves binding affinity . Cyclization also allows the elimination of charged terminals at

the ends of the structure in cyclic peptides, which may increase membrane permeability , although the peptide

cross of the membrane does not improve just because the peptide is cyclized, but due to its structural features .

Another advantage of cyclization is becoming less prone to hydrolysis, as it decreases the exposure of the amino

and carboxyl termini to exopeptidases , decreasing off-target side effects , thus leading to substantially

enhanced metabolic stability and specificity . Furthermore, in terms of chemical synthesis, cyclic

peptides are significantly smaller when compared to proteins, and therefore, lower manufacturing costs are needed

. Actually, cyclic peptides are polypeptide chains that contain a circular sequence of bonds, which can be formed

through a bond between the amino and carboxyl termini of the peptide with an amide bond, or other chemically

stable bonds such as lactone, ether, thioether, and disulfide, among others. The formation of the amide bond

between the amino and carboxylic terminals results in the formation of a head-to-tail (or N-to-C) cyclic peptide.

Many cyclic peptides with this kind of formation (N-to-C) exist in nature .

Depending on lipophilicity, the type of bonds between amino acids, and the number of amino acids, cyclic peptides

can have different classifications, as either cyclic lipopeptides, cyclic glycopeptides, or cyclic depsipeptides. Cyclic

lipopeptides are cyclic peptides acylated by a lipid, usually a fatty acid (FA) side chain. These compounds are

produced only in bacteria and fungi of various habitats during cultivation on carbon and nitrogen sources . Cyclic

glycopeptides contain carbohydrate moieties covalently attached to the side chains of amino acid residues .

Cyclic depsipeptides are cyclic peptides in which amide groups are replaced by corresponding lactone bonds due

to the presence of a hydroxy-carboxylic acid in the peptide structure by cyclization to the hydroxyl of serine or

threonine side chains . Modification of the amide bond to an ester increases the lipophilicity that may

subsequently improve cell permeability. Depsipeptides have also been used to demonstrate the importance of the

hydrogen bonds that are formed by amide bonds in natural peptides . These peptides sometimes display

additional chemical modifications, including unusual amino acid residues in their structures. Cyclic depsipeptides

[48][49]

[50]

[47]

[51]

[52][53]

[54][55][56][57]

[58]

[59][60][61][62]

[63][64][65]

[66]

[67]

[68] [69]

[70][71][72][73]

[74]

[75][76][77][78][79]

[80]

[81]

[82]

[79]



Marine Cyclic Peptides | Encyclopedia.pub

https://encyclopedia.pub/entry/24771 5/32

contain at least one ring formed only through peptide or ester links—derived from hydroxy carboxylic acids .

Cyclic peptides and cyclic depsipeptides can be named as cyclic tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-,

deca-, unde-, dodeca, and tri-decapeptides, depending on the number of amino acids present .

Depsipeptides are also called peptolides or nonribosomal peptides (NRP), being biosynthesized by non-ribosomal

peptide synthetases (NRPS) in combination with either polyketide synthase (PKS), or FA synthase enzyme

systems, and are often found in marine organisms such as bacteria, tunicates, mollusks, and sponges, among

others . NRPS are multifunctional proteins that synthesize peptide natural products independent of the

mRNA ribosomal machinery and employ a modular architecture wherein each module is responsible for the

incorporation of one amino acid into the final peptide product . NRP can be linear, cyclic, or branched

peptides, and usually contain fewer than 20 amino acid residues and are often modified by chemical processes

such as acylation, glycosylation, and others. Each module functions as a building block responsible for the

incorporation and modification of an amino acid, especially D-amino acids, so that the order and quantity of

modules in an NRPS determine the amino acid sequence of the synthesized peptide .

The section of the NRPS enzyme that specifically incorporates an amino acid into the peptide chain is defined as a

module, and the modules, in turn, can be divided into domains, which catalyze the individual steps of non-

ribosomal peptide synthesis. Each standard elongation module consists of three domains: a condensation domain

(C), an adenylation domain (A), and a peptidyl transporter protein (PCP), organized as C-A-PCP  (Figure 2).

The PCP domain is also frequently referred to as the T domain, and the holoform of this domain is a substrate for

thioester (“thiolation”) formation . In addition to these main domains, there are others involved in

modifying an NRP: the E domain (molecule epimerization); the Cy domain (cyclization of the forming molecule); the

MT domain (methylation reactions); the R domain (reduction reactions), and the Ox domain (oxidation reactions)

.
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Figure 2. Basic steps of nonribosomal peptide synthesis. (1) Domain A selects the amino acid to be incorporated

and transfers it to the PCP domain (2), where a thioester bond is formed. (3) Domain C forms the peptide bond

between the amino acid present in the PCP domain of the same module and the intermediate peptidyl linked to the

PCP domain of the previous module (that is, it catalyzes the link between amino acids of adjacent modules). (4) If

no additional domains are present that modify the molecule during formation, the TE domain releases the formed

peptide. However, if additional domains are present (such as E, MT, Cy, or Ox), the molecule is modified before

being released by the TE domain.

The terminating domain, the thioesterase (TE) domain, normally releases the peptide by hydrolysis or cyclization

, while reductase (R) domains catalyze release by converting the thioester link to an aldehyde , or alcohol ,

specialized C domains , catalyze cyclization , and amide bond formation through small molecule acceptance

.

2. Marine Cyclic Peptides with Antimicrobial Activities

2.1. Sponge-Produced Cyclic Peptides

Sponges are diversified organisms distributed extensively on shores and deep in the ocean . In terms of

chemical diversity, an exceptionally prolific group of sponges include the lithistid sponges, the prominence of which

may be due to the biosynthetic capacity of the microorganisms that host them . The metabolites of

lithistid sponges, which include the genera Theonella, Discodermia, Aciculites, Microscleroderma, and Callipelta,

are among the most diverse found in any order of sponges and have often been attributed to symbiotic

microorganisms (such as proteobacteria “Candidatus Entotheonella palauensis”) , that contains four distinct cell

populations: sponge cells, unicellular heterotrophic bacteria, unicellular cyanobacteria, and filamentous

heterotrophic bacteria. In particular, many cyclic peptides and peptide lactones have been reported to be able to be

obtained from Theonella sponges, and their structural features, including unusual amino acids or D-amino acids,

suggest that they perhaps originated from symbiotic microorganisms . In this section, 63 cyclic peptides

isolated from sponges (1–63) are described (Table 1 and Figure 3). Among these, 14 cyclic peptides have been

found to have antibacterial activities, as well as 19 with antifungal, one with parasitic, and 22 with antiviral activities.

The most relevant antimicrobial cyclic peptides are highlighted due to their unusual structural characteristics or

advanced investigations, potency, and in vivo experiments.
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Figure 3. Chemical structures of cyclic peptides from sponges (1–63).

Halicylindramides A–C (13–15) were isolated from the Japanese marine sponge Halichondria cylindruta and are

cyclic tetradecapeptides with the N-terminus blocked by a formyl group and the C-terminus lactonized with a

threonine residue. Compounds 13–15 demonstrated in vitro antifungal activity against Mortierella ramanniana at

7.5 µg/disk. Interestingly, it was found that the macrocyclic structure of compounds 13–15 is essential for their

cytotoxic and antifungal activities .

An anti-HIV undecadepsipeptide, designated homophymine A (16), isolated from a New Caledonian collection of

the marine sponge Homophymia sp, contains 11 amino acid residues and an amide-linked 3-hydroxy-2,4,6-

trimethyloctanoic acid moiety. This undecadepsipeptide exhibited in vitro cytoprotective activity against HIV-1

infection, demonstrating a half-maximal inhibitory concentration (IC ) of 75 nM  in a cell-based XTT assay.

Jasplakinolide (21), also named jaspamide, is a 19-membered macrocyclic depsipeptide isolated from the soft-

bodied sponge Jaspis species collected off the shore of the island of Benga, Fiji, and shows selective in vitro

antimicrobial activity with a minimum inhibitory concentration (MIC) greater than 25 µg/mL against Candida

albicans. The in vivo topical activity of a 2% solution of 21 against a Candida vaginal infection in mice was similar

to that of miconazole nitrate (MIC = 6.2 µg/mL) . This macrocyclic (21) exhibited insecticidal activity

against Heliothis virescens, with a lethal concentration in 50% of the population (LC ) of 4 ppm. It was also toxic to

the nematode Nippo-Strongylus brasiliensis with a lethal dose in 50% of the population (LD ) of 1 µg/mL .

Koshikamides F (22) and H (23) are 17-residue cyclic heptadecadepsipeptides containing a 10-residue

macrolactone, isolated from deep-water Palauan collections of T. swinhoei and T. cupola. Linear koshikamides

(data not shown) failed to inhibit HIV entry, while the cyclic peptides 22 and 23 inhibited HIV entry with IC  values

of 2.3 and 5.5 μM, respectively. Thus, the presence of the exocyclic olefin and its associated conformation appear

to enhance activity relative to the hydroxypyrrolidone version, suggesting the ten-residue lactone ring is important

for inhibition of HIV-1 entry. Lastly, the slightly more potent anti-HIV activity of 22 and 23 may be due to the distinct

conformation of the macrolactone brought about by the presence of the unsaturated pyrrolidinone residue 2-(3-

amino-5-oxopyrrolidin-2-ylidene)propanoic acid .

Microspinosamide (38), a cyclic tridecadepsipeptide, incorporates numerous uncommon amino acids, and it was

the first naturally occurring peptide described to contain a β-hydroxy-p-bromophenylalanine residue.

Microspinosamide (38) inhibited the cytopathic effect of HIV-1 infection in an XTT-based in vitro assay with an

effective concentration in 50% population (EC ) value of approximately 0.2 µg/mL .

Four cyclic glycodepsipeptides have been isolated from the marine sponge Siliquariaspongia mirabilis, namely

mirabamides A–D (39–42), which contain 4-chlorohomoproline in 39, 40 and 41, and an unusual glycosylated

amino acid, β-methoxytyrosine 4′-O-R-L-rhamnopyranoside, along with a N-terminal aliphatic hydroxy acid.

Mirabamide A (39) was demonstrated in vitro to inhibit HIV-1 in neutralization and fusion assays, with IC  values

between 40 nM and 140 nM, while mirabamides C (41) and D (42) presented IC  values of 140 nM–1.3 µM and
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190 nM–3.9 µM, respectively. These results indicate that these peptides can act in the early stages of HIV-1 entry.

Additionally, mirabamides E–H (43–46), which were isolated from the sponge Stelletta clavosa, collected from the

Torres Strait, demonstrated in vitro HIV-1 inhibition in a neutralization assay, with IC  values of 121 nM, 62 nM, 68

nM, and 41 nM, respectively. Some interesting structure–activity relationships (SAR) emerged by comparing the

HIV inhibitory activities of mirabamides E–H (43–46) with those previously determined for mirabamides A–D (39–

42) . The primary feature that distinguishes compounds 43–46 from 39–42 is the presence of 2-amino-2-

butenoic acid rather than threonine, and this change was found to improve activity (evidenced by the 2-fold

increase in potency of 45 compared to 41). In general, increasing hydrophobicity in the side chain, but not including

2,3-diaminobutanoic acid (polar headgroup), improved potency. A potential model that may account for this

tendency involves the inclusion of the hydrophobic tail into the plasma membrane by the presence of the polar

headgroup (such as 2-amino-2-butenoic acid) . The role of the rhamnose residue in potency is less clear.

For 43–46, the absence of rhamnose is correlated with improved activity (∼2-fold) in neutralization assays,

whereas the absence of rhamnose was associated with an increase and a decrease in activity for mirabamide C

(41) vs. A (39) and mirabamide D (42) vs. papuamide A (51), respectively, in HIV-1 envelope-mediated fusion

assays .

Another interesting example is neamphamide A (48), an HIV-inhibitory cyclic undecadepsipeptide, isolated from a

Papua New Guinean collection of the marine sponge Neamphius huxleyi, containing 11 amino acid residues and

an amide-linked 3-hydroxy-2,4,6-trimethylheptanoic acid moiety. The anti-HIV activity of 48 was evaluated in an

XTT-based cell viability assay using the human T-cell line CEMSS infected with HIV-1  . After a 6-day

incubation period, compound 48 effectively inhibited the cytopathic effect of HIV-1 infection with an EC  = 28 nM

.

Neamphamide B (49), a cyclic undecadepsipeptide, isolated from a marine sponge of Neamphius sp. collected at

Okinawa, Japan, consists of uncommon amino acid residues (11 amino acid residues and an amide-linked 3-

hydroxy-2,4,6-trimethylheptanoic acid moiety) and N-terminal aliphatic hydroxyl acid. The peptide 49 showed

potent anti-mycobacterial activity against Mycobacterium smegmatis under standard aerobic growth conditions, as

well as dormancy inducing hypoxic conditions with MIC of 1.56 µg/mL. Compound 49 was also effective

against Mycobacterium bovis with MIC in the ranging of 6.25–12.5 µg/mL .

Papuamide A (51) and B (52) are cyclic depsipeptides isolated from bacteria symbiosis sponges Theonella

mirabilis and Theonella swinhoei that exhibit a concentration-dependent increase in human T-lymphoblastoid

cellular viability, indicating an inhibition of productive infection relative to control cultures, with an EC  of 3.6

ng/mL. The HIV-inhibitory and cytotoxic activities of 52 in the same assay were virtually identical to those observed

for 51 .

Theonellamide G (58) is a bicyclic glycodepsipeptide collected from bacteria symbiosis red sea sponge Theonella

swinhoei that showed in vitro antifungal activity towards wild and amphotericin B-resistant strains

of C. albicans with IC  of 4.49 μM and 2.0 μM, respectively, compared to 1.48 μM for the positive antifungal

control amphotericin-B against the wild type .
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Theopapuamide A–C (61–63) are cyclic undecadepsipeptides isolated from bacteria symbiosis sponges Theonella

swinhoei and Siliquariaspongia mirabilis, which contain several unusual amino acid residues, where the occurrence

of α-methoxyasparagine and 4-amino-5-methyl-2,3,5-trihydroxyhexanoic acid is unprecedented in natural peptides.

The compounds 61–63 inhibited the in vitro growth of wild-type and amphotericin B-resistant wild-type strain

of C. albicans at loadings of 1–5 µg/disk, displaying zones of growth inhibition of 8 mm . All theopapuamides,

which lack a β-methyltyrosine residue, were inactive ; however, further studies demonstrated that

theopapuamide B (59) was active in the neutralization assay  with an IC  of 0.8 μg/mL, in an in vitro single-

round HIV-1 infectivity assay against viruses pseudo-typed with HIV-1 SF162 envelope . Ratnayake et al. 

suggested that the β-methyltyrosine residue was critical for the anti-HIV activity.

According to the overall results, some remarks can be inferred. The antiviral activity results reported for

mirabamide A (39) and papuamide A (51), which both contain a β-methoxytyrosine, may be justified by the fact that

this residue imparts a specific conformation required for binding to target protein involved in HIV-1 entry . In the

case of homophymine A (16), in which the β-methoxytyrosine is replaced by an O-methyl threonine (a smaller

portion of moiety and more polar), the hypothesis that β-methoxytyrosine is essential for antiviral activity is ruled

out .

Table 1. Antimicrobial cyclic peptides from marine sponges.
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Compound Structure Source Antimicrobial Activity Synthesis References

Aciculitins A-C (1–
3)

Bicyclic octa-
peptides

Aciculites orientalis C. albicans (2.5 µg/disk,
standard disk assay)

Semi-
synthesis

Callipeltin A (4)
Cyclic deca-
depsipeptide

Callipelta sp.

HIV-1 infection inhibition (CD  =
0.29 µg/mL, ED  = 0.01
µg/mL), C. albicans (100

µg/disk)

Total
synthesis

of
analogues

Callyaerins A (5)
and B (6)

Cyclic undeca-
peptides

Callyspongia aerizusa
IC : M. tuberculosis (2 μM and
5 μM, respectively), isoniazide

(0.625 μM)

Total
synthesis

Celebeside A (7)
Cyclic penta-
depsipeptide

Siliquaria-spongia
mirabilis

IC : Neutralized HIV-1 (1.9
µg/mL)

-

Cyclolithistide A (8)
Cyclic deca-
despipeptide

Bacteria
symbiosis Theonella

swinhoei
C. albicans (20 µg/disk) -

Geodiamolides A
(9) and B (10)

Cyclic
depsipeptides

Geodia sp. MIC: C. albicans (31.3 µg/mL)
Total

synthesis

Guangomides A
(11) and B (12)

Cyclic tetra-
depsipeptides

Unidentifiable sponge
derived fungus

MIC: S. epidermidis
(100 µg/mL),

E. durans
(100 µg/mL)

-
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Compound Structure Source Antimicrobial Activity Synthesis References

Halicylindramides
A-C

(13–15)

Cyclic tetra-
decapeptides

Halichondria cylindruta M. ramanniana (7.5 µg/disk)

Total
synthesis

and
analogues

Homophymine A
(16)

Cyclic undeca-
depsipeptide

Homophymia sp.
IC : HIV-1 infection

cytoprotective (75 nM)
Semi-

synthesis

Hymenamides A
(17), B (18), C

(19), and E (20)

Cyclic hepta-
peptides

Hymeniacidon sp.
MIC: C. albicans (33–66

µg/mL), C. neoformans (33–133
µg/mL)

Total
synthesis

and
analogues

Jasplakinolide (or
jaspamide) (21)

Cyclic depsipeptide Jaspis sp.

H. virescens (LC  = 4
ppm), N. brasiliensis (LD  < 1

µg/mL),
C. albicans (MIC > 25 µg/mL), in

vivo murine
vaginal C. albicans infection (2%
jasplakinolide was equivalent in

efficacy to administration of
miconazole nitrate at 2%)

Total
synthesis

and
analogues

Koshikamides F
(22) and H (23)

Cyclic heptadeca-
peptides

Theonella
swinhoei and T. cupola

IC : HIV-1 neutralization (2.3–
5.5 µM)

-

Microcionamides A
(24) and B (25)

Cyclic hexapeptides Clathria abietina MIC: M. tuberculosis
(5.7 µM)

-

Microsclero-
dermins A–K
(26–36) and

anhydromicros-
clerodermin C (37)

Cyclic hexapeptides

Cyanobacteria
simbiosis Microsclero-
derma herdmani sp.
and Theonella sp.

C. albicans
(2.5–100 µg/disk, standard disk

assay)

Total
synthesis

and
analogues

Microspinosamide
(38)

Cyclic trideca-
depsipeptide

Sidonops microspinosa EC : HIV-1 infection inhibition
(0.2 µg/mL)

Semi-
synthesis

Mirabamides A–H
(39–46)

Cyclic glyco-
depsipeptides

Siliquarias-pongia
mirabilis and Stelletta

clavosa

IC : neutralized and fusion HIV-
1 (40 nM–3.9

µM), B. subtilis, C. albicans
(1–5 µg/disk)

Semi-
synthesis

Nagahamide A
(47)

Cyclic hexa-
depsipeptide

Theonella swinhoei
E. coli or S. aureus

(50 µg/disk, inhibition zone 7
mm)

Semi-
synthesis

Neamphamide A
(48)

Cyclic undeca-
depsipeptide

Neamphius huxleyi EC : HIV-1 infection
cytoprotective (28 nM)

-

[108][138]

[139]

50
[109][140]

[141]

[142][143]

[144]

50

50

[110][111]

[112][145]

[146][147]

50 [45][113]

[148]

[149][150]

[151][152]

[153]

50 [114][154]

50
[115][116]

[155]

[156][157]

50 [118]
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2.2. Bacteria-Produced Cyclic Peptides

A great variety of bacteria can be found in different marine habitats. Recent studies have shown that the main

phyla of marine bacteria have a wide range of inhibitory activity against different types of microorganisms. Many

antimicrobial substances active in a wide range of target organisms are produced by marine bacteria . In this

section, 53 cyclic peptides isolated from bacteria (64–116) have been reported (Figure 4). Among these, 38 cyclic

peptides have been described with antibacterial activities, as well as 14 with antifungal, five with antiparasitic, and

one with antiviral activities. The most relevant antimicrobial cyclic peptides are highlighted here due to their

unusual structural characteristics or advanced investigations, potency, and in vivo experiments.

Compound Structure Source Antimicrobial Activity Synthesis References

Neamphamide B
(49)

Cyclic undeca-
depsipeptide

Neamphius sp.
MIC: M. smegmatis

(1.56 µg/mL), M. bovis (6.2–12.5
µg/mL)

-

Neosiphoniamolide
A (50)

Cyclic tetra-
depsipeptide

Neosiphonia suprtes
P. oryzae (IC  = 5

ppm) H. gramineum (MIC ≤ 2
µg/mL)

-

Papuamides A (51)
and B (52)

Cyclic
depsipeptides

Bacteria
symbiosis Theonella

mirabilis and Theonella
swinhoei

EC : HIV-1 infection inhibition
(1–74 ng/mL)

Total
synthesis

and
analogues

Polydiscamide A
(53)

Cyclic
tridecapeptide

Discodermia sp. MIC: B. subtilis (3.1 µg/mL)

Total
synthesis

and
analogues

Stellettapeptins A
(54) and B (55)

Cyclic
undecadepsi-

peptides

Microorganisms
symbiosis Stelletta sp.

EC : infection of human T-
lymphoblastoid cells by HIV-

1  (23 and 27 nM, respectively)
-

Stylissamide G
(56)

Cyclic heptapeptide Stylissa caribica
MIC: M. audouinii, T.

mentagrophytes, C. albicans (6
μg/mL)

Total
Synthesis

Theonegramide
(57)

Bicyclic
glycododecapeptide

Bacteria
symbiosis Theonella

swinhoei

C. albicans
(10 µg/disk)

-

Theonellamide G
(58)

Bicyclic glyco-
depsipeptide

Bacteria
symbiosis Theonella

swinhoei

IC : Wild and amphotericin B-
resistant strains

of C. albicans (2.0–4.49 μM),
amphotericin-B (1.48 μM)

Semi-
synthesis

Theonellapeptolide
congeners 1 (59)

and 2 (60)

Cyclic trideca-
depsipeptides

Theonella sp.

MIC: S. aureus (8.0–16
µg/mL), M. luteus (8.0

µg/mL), B. subtilis (8.0–16
µg/mL), M. smegmatis (16–66

µg/mL), T. mentagrophytes (4.0–
8.0 µg/mL), A. niger (8.0–66

µg/mL)

Total
synthesis

and
analogues

Theopapuamide A-
C (61–63)

Cyclic undeca-
depsipeptides

Bacteria
symbiosis Theonella

swinhoei and Siliquarias-
pongia mirabilis

Wild type and amphotericin B-
resistant strains of C. albicans

(1–5 µg/disk); in vitro HIV-1
infectivity assay IC  = 0.8

μg/mL

-

[119]

90
[158]

50

[120][155]

[159][160]

[161][162]

[163][164]

50

RF

[165]

[166]

[167]

50

[121][168]

[169][170]

50

[123]

[171]
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CD  (median convulsant); EC  (effective concentration in 50% of population); ED  (effective dose in 50% of

population); HIV (human immunodeficiency virus); IC  (half maximal inhibitory concentration); IC  (maximum

inhibitory concentration in 90% population); LD  (lethal dose in 50% population); MIC (minimum inhibitory

concentration). Aspergillus niger (A. niger); Bacillus subtilis (B. subtilis); Candida

albicans (C. albicans); Cryptococcus neoformans (C. neoformans); E. coli (Escherichia coli); Enterococcus

durans (E. durans); Heliothis virescens (H. virescens); Helminthosporium gramineum (H. gramineum); Micrococcus

luteus (M. luteus); Microsporum audouinii (M. audouinii); Mortierella

ramanniana (M. ramanniana); Mycobacterium species (M. bovis, M. smegmatis, M. tuberculosis); Nippo-Strongylus

brasiliensis (N. brasiliensis); Piricularia oryzae (P. oryzae); Staphylococcus species

(S. aureus, S. epidermidis); Trichophyton mentagrophytes (T. mentagrophytes).

50 50 50

50 90

50
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Figure 4. Chemical structures of cyclic peptides from bacteria (64–116).
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