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Every year, plant diseases cause a significant loss of valuable food crops around the world. The plant and crop

disease management practice implemented in order to mitigate damages have changed considerably. Today,

through the application of new information and communication technologies, it is possible to predict the onset or

change in the severity of diseases using modern big data analysis techniques. In this paper, we present an

analysis and classification of research studies conducted over the past decade that forecast the onset of disease at

a pre-symptomatic stage (i.e., symptoms not visible to the naked eye) or at an early stage. We examine the

specific approaches and methods adopted, pre-processing techniques and data used, performance metrics, and

expected results, highlighting the issues encountered. The results of the study reveal that this practice is still in its

infancy and that many barriers need to be overcome.

plant disease prediction  precision agriculture  machine learning  artificial intelligence

deep learning  food security  review

1. Introduction

Crop and plant diseases entail serious implications for food security and production losses. Over the years, the

lasting global trade and the changing climate have not only exacerbated the existing favorable conditions for plant

and crop disease but have also created new conditions with which agriculture must now contend. As the Food and

Agriculture Organization of the United Nations (FAO)  asserts, plant pests and diseases are responsible for losses

from 20% to 40% of annual global food production. This means that timely disease management will be necessary

in order to address the increased food demand caused by population growth estimated by 2050 .

To meet these challenges, several studies  have been conducted with the aim of increasing our

understanding of the seasonal effect of environmental and weather conditions on diseases affecting major food

crops. The recent employment of new information and communication technologies (ICT) such as the Internet of

Things (IoT) , remote sensing , and cloud computing  are incentivizing the diffusion of Precision Agriculture

(PA), defined as the application of technologies and principles to manage the spatial and temporal variability

associated with all aspects of agricultural production for the purpose of improving crop performance and

environmental quality .

The aforementioned digital technologies contribute to improving our understanding by continuously monitoring and

measuring different physical phenomena , producing a huge amount of data, termed as Big Data .
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Agricultural big data is successfully being used for various tasks, such as yield prediction , weed and

pest/disease detection , crop and food detection , risk management, food safety  and spoilage prevention,

and operational/ equipment management, including plant and disease prediction . The analysis of Big Data

by means of Machine Learning (ML) , Deep Learning (DL) , and Artificial Intelligence (AI)  techniques has

only only recently begun to be applied .

A decade of research has generated considerable knowledge of the complex, interconnected, and dynamic

process of crop management. It is well known that plant disease responds to different climatic and environmental

variables in distinct ways , and so the outcome of any host–pathogen interaction in uncertain conditions is not

readily predictable. However, according to Classen et al. , there is still a lack of models involved in determining

plant health under a changing climate, as well as their direct and indirect effects and interactions.

As a consequence, more effort and research is urgently needed with the aim of developing novel solutions to

prevent and mitigate the impact of crop and plant disease to food production, especially at an early stage.

Thus, the main contribution of this study is to present an analysis and classification of the algorithms applied in the

prediction of crop and plant diseases by highlighting the problems encountered, the methods and techniques

employed, and the data used. In the literature, plant diseases have been predicted in several ways. This review

considers crop and plant disease prediction models that adopt AI, ML, and DL algorithms to predict symptoms

before they appear in the field or in an early stage with mild and small lesions. To this end, detection techniques

were not taken into consideration. Besides this, a critical discussion of open challenges and directions for future

research is attempted.

 

2. Materials and Methods

 

2.1 Methodology

The methodological design for this study’s bibliographic analysis involved two phases: (a) the collection of related

research and (b) the analysis of these contributions. Data were collected from the scientific databases IEEE

Xplore, ScienceDirect, MDPI, Hindawi, and from the web-based scientific indexing services Web of Science and

Google Scholar. Regarding the search keywords, the following query was performed:

[“crop disease” OR “plant disease”] AND [“prediction” OR “forecasting”]

Only documents regarding conferences and journal articles published between 2010 to 2020 were considered.

From the results, we filtered out the papers that did not provide sufficient descriptive elements for the method
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adopted. In this way, the number of documents was reduced to 46. Finally, each paper was analyzed considering

the general approach, the AI, ML, or DL techniques employed, the sources, the type of data used, the predicted

output, and the applied performance metrics.

To the best of our knowledge, this is the first study that focuses exclusively on predicting the symptoms of plant and

crop diseases before they appear in the field or in an early stage with mild and minor lesions. A brief review of 10

scientific works related to pest detection and prediction is provided in , while other review works were conducted

for different domains and sub-domains  belonging to the agriculture sector.

 

2.2. Factors Involved in Plant and Crop Disease Outbreak

The occurrence of plant and crop diseases is hugely dependent on weather and envi- ronmental fluctuations. The

literature considers the conceptual model referred to as the disease triangle as a fundamental principle of the

factors involved in disease causation. A disease occurs when a disease-causing agent, or pathogen, meets the

right host organism under environmental conditions favorable to disease development. The drawing of the dis-

ease triangle was most likely first published by Stevens . When these three components are present at the same

time, a disease (shaded region) will occur if a susceptible host plant is in intimate association with a virulent plant

pathogen under favorable environmental conditions (see Figure 1). Over the years, as Francl  notes, some plant

pathologists have elaborated on the disease triangle by adding one or more parameters , such as humans,

vectors, and time. Since this time, plant biologists have devoted greater effort toward studying the interactions and

direct/indirect impacts of various aspects of climate change on the development of plant disease epidemics. The

majority of these studies show that it is essential to model the issue while including multiple climate change

parameters. Newbery et al.  provide a graphical scheme of how climate, crop growth, and dis- ease models can

be combined to produce projections of crop growth stages and disease incidence/severity for different climate

change scenarios (Figure 2).

As described by Bock et al.  there are several ways to estimate or measure plant disease symptoms that quantify

the intensity, prevalence, incidence, or severity of disease. The terms used to describe concepts and their

interpretation are important in plant disease assessment, and are subject to redefinition as a result of advances

made in other fields, including measurement science . To avoid confusion, the following are the main disease

assessment terms and concepts :

- Disease intensity is a general term used to describe the amount of disease present in a population ;

- Disease prevalence is the proportion (or percentage) of fields, counties, states, etc. in which the disease is

detected, and reveals the disease at a grander scale than incidence ;Disease incidence is the proportion (or

percentage) of plants (or plant units, leaves, branches, etc.) that are diseased out of the total number assessed

;
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- Disease severity is the area (relative or absolute) of the sampling unit (leaf, fruit, etc.) showing symptoms of

disease. It is most often expressed as a percentage or proportion .

2.3. Crop and Plant Disease Prediction

2.3.1. Data Sources

The data used by the research works examined originated from several heteroge- neous sources; i.e., weather

stations  field sensors, farmer field surveys, remote sensing , images captured by unmanned aerial vehicles

(UAV) , pictures originating from cameras or multispectral and hyperspectral cameras, and on-line web services

.To gather the available weather and environmental parameters, a large number of studies relied on third-party

organizations, such as national/regional governmen- tal services  . Only a restricted number of these

works gathered data with their own on-field IoT network . The disease occurrence/severity under

study was collected by performing field surveys or was provided by regional/local agricultural institutions

. The data analyzed differed in volume, and were represented in different types and formats.

2.3.2. Pre-Processing

As Gibert et al.  state, pre-processing is one of the critical steps of data analysis in any of its forms. Most of the

studies reviewed at this stage removed the noise represented by incorrect and incomplete data to which feature

selection was subsequently applied. The most common pre-processing procedure was data normalization

, which transforms the characteristics into a similar scale in order to improve the performance and

stability of the model training. Feature selection concerns the process of reducing a large number of features in

order to identify those that contribute most to the prediction of the variable or output under examination. To this

end, some papers used Pearson correlation , Principal Component Analysis (PCA) , and Linear

Discriminant Analysis (LDA) . Other operations involved different data balancing techniques. Many scientific

papers, due to the limited size of the data , have addressed the problem of unbalanced data. To increase the

number of examples in the training set and avoid overfitting situations that would have penalized performance and

limited the ability of the model to generalize, the following methods were applied: Synthetic Minority Over-Sampling

Technique (SMOTE) , Random Oversampling (RO) , Random Undersampling (RUS), and Importance

Sampling (IMPS) .

2.3.3. Techniques and Methods

Table 1 shows the techniques and approaches (column 4) adopted by the papers under review. All 46 scientific

studies analyze Big Data according to a single technique or combination of methods, which model their particular

cases as classification and regression problems. Considering the different factors that interact with the

epidemiology of plant and crop diseases, and the different approaches employed by each study, the prediction

models can be classified into three main groups based on the input parameters processed:

1. Forecast models based on weather data;
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2. Forecast models based on image processing;

3. Forecast models based on the distinct types of data originating from various heterogeneous sources.

Almost half of the research works employed weather data (29 papers, 63%); of the remaining studies, 10 papers

(29%) used image processing, and 7 papers (15%) performed a cross-analysis of different types of data such as

meteorological variables, remote sensing images, biotic and abiotic factors. A brief summary of some of these

works is provided below.

Forecast Models Based on Weather Data

A wide variety of economically important crop diseases are closely related to growing season weather

conditions . Researchers initially studied solutions based on analytical and simulation models . However, the

complexity of many plant disease processes and their dependence on several factors is such that our

understanding, and thus the forecasting skill of many mathematical/statistical techniques, is inherently limited . A

detailed review of the mathematical models that have been widely explored in the literature for growing potatoes

and rice can be found in , while a clearinghouse of information about models developed for economically

important crop and turf diseases is provided in an online database named PestCast from the University of

California . Gradually, thanks to the widespread diffusion of recent ICT technologies in the agricultural sector,

research has subsequently focused more on Machine Learning and Artificial Intelligence techniques in order to

discover, understand, and evaluate new models and relationships that are too complex to find with defined

mathematical relationships. Therefore, these are useful for improving agricultural management practices.Our

literature study shows that the techniques adopted for the prediction of crop and plant diseases based on

meteorological parameters include the Support Vector Machine (nine papers), Artificial Neural Network (seven

papers), Random Forest (four papers), Long Short-Term Memory (three papers), the Extreme Learning Machine

(three papers), and Multi-Layer Perceptron (two paper). Most of these contributions employed an average of five

input parameters, where the most commonly used included the maximum tempera- ture, minimum temperature,

humidity, rainfall, and wind speed, respectively. Besides the aforementioned variables, other models incorporated

evaporation , brightness  and sunshine hours . Generally, the studies preferred to process hourly weather

data in- stead of daily weather data to produce more accurate predictions as well as to identify new patterns that

are useful to understand the complex processes more completely. The study periods used in the research works

ranged from two to five years.

Fenu and Malloci  investigated whether meteorological variables collected by regional weather stations could be

used to predict potato late blight risk in southern Sardinia using a Machine Learning approach. When designing the

potato late blight prediction model, such hourly historical weather data as temperature, humidity, rainfall, speed

wind, and solar radiation collected from several locations over 4 years (2016–2019) were analyzed. A Feed-

Forward Neural Network (FFNN) and Support Vector Machine Classification (SVC) were adopted and validated

with a stratified k-fold cross algorithm. The results showed that SVM outperformed the ANN in classifying low and

high risk levels, while ANN better discriminated the medium risk level. An extension of this work in  investigated

the crop–weather–disease relationships for potato late blight onset. The findings revealed that temperature,

humidity, and wind speed played a key role in the prediction. Later, the models were integrated into a Decision
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Support System (DSS) called LANDS (Laore Architecture Network Development for Sardinia) [14] to help farmers

in decision-making.Malicdem and Fernandez  employed an Artificial Neural Network and a Sup- port Vector

Machine algorithm to forecast rice blast disease occurrence and severity in specific rice growth stages based on

the weather conditions of the same year. They pre- processed data using PCA to determine the most important

weather information. Their results showed that precipitation was the greatest influencing variable (48%) in rice blast

disease onset, followed by minimum temperature (31%), maximum temperature (17%), and humidity (3%). Best

performances were obtained with SVM for both problems.

A different approach was adopted by Kim et al.  to develop a region-specific model to predict rice blast indices

for 17 cultivars. In this study, temporal patterns of the weather variables were considered during modeling. The

authors applied a Long Short-Term Memory network (LSTM) to the past degree of blast onset data, and historical

climatic data, unlike previous studies that required climate information in the same year as the forecasting time. In

addition, the influences of the LSTM input factors—i.e., rice blast disease scores, air temperature, relative humidity,

and sunshine hours—on the predictive accuracy were analyzed combining the input variables. The prediction

accuracies were not very high; furthermore, some individual cultivars were predicted better than others.

Specifically, the accuracy ranged between 40% and 79% across different sites. However, regardless of the cultivar,

this study indicated that an early prediction of rice blast occurrence based on climate data for the past three years

is possible.Bhatia et al.  developed a hybrid of the Support Vector Machine (SVM) and Logistic Regression (LR)

algorithms to predict powdery mildew disease in tomato plant. The SVM was used to minimize the noise in data

with the help of the Adaptive Sampling-Based Noise Reduction (ANR) method. The resultant training set obtained

from the SVM–ANR method was further fed into the LR classifier for the development of the classification model.

The proposed hybrid SVM–LR method obtained higher accuracy in predicting powdery mildew disease compared

to the SVM and LR algorithms alone. However, the work did not use any feature selection algorithm to identify the

most important features. An extended study was later proposed by the authors implementing an Extreme Learning

Machine (ELM) algorithm .Xiao et al.  treated the problem of cotton diseases and pests occurrence as a time

series classification problem using an LSTM network. They compared the LSTM architecture with other machine

learning methods such as KNN, SVC, and Random Forest to predict Bollworm disease. The results showed that

the LSTM model outperformed other traditional prediction models.Nettleton et al.  compared four models for

predicting rice blast disease: two operational process-based models (Yoshino and the Water Accounting Rice

Model (WARM)) and two approaches based on Machine Learning algorithms (M5Rules and LSTM). The results

proved that Machine Learning methods approximated the performances of two process-based models used for

years in operational contexts.Another approach followed by Sannakki et al.  also envisaged the combination of

the regression model for crop forecasting with the weather prediction performed by an Artificial Neural Network with

a modified K-Nearest-Neighbor validation. The authors designed a system tjat was able to predict powdery mildew

of grape based on forecasted weather data such as humidity and temperature.Ahmadi et al. applied the Artificial

Neural Network analysis technique to discrim- inating and classifying fungal infections in oil palm trees at an early

stage using raw, first, and second derivative spectroradiometer datasets. The results confirmed that the ANN has

the capacity to identify the presence of dynamic relationships that exist between the variables tested in the work,

achieving relevant classification accuracy for mildly infected palms that were not yet manifesting visible symptoms
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using raw individual spectral data.Yeh et al.  studied the development of strawberry leaf anthracnose by

analyzing hyperspectral images and determining a group of spectral bands that serve to differentiate between a

healthy and an asymptomatic leaf, obtaining classification results of 88% through a progressive discriminant

analysis.The studies described above concerned single plots, but agricultural production also involves

greenhouses. An interesting case study applied to this work environment was conducted by Ghaffari et al. . In

this context, a major challenge is to detect and quantify diseases within a plant population before they spread

throughout a greenhouse to allow control within a short timeframe. Often, this preventive action is carried out

through laboratory tests. The goal of the scientific work was to determine whether it was possible to replace

existing biological and laboratory diagnostic systems with an electronic nose. The volatile organic compounds

(VOCs), humidity, and temperatures were analyzed with MLP, LVQ and RBF neural network techniques. From the

findings, the use of the electronic nose played an important role in discriminating between healthy and infected

tomato plants, and this method can therefore be used as a potential early disease detection tool for tomato crops in

commercial greenhouses.

Forecast Models Based on Image Processing

Regarding the models based on image processing, researchers used Machine Learning and Deep Learning

algorithms such as Multi-Layer Perceptron (MLP), Extreme Learning Machine (ELM), Convolutional Neural

Networks (CNNs), Random Forest (RF), Support Vector Regression (SVR) and Logistic Regression.Duarte-

Garvajalino et al.  investigated an early warning model to forecast potato late blight symptoms at early stages

using 126 multi-spectral images captured with un- manned aerial vehicles (UAV) 85 days after planting. The study

compared two Machine Learning models—Support Vector Regression and Random Forest—with two types of arti-

ficial neural networks—MLP and CNN. The experiments carried out considering spectral differences, Normalized

Difference Vegetation Index (NDVI), and dimension reduction methods indicated that Deep Learning Convolutional

Neural Networks outperformed Multi-Layer Perceptron and Support Vector Regression in predicting the severity of

P. infes- tans infection of potato crops; Random Forests also performed remarkably well, followed by MLP using

band differences.Zhang et al.  studied a powdery mildew (PM) disease forecasting model at a regional scale,

adopting multiple sources of remote sensing information. The authors carried out a feature selection to identify the

vegetation indices/phases that were most sensitive to PM for model establishment based on Logistic Regression

analysis. This step led to a total of nine variables as input variables of the model. The results varied under different

thresholds, but reached a generally satisfactory accuracy of 72%.Rumpf et al.  demonstrated the feasibility of

the presymptomatic identification of foliar sugar beet diseases. This study combined different vegetation indices

together with the SVM algorithm (I) to discriminate diseased from non-diseased sugar beet leaves, (II) to

differentiate between the diseases Cercospora leaf spot, leaf rust, and powdery mildew, and (III) to identify

diseases even before specific symptoms became visible. Regarding the third point, the classifier achieved

significant results; e.g., leaves inoculated with C. beticola were correctly classified with an accuracy range from

65% to 80%, even before symptoms became visible. In order to additionally improve the detection, the authors

suggested finding wavelengths or combinations of wavelengths that were more specific for the given task.Zhu et al.

 investigated the presymptomatic detection of tobacco disease using hyperspectral imaging, combined with the

variable selection method and Machine Learn- ing classifiers such as the Back-Propagation Neural Network
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(BPNN), Extreme Learning Machine (ELM), and Least Squares Support Vector Machine (LS-SVM). The majority of

the models gave satisfactory results with classification accuracies of prediction of over 85%.

Forecast Models Based on Distinct Types of Data Coming from Various Heterogeneous Sources

Similarly, the prediction models that were used to perform cross-analysis included Regression Analysis (three

papers), Machine Learning (three papers), and Deep Learning (one paper) methods. Among these, different

approaches were identified. Three studies combined weather data with images captured by various sources.Zhang

et al.  integrated meteorological data (precipitation, temperature, radiation, and humidity) and remotely-sensed

variables (RG, Rr, RNIR, Triangular Vegetation Index (TVI), Soil Adjusted Vegetation Index (SAVI), Disease Water

Stress Index Shortwave(DSWI), Infrared Water Stress Index (SIWSI), Land Surface Temperature (LST) to forecast

powdery mildew (PM) on wheat at the regional scale. The authors examined the feasibility of integrating multi-

source data for disease prediction through a Logistic Regression model. The comparison between the model

constructed with meteorological data only and the integrated model constructed with both remote sensing and

meteorological data showed an increase in overall accuracy from 69% to 78% when using the integrated model. In

particular, a considerable improvement was evident for the years with high disease prevalence, which was less

obvious with a low level of presence. Among the variables, a significant influence on PM pathogen occurrence

prediction was exerted by four meteorological parameters— precipitation, temperature, sun radiation, and humidity

—as well as by two remotely sensed features including Rr and LST.Zhao et al.  conducted a study at the

provincial scale to forecast four levels of infection (healthy, mild, moderate, and severe) of wheat powdery mildew

using the Decision-Tree algorithm. The overall forecasting accuracy achieved when analyzing NDVI, LST, rainfall,

and temperature factors was 83.33%. The limitations that affected the results were traced to the restriction of

spatial resolution and to the imaging quality of optical remote sensing imagery, as well as distinguishing between

healthy and mild positions, especially at the early infection stage.Kaur and Kaur  employed k-means clustering

and Deep Neural Network learning to detect seven orange diseases and to predict the names of diseases based

on image data and weather features.Finally, four works predicted disease occurrence by analyzing weather data,

abiotic, and biotic factors. Badnakhe et al.  focused on developing a Citrus Gummosis predic- tion model using

Support Vector Regression (SVR) and Multi-Linear Regression (MLR) analyzing various plant, soil, and

environmental parameters. Among these, soil moisture (SM), soil temperature (ST), Leaf Area Index (LAI) and

chlorophyll (Cab) were included, where LAI and (Cab) values were retrieved through the Inverse PROSAIL model

and were subsequently validated with the field data. The results showed that the SVR model gave fairly good

performance as compared to MLR. In addition to the separate models, the au- thors proposed a combined scenario

approach (the Integrated Gummosis Disease Forecast Model (IGDFM)) to determine the interconnectivity of the

parametric conditions (weather– soil–plant parameters) with disease physiology with respect to the different age

groups of the plants. The RMSE values of their integrated approach for higher age-group plants (i.e., 11–15 years)

in the combined scenario were 0.9061 and 0.8518 for SVR and MLR methods, respectively. This research yielded

the discovery of the months in which the rate of disease occurrence is high, but also which factors are crucial in the

predictions. They found that the disease occurrence increases with an increase in humidity and soil moisture and a

decrease in soil temperature. The soil parameter played a key role in quantifying the disease predic- tion with the

models. Lu et al.  developed a novel probabilistic model (i.e., the Bayesian network model) to forecast the risk of
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PM in vineyards based on environmental (weather, climate), pathogenic (development stages), and host (crop

cultivar-specific susceptibil- ity) factors. The model was tested using 13 years of data for three susceptible

cultivars. Wang et al.  adopted a Wavelet Transformation and a Support Vector Machine to esti- mate the

occurrence of three diseases that affect cucumber using 13 variables, divided into soil data, weather data, and

disease data. Yang et al.  employed a Bayesian network model with four meteorological variables and one

phonological parameter to forecast yellow rust of winter wheat at a regional scale. The performance of the model

was evalu- ated against a weekly survey data during wheat’s key growth stages (the reviving stage, jointing stage,

heading stage, and milk stage) from 2010 to 2012. The disease forecasting results showed that the model was

able to produce a reasonable risk map to indicate the disease pressure across the region. In addition, the Bayesian

network outperformed the BP neural network and the Fisher Linear Discriminant Analysis (FLDA) in terms of

accuracy, especially in the prediction of the heading stage and milk stage, which are important time points for

disease prevention.

2.3.4. Predicted Outputs

For the analyzed research contributions, the authors modeled the problem following different scientific approaches.

Most of the studies dealt with the issue as a binary or multi-class classification, while other authors preferred to

predict continuous numerical values (see Table 1). The binary classification models were adopted to estimate the

disease occurrence using labels such as disease did not occur and disease occurred. On the other hand, the multi-

class classification models were designed to forecast the disease severity with labels ranging from 3 to 5

classes . Similarly, continuous numerical values were used for the last purpose mentioned above .

Finally, only one paper predicted the first date of disease occurrence .

2.3.5. Performance Metrics

Crop and plant disease forecast models were evaluated by means of various metrics. As emerged from the study

of kamilaris and Prenafeta-Boldú , in the present sub- domain, it is confirmed that accuracy was the most

adopted metric, as it was used in 72% of papers examined, followed by confusion matrix (11 papers), precision

(nine papers), recall (seven papers), and F1 measures (seven papers). In total, 46 papers combined different

metrics to evaluate the predictions, while 11 studies used accuracy as the only performance metric. Some research

involved the root mean square error (six papers), R squared (six papers), mean absolute error (three papers),

mean squared error (three papers), and others (see Table 1).

2.3.6. Data Analysis Frameworks

Regarding the frameworks used, most of the research works adopted the following programming languages and

tools:

Matlab: https://www.mathworks.com/;

Python: https://www.python.org/;

R: https://www.r-project.org/;
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Waikato Environment for Knowledge Analysis (WEKA): https://www.cs.waikato.ac.nz/ml/weka/;

Scikit-learn: https://scikit-learn.org/;

Keras: https://keras.io/;

Tensorflow: https://www.tensorflow.org/.

2.3.7. Overall Performance and Comparison

A delicate aspect of this work is to examine the computational efficiency of each study in relation to other papers,

as multiple techniques, datasets, and parameters were used and different approaches were considered;

furthermore, various diseases and crops were analyzed under different conditions. According to Wang and Ma [40],

under different conditions, the key factors of disease epidemics may be different. Therefore, we focus only on the

comparisons made in the same paper using the same experimental conditions. In al- most all cases, the Support

Vector Machine outperformed other implemented approaches. Malicdem and Fernandez [46] compared the ANN

and SVM to predict disease severity as well as the occurrence or non-occurrence of rice blast within each growth

stage of the rice crop. The first task was modeled as a classification problem, while the second one was

considered a regression problem. Both the ANN and SVM classifiers produced an average accuracy above 90%,

with the SVM scoring at least 93% on each of the different growth stages. Using the paired t-test in the results

statistically showed that the difference of the accuracy of the Machine Learning algorithms was significant (p-value

< 0.01). This implies that the built SVM classifier was significantly more accurate than the corresponding ANN

classifier. Likewise, SVM outperformed ANN in the investigation of the regression problem (p-value < 0.02). SVM

seems to be superior to the regression model when employed with an RBF or polynomial function as a kernel in

the prediction of wheat stripe rust disease [40]. However, similar results were obtained in two studies. Fenu and

Malloci [20] compared the SVM and ANN to forecast late blight disease severity in potato crop. In this
paper, the SVM was more accurate in distinguishing the low and high severity levels, while ANN
classified the medium severity level better. In the prediction of powdery mildew disease in tomato
plant [56], the SVM achieved an accuracy of 89.31%, and Linear Regression recorded an accuracy
of 87.02%. However, both models were found to be efficient when using a hybrid approach involving
two steps: the first was noise removal by ANR and SVM techniques, and the second was the training
of the LR model followed by 10-fold cross validation of the modified dataset. The proposed hybrid
SVM–LR classifier performed 3.06% better than SVM and 5.35% better than LR, with an accuracy of
92.37%. Furthermore, when predicting the first date of occurrence [47], Support Vector Re- gression achieved

better results than the other three statistical methods of pace regression, linear regression and the NICS moving-

average method, the last of which is the most-often used of the existing conventional models for the prediction of

late blight. The accuracy of prediction was 64.3%, thus showing a higher degree of accuracy compared with 42.9%

by the conventional moving-average method, 42.9% by pace regression and 35.7% by linear regression. The NICS

moving-average method was able to predict only six of 14 years. In contrast, SVR was able to predict nine years—

21.4% better than the NICS moving-average method. Fair performances were also confirmed in the analysis of

various climate–soil– plant factors in the prediction of citrus gummosis disease, where SVM obtained 0.9061

(RMSE) in contrast to 0.8518 (RMSE) obtained with the Multi-Linear Regression model [70].Worse performance

was found when SVR was used in image processing. The authors in [38] compared Support Vector Regression
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and Random Forest with MLP and CNN. SVR suffered from high dimensionality and the computational complexity

required to process images. Random Forest was found to be the most stable (lower standard error) estimator, but

CNN obtained the lowest slope and intercept regression estimator and achieved the lowest mean MAE (11.72%)

and RMSE (15.09%). From these results, CNNs seem to be better than RF and MLP using band

differences.Finally, the SVM was evaluated in [66] with a broad set of classifiers, including Partial Least Squares-

Discrimination Analysis (PLS-DA), Random Forest (RF), Back-Propagation Neural Network (BPNN), Extreme

Learning Machine (ELM) and Least Squares Support Vector Machine (LS-SVM). In this case study, the models

were investigated using hyperspec- tral images as input in order to classify disease stages with effective

wavelengths, texture features, and data fusion, respectively. The performance of chemometric models with data

fusion gave better results, with classification accuracies of calibration and prediction all above 80%, compared with

those only using effective wavelengths or texture features. A high accuracy was achieved by RF (93.33%), BPNN

(95.00%), LS-SVM (96.67%), and ELM (90.00%), while slightly lower results were obtained by PLS-DA (81.67%)

and SVM (88.33%).

 

3. Discussion

In the present section, we discuss the plant and crop disease predictions carried out through data analysis

techniques, which fall into three computer areas known as AI, ML, and DL. The review considered 46 scientific

papers, which predicted the onset of the disease at a pre-symptomatic (i.e., symptoms not visible to the naked eye)

or at an early stage, which was done by adopting the methodology described in Section 2.1.

Figure 3a shows the trend line of publications. From 2010 to 2020, there was an incremental trend (orange

line).The majority of the papers were published after 2015, indicating how recent this sub-domain is in agriculture.

More precisely, 22% of papers from 2010 to 2015 excluded (dashed line) and 78% from 2015 to 2020 (solid line).

Figure 3b shows the number of citations for each year considered. As can be seen, the resulting line does not

show a uniform trend, with a maximum in 2010 and a minimum between 2011–2013. However, to better

understand this trend, it is necessary to evaluate the impact index of the conference proceedings and journals. To

this end, a bar graph was constructed (Figure 3c) which shows the number of citations for each paper, with works

grouped according to the journal’s H-index. Three clusters were identified: 0 ≤ H-Index ≤ 50 (blue), 50 < H-Index <

100 (orange), H-Index ≥ 100 (gray). The information relating to the citations was retrieved from the Google Scholar

service, while the H-index was taken from the Scimago (https://www.scimagojr.com/) online service. The graph

shows that 67% of publications were related to an impact index lower than 50, 13% to an impact index between 50

and 100 and the remaining 20% to an impact index higher than 100. Therefore, the graph shows that the number

of citations is closely linked to how often the conference proceedings/journal is consulted.
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Figure 3. (a) Number of research publications per year (2010–2020) related to plant and crop disease prediction,

which predicted the onset of the disease in a pre-symptomatic (i.e., symptoms not visible to the naked eye) or early

stage, recovered by adopting the methodology described in Section 2.1; (b) number of citations for each year

considered; (c) number of citations for each paper, which have been grouped according to the journal’s H-index.

 

Our study shows that the approaches used in the literature to tackle the problem under examination can be divided

into three categories: forecast models based on weather data (the first category), forecast models based on image

processing (the second category), and forecast models based on distinct types of data coming from various

heterogeneous sources (the third category). The first and second categories are the most explored, with an

adoption rate of 63% and 22%, against 15% for the third category (see Figure 3c). Generally, RMs, ANNs, SVMs,

and CNNs are the most used techniques. Due to the high heterogeneity of the experimental conditions (i.e.,

approaches, datasets, parameters, and performance metrics), it is difficult—if not unreliable—to perform a

systematic comparison of the performance of each paper. Therefore, our comparisons are strictly limited to the

techniques used in each paper. Taking these factors into account, we observe that the SVM and SVR when applied
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to the first category of models outperform ANNs and traditional regression models. As underlined by the various

studies, the advantage given by the use of the SVM lies in its good ability to learn the representations of data in

non-linear problems, with large dimensions and small samples. Likewise, the ANNs were favored for their ability to

learn representations from past events to predict the future probability of occurrence of an event based on the

conducive condition. The main obstacles encountered by the studies of the first category that used these

techniques concerned the reduced size and imbalance of the classes in the dataset as well as overfitting. These

problems had a major impact on the ANNs [59]. In fact, performance was limited by their trend of requiring more

time and more data for training. Another disadvantage shown by the analyzed works that unites both techniques

relates to the concept of the “black box”. The relationship between input and output is difficult to explain and derive.

As indicated by Gu et al. [47], the purpose of SVR is to make predictions rather than to provide explanations.

Therefore, there are limitations in explaining the effects that variables have on other variables. Although SVM

showed superior performance in weather-based classification and regression problems, it did not perform as well in

terms of image processing methodology.

Models belonging to this category conducted spectral analysis using optical and thermal remote sensing images as

well as multispectral and hyperspectral images. The multispectral images were found to be relevant for the

detection of the disease at an early stage, as demonstrated in [38]. Besides this, the hyperspectral images most

used by the studies reviewed (six papers) allowed the prediction of disease in a presymptomatic stage; i.e., even

before the symptom was visible to the naked eye. This difference is due to the spectral resolution used by the two

remote sensing technologies. Multispectral imaging collects spectral signals in a few discrete bands, each

spanning a broad spectral range from tens to hundreds of nanometers. In contrast, hyperspectral imaging detects

spectral signals in a series of continuous channels with a narrow spectral bandwidth (e.g., typically below 10 nm);

therefore, it can capture fine-scale spectral features of targets that otherwise could be compromised [30].

Multispectral images compared to hyperspectral images provide less data complexity and information content [85].

However, the analysis of hyperspectral images brings with it various limitations. Several authors underlined the

high dimensionality of the data as being among the difficulties encountered. As Mahlein et al. [85] pointed out, the

high degree of inter-band correlation results in information redundancy, which can cause convergence instability in

the multivariate prediction models. Therefore, most papers focused a great deal of effort on identifying the effective

wavelengths for the extraction of the target properties; i.e., the visible patterns in the spectrum that characterize a

healthy leaf from a pre-symptomatic diseased leaf. Image resolution also affects model performance. Zhang et al.

[37] crossed weather data with MODIS images. The authors observed that the forecasting accuracy was affected

by restricting the spatial resolution and imaging quality of optical remote sensing images.

From the results obtained in the literature, we infer that remote sensing data represent a wealth of information that

is useful for the development of autonomous non-invasive systems for the prediction of biotic and abiotic stress in

plants. In this context, recent Deep Learning models, such as CNNs, seem capable of properly addressing many of

the technical challenges related to perceptual problems, as seen in other use cases; e.g., yield prediction [16], land

cover classification [86], and plant and weed recognition [87]. In particular, spectral images can be an aid to

conventional adversity management techniques that are often time-consuming, destructive, expensive, and

impractical. An ideal system approach requires precision, speed, and non-destructive practices.
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In general, the studies of the first and second categories show that the exclusive use of a single data source is not

sufficient to build models capable of capturing and predicting the variability of a disease in the field. To increase the

stability and generalization capabilities of the algorithms, several authors suggest the integration of multiple data

sources, as well as the inclusion of more information such as plant age, cultivar, growth phase, and soil

characteristics. In fact, the results obtained from the third category of models confirm this. Zhang et al. [67], by

combining meteorological data with remote sensing data, recorded an increase in accuracy from 69% to 78%. Most

works have focused on forecasting a disease by analyzing mainly meteorological parameters. Variables such as

temperature, humidity, and precipitation emerge as the variables that contribute most to the onset of the disease.

Each of these have different effects depending on the disease and the crop under examination. Rowlandson et al.

[88] observed that leaf wetness, together with the variables mentioned above, is a parameter that should not be

neglected. The authors pointed out that the analysis of leaf wetness periods of a specific time duration is

necessary, as this variable interacts with the propagule germination of most phytopathogens. Badnakhe et al. [70]

demonstrated that soil temperature plays a crucial role in gummosis disease prediction.

As Section 2.3.3 illustrates, a large variety of algorithms and techniques have been employed to predict the

occurrence or severity of diseases affecting different crops and plants. From these, we observed that many

scientific contributions focused on predicting the main diseases affecting rice, wheat, and potato crops such as late

blight [3,20], powdery mildew [37,67,68], downy mildew, and blast [46,48,55], as shown in Figure 4a,b.
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Figure 4. (a) Number of publications based on crop and disease examined; (b) current state of crops and plants

explored during the last 10 years in terms of percentage of research papers.

 

Overall, related to the approaches adopted by the works surveyed, we can generalize that a prediction model for

plant and crop disease should consist of three mandatory steps: pre-processing, feature selection, and

classification. The flow diagram of our survey is shown in Figure 5.
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Figure 5. Techniques popularly explored in the domain of plant and crop disease prediction models.

 

The Support Vector Machine, followed by the Artificial Neural Network and Random Forest, were the most

employed techniques. Nevertheless, although te aforementioned techniques and others produced promising

results, a restricted number of studies tested their solutions in different datasets. This underlying trend may be

influenced by the restricted availability of open-data. To obtain available weather and environmental parameters, a

large number of studies relied on third-party organizations, such as national/regional governmental services. Only a

restricted number of these works gathered data with their own on-field IoT networks. According to Kamilaris et al.

[15], more big data repositories should become publicly available.

Furthermore, we noticed that there is a shortage of model validation in real-world scenarios. Appropriate validation

is needed for studies to have an accurate and broad impact. This can be inferred from the fact that such studies

require an extensive observation time as well as requiring the involvement of human resources with different

expertise.

4. Conclusions

In this paper, we performed an analysis and classification of forecasting models for plant and crop disease over the

past 10 years (2010–2020). Forty-six research works were identified and reviewed, with an examination of the

approaches adopted as well as the pre-processing techniques and data used. Issues and concerns were

discussed in Section 2.4.
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As we have seen in this study, the prediction of plant and crop disease is a complex problem to be solved due to

the interaction of several environmental and climatic factors. Over the last 10 years, the literature has presented

considerable advancements in understanding these dynamic processes by adopting different scientific approaches.

As we observed, the problem under study requires high-quality, labeled data. However, the lack of open data is

slowing the advance of knowledge in this agricultural sub-domain.

Indeed, regarding the state of the art, only a limited number of contributions has been presented in the literature

from 2010 to today. The majority of these have focused on few pathogens and crops; furthermore, only a few of

these have considered data from various heterogeneous sources to predict disease occurrence. These gaps are

hindering progress in achieving development goals and creating products that are able to face realworld scenarios,

and so more effort is required in data collection and in developing novel solutions to prevent and mitigate the

impact of crop and plant disease to food production, especially for those crops which represent staple foods for

millions of people who live in the least developed countries.
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