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Every year, plant diseases cause a significant loss of valuable food crops around the world. The plant and crop disease

management practice implemented in order to mitigate damages have changed considerably. Today, through the

application of new information and communication technologies, it is possible to predict the onset or change in the

severity of diseases using modern big data analysis techniques. In this paper, we present an analysis and classification of

research studies conducted over the past decade that forecast the onset of disease at a pre-symptomatic stage (i.e.,

symptoms not visible to the naked eye) or at an early stage. We examine the specific approaches and methods adopted,

pre-processing techniques and data used, performance metrics, and expected results, highlighting the issues

encountered. The results of the study reveal that this practice is still in its infancy and that many barriers need to be

overcome.
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1. Introduction

Crop and plant diseases entail serious implications for food security and production losses. Over the years, the lasting

global trade and the changing climate have not only exacerbated the existing favorable conditions for plant and crop

disease but have also created new conditions with which agriculture must now contend. As the Food and Agriculture

Organization of the United Nations (FAO)  asserts, plant pests and diseases are responsible for losses from 20% to 40%

of annual global food production. This means that timely disease management will be necessary in order to address the

increased food demand caused by population growth estimated by 2050 .

To meet these challenges, several studies  have been conducted with the aim of increasing our understanding

of the seasonal effect of environmental and weather conditions on diseases affecting major food crops. The recent

employment of new information and communication technologies (ICT) such as the Internet of Things (IoT) , remote

sensing , and cloud computing  are incentivizing the diffusion of Precision Agriculture (PA), defined as the application

of technologies and principles to manage the spatial and temporal variability associated with all aspects of agricultural

production for the purpose of improving crop performance and environmental quality .

The aforementioned digital technologies contribute to improving our understanding by continuously monitoring and

measuring different physical phenomena , producing a huge amount of data, termed as Big Data . Agricultural big

data is successfully being used for various tasks, such as yield prediction , weed and pest/disease detection , crop

and food detection , risk management, food safety  and spoilage prevention, and operational/ equipment

management, including plant and disease prediction . The analysis of Big Data by means of Machine Learning (ML)

, Deep Learning (DL) , and Artificial Intelligence (AI)  techniques has only only recently begun to be applied .

A decade of research has generated considerable knowledge of the complex, interconnected, and dynamic process of

crop management. It is well known that plant disease responds to different climatic and environmental variables in distinct

ways , and so the outcome of any host–pathogen interaction in uncertain conditions is not readily predictable.

However, according to Classen et al. , there is still a lack of models involved in determining plant health under a

changing climate, as well as their direct and indirect effects and interactions.

As a consequence, more effort and research is urgently needed with the aim of developing novel solutions to prevent and

mitigate the impact of crop and plant disease to food production, especially at an early stage.

Thus, the main contribution of this study is to present an analysis and classification of the algorithms applied in the

prediction of crop and plant diseases by highlighting the problems encountered, the methods and techniques employed,

and the data used. In the literature, plant diseases have been predicted in several ways. This review considers crop and
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plant disease prediction models that adopt AI, ML, and DL algorithms to predict symptoms before they appear in the field

or in an early stage with mild and small lesions. To this end, detection techniques were not taken into consideration.

Besides this, a critical discussion of open challenges and directions for future research is attempted.

 

2. Materials and Methods

 

2.1 Methodology

The methodological design for this study’s bibliographic analysis involved two phases: (a) the collection of related

research and (b) the analysis of these contributions. Data were collected from the scientific databases IEEE Xplore,

ScienceDirect, MDPI, Hindawi, and from the web-based scientific indexing services Web of Science and Google Scholar.

Regarding the search keywords, the following query was performed:

[“crop disease” OR “plant disease”] AND [“prediction” OR “forecasting”]

Only documents regarding conferences and journal articles published between 2010 to 2020 were considered. From the

results, we filtered out the papers that did not provide sufficient descriptive elements for the method adopted. In this way,

the number of documents was reduced to 46. Finally, each paper was analyzed considering the general approach, the AI,

ML, or DL techniques employed, the sources, the type of data used, the predicted output, and the applied performance

metrics.

To the best of our knowledge, this is the first study that focuses exclusively on predicting the symptoms of plant and crop

diseases before they appear in the field or in an early stage with mild and minor lesions. A brief review of 10 scientific

works related to pest detection and prediction is provided in , while other review works were conducted for different

domains and sub-domains  belonging to the agriculture sector.

 

2.2. Factors Involved in Plant and Crop Disease Outbreak

The occurrence of plant and crop diseases is hugely dependent on weather and envi- ronmental fluctuations. The

literature considers the conceptual model referred to as the disease triangle as a fundamental principle of the

factors involved in disease causation. A disease occurs when a disease-causing agent, or pathogen, meets the

right host organism under environmental conditions favorable to disease development. The drawing of the dis-

ease triangle was most likely first published by Stevens . When these three components are present at the

same time, a disease (shaded region) will occur if a susceptible host plant is in intimate association with a virulent

plant pathogen under favorable environmental conditions (see Figure 1). Over the years, as Francl  notes,

some plant pathologists have elaborated on the disease triangle by adding one or more parameters , such as

humans, vectors, and time. Since this time, plant biologists have devoted greater effort toward studying the

interactions and direct/indirect impacts of various aspects of climate change on the development of plant disease

epidemics. The majority of these studies show that it is essential to model the issue while including multiple

climate change parameters. Newbery et al.  provide a graphical scheme of how climate, crop growth, and dis-

ease models can be combined to produce projections of crop growth stages and disease incidence/severity for

different climate change scenarios (Figure 2).

As described by Bock et al.  there are several ways to estimate or measure plant disease symptoms that

quantify the intensity, prevalence, incidence, or severity of disease. The terms used to describe concepts and

their interpretation are important in plant disease assessment, and are subject to redefinition as a result of

advances made in other fields, including measurement science . To avoid confusion, the following are the

main disease assessment terms and concepts :

- Disease intensity is a general term used to describe the amount of disease present in a population ;

- Disease prevalence is the proportion (or percentage) of fields, counties, states, etc. in which the

disease is detected, and reveals the disease at a grander scale than incidence ;Disease incidence is

the proportion (or percentage) of plants (or plant units, leaves, branches, etc.) that are diseased out of
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the total number assessed ;

- Disease severity is the area (relative or absolute) of the sampling unit (leaf, fruit, etc.) showing

symptoms of disease. It is most often expressed as a percentage or proportion .

2.3. Crop and Plant Disease Prediction

2.3.1. Data Sources

The data used by the research works examined originated from several heteroge- neous

sources; i.e., weather stations  field sensors, farmer field surveys, remote sensing ,

images captured by unmanned aerial vehicles (UAV) , pictures originating from cameras or

multispectral and hyperspectral cameras, and on-line web services .To gather the available

weather and environmental parameters, a large number of studies relied on third-party

organizations, such as national/regional governmen- tal services  . Only a restricted

number of these works gathered data with their own on-field IoT network . The

disease occurrence/severity under study was collected by performing field surveys or was

provided by regional/local agricultural institutions . The data analyzed differed in

volume, and were represented in different types and formats.

2.3.2. Pre-Processing

As Gibert et al.  state, pre-processing is one of the critical steps of data analysis in

any of its forms. Most of the studies reviewed at this stage removed the noise

represented by incorrect and incomplete data to which feature selection was

subsequently applied. The most common pre-processing procedure was data

normalization , which transforms the characteristics into a similar

scale in order to improve the performance and stability of the model training. Feature

selection concerns the process of reducing a large number of features in order to

identify those that contribute most to the prediction of the variable or output under

examination. To this end, some papers used Pearson correlation , Principal

Component Analysis (PCA) , and Linear Discriminant Analysis (LDA) .

Other operations involved different data balancing techniques. Many scientific papers,

due to the limited size of the data , have addressed the problem of unbalanced

data. To increase the number of examples in the training set and avoid overfitting

situations that would have penalized performance and limited the ability of the model to

generalize, the following methods were applied: Synthetic Minority Over-Sampling

Technique (SMOTE) , Random Oversampling (RO) , Random Undersampling

(RUS), and Importance Sampling (IMPS) .

2.3.3. Techniques and Methods

Table 1 shows the techniques and approaches (column 4) adopted by the

papers under review. All 46 scientific studies analyze Big Data according to a

single technique or combination of methods, which model their particular cases

as classification and regression problems. Considering the different factors that

interact with the epidemiology of plant and crop diseases, and the different

approaches employed by each study, the prediction models can be classified

into three main groups based on the input parameters processed:

1. Forecast models based on weather data;

2. Forecast models based on image processing;

3. Forecast models based on the distinct types of data originating from various

heterogeneous sources.

Almost half of the research works employed weather data (29 papers, 63%); of

the remaining studies, 10 papers (29%) used image processing, and 7 papers

(15%) performed a cross-analysis of different types of data such as

meteorological variables, remote sensing images, biotic and abiotic factors. A

brief summary of some of these works is provided below.

Forecast Models Based on Weather Data
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A wide variety of economically important crop diseases are closely

related to growing season weather conditions . Researchers initially

studied solutions based on analytical and simulation models .

However, the complexity of many plant disease processes and their

dependence on several factors is such that our understanding, and

thus the forecasting skill of many mathematical/statistical techniques,

is inherently limited . A detailed review of the mathematical models

that have been widely explored in the literature for growing potatoes

and rice can be found in , while a clearinghouse of information

about models developed for economically important crop and turf

diseases is provided in an online database named PestCast from the

University of California . Gradually, thanks to the widespread

diffusion of recent ICT technologies in the agricultural sector, research

has subsequently focused more on Machine Learning and Artificial

Intelligence techniques in order to discover, understand, and evaluate

new models and relationships that are too complex to find with defined

mathematical relationships. Therefore, these are useful for improving

agricultural management practices.Our literature study shows that the

techniques adopted for the prediction of crop and plant diseases based

on meteorological parameters include the Support Vector Machine

(nine papers), Artificial Neural Network (seven papers), Random Forest

(four papers), Long Short-Term Memory (three papers), the Extreme

Learning Machine (three papers), and Multi-Layer Perceptron (two

paper). Most of these contributions employed an average of five input

parameters, where the most commonly used included the maximum

tempera- ture, minimum temperature, humidity, rainfall, and wind

speed, respectively. Besides the aforementioned variables, other

models incorporated evaporation , brightness  and sunshine

hours . Generally, the studies preferred to process hourly weather

data in- stead of daily weather data to produce more accurate

predictions as well as to identify new patterns that are useful to

understand the complex processes more completely. The study

periods used in the research works ranged from two to five years.

Fenu and Malloci  investigated whether meteorological variables

collected by regional weather stations could be used to predict

potato late blight risk in southern Sardinia using a Machine

Learning approach. When designing the potato late blight

prediction model, such hourly historical weather data as

temperature, humidity, rainfall, speed wind, and solar radiation

collected from several locations over 4 years (2016–2019) were

analyzed. A Feed-Forward Neural Network (FFNN) and Support

Vector Machine Classification (SVC) were adopted and validated

with a stratified k-fold cross algorithm. The results showed that

SVM outperformed the ANN in classifying low and high risk levels,

while ANN better discriminated the medium risk level. An extension

of this work in  investigated the crop–weather–disease

relationships for potato late blight onset. The findings revealed that

temperature, humidity, and wind speed played a key role in the

prediction. Later, the models were integrated into a Decision

Support System (DSS) called LANDS (Laore Architecture Network

Development for Sardinia) [14] to help farmers in decision-

making.Malicdem and Fernandez  employed an Artificial Neural

Network and a Sup- port Vector Machine algorithm to forecast rice

blast disease occurrence and severity in specific rice growth

stages based on the weather conditions of the same year. They

pre- processed data using PCA to determine the most important
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weather information. Their results showed that precipitation was

the greatest influencing variable (48%) in rice blast disease onset,

followed by minimum temperature (31%), maximum temperature

(17%), and humidity (3%). Best performances were obtained with

SVM for both problems.

A different approach was adopted by Kim et al.  to develop

a region-specific model to predict rice blast indices for 17

cultivars. In this study, temporal patterns of the weather

variables were considered during modeling. The authors

applied a Long Short-Term Memory network (LSTM) to the

past degree of blast onset data, and historical climatic data,

unlike previous studies that required climate information in the

same year as the forecasting time. In addition, the influences

of the LSTM input factors—i.e., rice blast disease scores, air

temperature, relative humidity, and sunshine hours—on the

predictive accuracy were analyzed combining the input

variables. The prediction accuracies were not very high;

furthermore, some individual cultivars were predicted better

than others. Specifically, the accuracy ranged between 40%

and 79% across different sites. However, regardless of the

cultivar, this study indicated that an early prediction of rice

blast occurrence based on climate data for the past three

years is possible.Bhatia et al.  developed a hybrid of the

Support Vector Machine (SVM) and Logistic Regression (LR)

algorithms to predict powdery mildew disease in tomato plant.

The SVM was used to minimize the noise in data with the help

of the Adaptive Sampling-Based Noise Reduction (ANR)

method. The resultant training set obtained from the SVM–

ANR method was further fed into the LR classifier for the

development of the classification model. The proposed hybrid

SVM–LR method obtained higher accuracy in predicting

powdery mildew disease compared to the SVM and LR

algorithms alone. However, the work did not use any feature

selection algorithm to identify the most important features. An

extended study was later proposed by the authors

implementing an Extreme Learning Machine (ELM)

algorithm .Xiao et al.  treated the problem of cotton

diseases and pests occurrence as a time series classification

problem using an LSTM network. They compared the LSTM

architecture with other machine learning methods such as

KNN, SVC, and Random Forest to predict Bollworm disease.

The results showed that the LSTM model outperformed other

traditional prediction models.Nettleton et al.  compared four

models for predicting rice blast disease: two operational

process-based models (Yoshino and the Water Accounting

Rice Model (WARM)) and two approaches based on Machine

Learning algorithms (M5Rules and LSTM). The results proved

that Machine Learning methods approximated the

performances of two process-based models used for years in

operational contexts.Another approach followed by Sannakki

et al.  also envisaged the combination of the regression

model for crop forecasting with the weather prediction

performed by an Artificial Neural Network with a modified K-

Nearest-Neighbor validation. The authors designed a system

tjat was able to predict powdery mildew of grape based on

forecasted weather data such as humidity and
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temperature.Ahmadi et al. applied the Artificial Neural

Network analysis technique to discrim- inating and classifying

fungal infections in oil palm trees at an early stage using raw,

first, and second derivative spectroradiometer datasets. The

results confirmed that the ANN has the capacity to identify the

presence of dynamic relationships that exist between the

variables tested in the work, achieving relevant classification

accuracy for mildly infected palms that were not yet

manifesting visible symptoms using raw individual spectral

data.Yeh et al.  studied the development of strawberry leaf

anthracnose by analyzing hyperspectral images and

determining a group of spectral bands that serve to

differentiate between a healthy and an asymptomatic leaf,

obtaining classification results of 88% through a progressive

discriminant analysis.The studies described above concerned

single plots, but agricultural production also involves

greenhouses. An interesting case study applied to this work

environment was conducted by Ghaffari et al. . In this

context, a major challenge is to detect and quantify diseases

within a plant population before they spread throughout a

greenhouse to allow control within a short timeframe. Often,

this preventive action is carried out through laboratory tests.

The goal of the scientific work was to determine whether it was

possible to replace existing biological and laboratory

diagnostic systems with an electronic nose. The volatile

organic compounds (VOCs), humidity, and temperatures were

analyzed with MLP, LVQ and RBF neural network techniques.

From the findings, the use of the electronic nose played an

important role in discriminating between healthy and infected

tomato plants, and this method can therefore be used as a

potential early disease detection tool for tomato crops in

commercial greenhouses.

Forecast Models Based on Image Processing

Regarding the models based on image processing,

researchers used Machine Learning and Deep

Learning algorithms such as Multi-Layer Perceptron

(MLP), Extreme Learning Machine (ELM),

Convolutional Neural Networks (CNNs), Random

Forest (RF), Support Vector Regression (SVR) and

Logistic Regression.Duarte-Garvajalino et al.

investigated an early warning model to forecast potato

late blight symptoms at early stages using 126 multi-

spectral images captured with un- manned aerial

vehicles (UAV) 85 days after planting. The study

compared two Machine Learning models—Support

Vector Regression and Random Forest—with two

types of arti- ficial neural networks—MLP and CNN.

The experiments carried out considering spectral

differences, Normalized Difference Vegetation Index

(NDVI), and dimension reduction methods indicated

that Deep Learning Convolutional Neural Networks

outperformed Multi-Layer Perceptron and Support

Vector Regression in predicting the severity of P.

infes- tans infection of potato crops; Random Forests

also performed remarkably well, followed by MLP

using band differences.Zhang et al.  studied a
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powdery mildew (PM) disease forecasting model at a

regional scale, adopting multiple sources of remote

sensing information. The authors carried out a feature

selection to identify the vegetation indices/phases that

were most sensitive to PM for model establishment

based on Logistic Regression analysis. This step led

to a total of nine variables as input variables of the

model. The results varied under different thresholds,

but reached a generally satisfactory accuracy of

72%.Rumpf et al.  demonstrated the feasibility of

the presymptomatic identification of foliar sugar beet

diseases. This study combined different vegetation

indices together with the SVM algorithm (I) to

discriminate diseased from non-diseased sugar beet

leaves, (II) to differentiate between the diseases

Cercospora leaf spot, leaf rust, and powdery mildew,

and (III) to identify diseases even before specific

symptoms became visible. Regarding the third point,

the classifier achieved significant results; e.g., leaves

inoculated with C. beticola were correctly classified

with an accuracy range from 65% to 80%, even

before symptoms became visible. In order to

additionally improve the detection, the authors

suggested finding wavelengths or combinations of

wavelengths that were more specific for the given

task.Zhu et al.  investigated the presymptomatic

detection of tobacco disease using hyperspectral

imaging, combined with the variable selection method

and Machine Learn- ing classifiers such as the Back-

Propagation Neural Network (BPNN), Extreme

Learning Machine (ELM), and Least Squares Support

Vector Machine (LS-SVM). The majority of the models

gave satisfactory results with classification accuracies

of prediction of over 85%.

Forecast Models Based on Distinct Types of Data
Coming from Various Heterogeneous Sources

Similarly, the prediction models that were

used to perform cross-analysis included

Regression Analysis (three papers), Machine

Learning (three papers), and Deep Learning

(one paper) methods. Among these, different

approaches were identified. Three studies

combined weather data with images captured

by various sources.Zhang et al.  integrated

meteorological data (precipitation,

temperature, radiation, and humidity) and

remotely-sensed variables (RG, Rr, RNIR,

Triangular Vegetation Index (TVI), Soil

Adjusted Vegetation Index (SAVI), Disease

Water Stress Index Shortwave(DSWI),

Infrared Water Stress Index (SIWSI), Land

Surface Temperature (LST) to forecast

powdery mildew (PM) on wheat at the

regional scale. The authors examined the

feasibility of integrating multi-source data for

disease prediction through a Logistic
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Regression model. The comparison between

the model constructed with meteorological

data only and the integrated model

constructed with both remote sensing and

meteorological data showed an increase in

overall accuracy from 69% to 78% when

using the integrated model. In particular, a

considerable improvement was evident for

the years with high disease prevalence,

which was less obvious with a low level of

presence. Among the variables, a significant

influence on PM pathogen occurrence

prediction was exerted by four meteorological

parameters— precipitation, temperature, sun

radiation, and humidity—as well as by two

remotely sensed features including Rr and

LST.Zhao et al.  conducted a study at the

provincial scale to forecast four levels of

infection (healthy, mild, moderate, and

severe) of wheat powdery mildew using the

Decision-Tree algorithm. The overall

forecasting accuracy achieved when

analyzing NDVI, LST, rainfall, and

temperature factors was 83.33%. The

limitations that affected the results were

traced to the restriction of spatial resolution

and to the imaging quality of optical remote

sensing imagery, as well as distinguishing

between healthy and mild positions,

especially at the early infection stage.Kaur

and Kaur  employed k-means clustering

and Deep Neural Network learning to detect

seven orange diseases and to predict the

names of diseases based on image data and

weather features.Finally, four works predicted

disease occurrence by analyzing weather

data, abiotic, and biotic factors. Badnakhe et

al.  focused on developing a Citrus

Gummosis predic- tion model using Support

Vector Regression (SVR) and Multi-Linear

Regression (MLR) analyzing various plant,

soil, and environmental parameters. Among

these, soil moisture (SM), soil temperature

(ST), Leaf Area Index (LAI) and chlorophyll

(Cab) were included, where LAI and (Cab)

values were retrieved through the Inverse

PROSAIL model and were subsequently

validated with the field data. The results

showed that the SVR model gave fairly good

performance as compared to MLR. In

addition to the separate models, the au- thors

proposed a combined scenario approach (the

Integrated Gummosis Disease Forecast

Model (IGDFM)) to determine the

interconnectivity of the parametric conditions

(weather– soil–plant parameters) with

disease physiology with respect to the
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different age groups of the plants. The RMSE

values of their integrated approach for higher

age-group plants (i.e., 11–15 years) in the

combined scenario were 0.9061 and 0.8518

for SVR and MLR methods, respectively. This

research yielded the discovery of the months

in which the rate of disease occurrence is

high, but also which factors are crucial in the

predictions. They found that the disease

occurrence increases with an increase in

humidity and soil moisture and a decrease in

soil temperature. The soil parameter played a

key role in quantifying the disease predic-

tion with the models. Lu et al.  developed a

novel probabilistic model (i.e., the Bayesian

network model) to forecast the risk of PM in

vineyards based on environmental (weather,

climate), pathogenic (development stages),

and host (crop cultivar-specific susceptibil-

ity) factors. The model was tested using 13

years of data for three susceptible cultivars.

Wang et al.  adopted a Wavelet

Transformation and a Support Vector

Machine to esti- mate the occurrence of three

diseases that affect cucumber using 13

variables, divided into soil data, weather data,

and disease data. Yang et al.  employed a

Bayesian network model with four

meteorological variables and one

phonological parameter to forecast yellow

rust of winter wheat at a regional scale. The

performance of the model was evalu- ated

against a weekly survey data during wheat’s

key growth stages (the reviving stage, jointing

stage, heading stage, and milk stage) from

2010 to 2012. The disease forecasting results

showed that the model was able to produce a

reasonable risk map to indicate the disease

pressure across the region. In addition, the

Bayesian network outperformed the BP

neural network and the Fisher Linear

Discriminant Analysis (FLDA) in terms of

accuracy, especially in the prediction of the

heading stage and milk stage, which are

important time points for disease prevention.

2.3.4. Predicted Outputs

For the analyzed research contributions,

the authors modeled the problem

following different scientific approaches.

Most of the studies dealt with the issue

as a binary or multi-class classification,

while other authors preferred to predict

continuous numerical values (see Table

1). The binary classification models were

adopted to estimate the disease

occurrence using labels such as disease
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did not occur and disease occurred. On

the other hand, the multi-class

classification models were designed to

forecast the disease severity with labels

ranging from 3 to 5 classes .

Similarly, continuous numerical values

were used for the last purpose

mentioned above . Finally, only one

paper predicted the first date of disease

occurrence .

2.3.5. Performance Metrics

Crop and plant disease forecast models

were evaluated by means of various

metrics. As emerged from the study of

kamilaris and Prenafeta-Boldú , in the

present sub- domain, it is confirmed that

accuracy was the most adopted metric,

as it was used in 72% of papers

examined, followed by confusion matrix

(11 papers), precision (nine papers),

recall (seven papers), and F1 measures

(seven papers). In total, 46 papers

combined different metrics to evaluate

the predictions, while 11 studies used

accuracy as the only performance metric.

Some research involved the root mean

square error (six papers), R squared (six

papers), mean absolute error (three

papers), mean squared error (three

papers), and others (see Table 1).

2.3.6. Data Analysis Frameworks

Regarding the frameworks used, most of

the research works adopted the following

programming languages and tools:

Matlab: https://www.mathworks.com/;

Python: https://www.python.org/;

R: https://www.r-project.org/;

Waikato Environment for Knowledge

Analysis (WEKA):

https://www.cs.waikato.ac.nz/ml/weka/;

Scikit-learn: https://scikit-learn.org/;

Keras: https://keras.io/;

Tensorflow: https://www.tensorflow.org/.

2.3.7. Overall Performance and
Comparison

A delicate aspect of this work is to examine

the computational efficiency of each study in

relation to other papers, as multiple

techniques, datasets, and parameters were

used and different approaches were

considered; furthermore, various diseases
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and crops were analyzed under different

conditions. According to Wang and Ma [40],

under different conditions, the key factors of

disease epidemics may be different.

Therefore, we focus only on the comparisons

made in the same paper using the same

experimental conditions. In al- most all cases,

the Support Vector Machine outperformed

other implemented approaches. Malicdem

and Fernandez [46] compared the ANN and

SVM to predict disease severity as well as

the occurrence or non-occurrence of rice

blast within each growth stage of the rice

crop. The first task was modeled as a

classification problem, while the second one

was considered a regression problem. Both

the ANN and SVM classifiers produced an

average accuracy above 90%, with the SVM

scoring at least 93% on each of the different

growth stages. Using the paired t-test in the

results statistically showed that the difference

of the accuracy of the Machine Learning

algorithms was significant (p-value < 0.01).

This implies that the built SVM classifier was

significantly more accurate than the

corresponding ANN classifier. Likewise, SVM

outperformed ANN in the investigation of the

regression problem (p-value < 0.02). SVM

seems to be superior to the regression model

when employed with an RBF or polynomial

function as a kernel in the prediction of wheat

stripe rust disease [40]. However, similar

results were obtained in two studies. Fenu

and Malloci [20] compared the SVM and ANN

to forecast late blight disease severity in

potato crop. In this paper, the SVM was more

accurate in distinguishing the low and high

severity levels, while ANN classified the

medium severity level better. In the prediction

of powdery mildew disease in tomato plant

[56], the SVM achieved an accuracy of

89.31%, and Linear Regression recorded an

accuracy of 87.02%. However, both models

were found to be efficient when using a

hybrid approach involving two steps: the first

was noise removal by ANR and SVM

techniques, and the second was the training

of the LR model followed by 10-fold cross

validation of the modified dataset. The

proposed hybrid SVM–LR classifier

performed 3.06% better than SVM and 5.35%

better than LR, with an accuracy of 92.37%.

Furthermore, when predicting the first date of

occurrence [47], Support Vector Re- gression

achieved better results than the other three

statistical methods of pace regression, linear

regression and the NICS moving-average



method, the last of which is the most-often

used of the existing conventional models for

the prediction of late blight. The accuracy of

prediction was 64.3%, thus showing a higher

degree of accuracy compared with 42.9% by

the conventional moving-average method,

42.9% by pace regression and 35.7% by

linear regression. The NICS moving-average

method was able to predict only six of 14

years. In contrast, SVR was able to predict

nine years—21.4% better than the NICS

moving-average method. Fair performances

were also confirmed in the analysis of various

climate–soil– plant factors in the prediction of

citrus gummosis disease, where SVM

obtained 0.9061 (RMSE) in contrast to

0.8518 (RMSE) obtained with the Multi-Linear

Regression model [70].Worse performance

was found when SVR was used in image

processing. The authors in [38] compared

Support Vector Regression and Random

Forest with MLP and CNN. SVR suffered

from high dimensionality and the

computational complexity required to process

images. Random Forest was found to be the

most stable (lower standard error) estimator,

but CNN obtained the lowest slope and

intercept regression estimator and achieved

the lowest mean MAE (11.72%) and RMSE

(15.09%). From these results, CNNs seem to

be better than RF and MLP using band

differences.Finally, the SVM was evaluated in

[66] with a broad set of classifiers, including

Partial Least Squares-Discrimination Analysis

(PLS-DA), Random Forest (RF), Back-

Propagation Neural Network (BPNN),

Extreme Learning Machine (ELM) and Least

Squares Support Vector Machine (LS-SVM).

In this case study, the models were

investigated using hyperspec- tral images as

input in order to classify disease stages with

effective wavelengths, texture features, and

data fusion, respectively. The performance of

chemometric models with data fusion gave

better results, with classification accuracies of

calibration and prediction all above 80%,

compared with those only using effective

wavelengths or texture features. A high

accuracy was achieved by RF (93.33%),

BPNN (95.00%), LS-SVM (96.67%), and

ELM (90.00%), while slightly lower results

were obtained by PLS-DA (81.67%) and SVM

(88.33%).

 



3. Discussion

In the present section, we discuss the plant and crop disease predictions carried out through data analysis techniques,

which fall into three computer areas known as AI, ML, and DL. The review considered 46 scientific papers, which

predicted the onset of the disease at a pre-symptomatic (i.e., symptoms not visible to the naked eye) or at an early stage,

which was done by adopting the methodology described in Section 2.1.

Figure 3a shows the trend line of publications. From 2010 to 2020, there was an incremental trend (orange line).The

majority of the papers were published after 2015, indicating how recent this sub-domain is in agriculture. More precisely,

22% of papers from 2010 to 2015 excluded (dashed line) and 78% from 2015 to 2020 (solid line). Figure 3b shows the

number of citations for each year considered. As can be seen, the resulting line does not show a uniform trend, with a

maximum in 2010 and a minimum between 2011–2013. However, to better understand this trend, it is necessary to

evaluate the impact index of the conference proceedings and journals. To this end, a bar graph was constructed (Figure

3c) which shows the number of citations for each paper, with works grouped according to the journal’s H-index. Three

clusters were identified: 0 ≤ H-Index ≤ 50 (blue), 50 < H-Index < 100 (orange), H-Index ≥ 100 (gray). The information

relating to the citations was retrieved from the Google Scholar service, while the H-index was taken from the Scimago

(https://www.scimagojr.com/) online service. The graph shows that 67% of publications were related to an impact index

lower than 50, 13% to an impact index between 50 and 100 and the remaining 20% to an impact index higher than 100.

Therefore, the graph shows that the number of citations is closely linked to how often the conference proceedings/journal

is consulted.

Figure 3. (a) Number of research publications per year (2010–2020) related to plant and crop disease prediction, which

predicted the onset of the disease in a pre-symptomatic (i.e., symptoms not visible to the naked eye) or early stage,

recovered by adopting the methodology described in Section 2.1; (b) number of citations for each year considered; (c)

number of citations for each paper, which have been grouped according to the journal’s H-index.

 

Our study shows that the approaches used in the literature to tackle the problem under examination can be divided into

three categories: forecast models based on weather data (the first category), forecast models based on image processing

(the second category), and forecast models based on distinct types of data coming from various heterogeneous sources

(the third category). The first and second categories are the most explored, with an adoption rate of 63% and 22%,

against 15% for the third category (see Figure 3c). Generally, RMs, ANNs, SVMs, and CNNs are the most used

techniques. Due to the high heterogeneity of the experimental conditions (i.e., approaches, datasets, parameters, and

performance metrics), it is difficult—if not unreliable—to perform a systematic comparison of the performance of each

paper. Therefore, our comparisons are strictly limited to the techniques used in each paper. Taking these factors into



account, we observe that the SVM and SVR when applied to the first category of models outperform ANNs and traditional

regression models. As underlined by the various studies, the advantage given by the use of the SVM lies in its good ability

to learn the representations of data in non-linear problems, with large dimensions and small samples. Likewise, the ANNs

were favored for their ability to learn representations from past events to predict the future probability of occurrence of an

event based on the conducive condition. The main obstacles encountered by the studies of the first category that used

these techniques concerned the reduced size and imbalance of the classes in the dataset as well as overfitting. These

problems had a major impact on the ANNs [59]. In fact, performance was limited by their trend of requiring more time and

more data for training. Another disadvantage shown by the analyzed works that unites both techniques relates to the

concept of the “black box”. The relationship between input and output is difficult to explain and derive. As indicated by Gu

et al. [47], the purpose of SVR is to make predictions rather than to provide explanations. Therefore, there are limitations

in explaining the effects that variables have on other variables. Although SVM showed superior performance in weather-

based classification and regression problems, it did not perform as well in terms of image processing methodology.

Models belonging to this category conducted spectral analysis using optical and thermal remote sensing images as well

as multispectral and hyperspectral images. The multispectral images were found to be relevant for the detection of the

disease at an early stage, as demonstrated in [38]. Besides this, the hyperspectral images most used by the studies

reviewed (six papers) allowed the prediction of disease in a presymptomatic stage; i.e., even before the symptom was

visible to the naked eye. This difference is due to the spectral resolution used by the two remote sensing technologies.

Multispectral imaging collects spectral signals in a few discrete bands, each spanning a broad spectral range from tens to

hundreds of nanometers. In contrast, hyperspectral imaging detects spectral signals in a series of continuous channels

with a narrow spectral bandwidth (e.g., typically below 10 nm); therefore, it can capture fine-scale spectral features of

targets that otherwise could be compromised [30]. Multispectral images compared to hyperspectral images provide less

data complexity and information content [85]. However, the analysis of hyperspectral images brings with it various

limitations. Several authors underlined the high dimensionality of the data as being among the difficulties encountered. As

Mahlein et al. [85] pointed out, the high degree of inter-band correlation results in information redundancy, which can

cause convergence instability in the multivariate prediction models. Therefore, most papers focused a great deal of effort

on identifying the effective wavelengths for the extraction of the target properties; i.e., the visible patterns in the spectrum

that characterize a healthy leaf from a pre-symptomatic diseased leaf. Image resolution also affects model performance.

Zhang et al. [37] crossed weather data with MODIS images. The authors observed that the forecasting accuracy was

affected by restricting the spatial resolution and imaging quality of optical remote sensing images.

From the results obtained in the literature, we infer that remote sensing data represent a wealth of information that is

useful for the development of autonomous non-invasive systems for the prediction of biotic and abiotic stress in plants. In

this context, recent Deep Learning models, such as CNNs, seem capable of properly addressing many of the technical

challenges related to perceptual problems, as seen in other use cases; e.g., yield prediction [16], land cover classification

[86], and plant and weed recognition [87]. In particular, spectral images can be an aid to conventional adversity

management techniques that are often time-consuming, destructive, expensive, and impractical. An ideal system

approach requires precision, speed, and non-destructive practices.

In general, the studies of the first and second categories show that the exclusive use of a single data source is not

sufficient to build models capable of capturing and predicting the variability of a disease in the field. To increase the

stability and generalization capabilities of the algorithms, several authors suggest the integration of multiple data sources,

as well as the inclusion of more information such as plant age, cultivar, growth phase, and soil characteristics. In fact, the

results obtained from the third category of models confirm this. Zhang et al. [67], by combining meteorological data with

remote sensing data, recorded an increase in accuracy from 69% to 78%. Most works have focused on forecasting a

disease by analyzing mainly meteorological parameters. Variables such as temperature, humidity, and precipitation

emerge as the variables that contribute most to the onset of the disease. Each of these have different effects depending

on the disease and the crop under examination. Rowlandson et al. [88] observed that leaf wetness, together with the

variables mentioned above, is a parameter that should not be neglected. The authors pointed out that the analysis of leaf

wetness periods of a specific time duration is necessary, as this variable interacts with the propagule germination of most

phytopathogens. Badnakhe et al. [70] demonstrated that soil temperature plays a crucial role in gummosis disease

prediction.

As Section 2.3.3 illustrates, a large variety of algorithms and techniques have been employed to predict the occurrence or

severity of diseases affecting different crops and plants. From these, we observed that many scientific contributions

focused on predicting the main diseases affecting rice, wheat, and potato crops such as late blight [3,20], powdery mildew

[37,67,68], downy mildew, and blast [46,48,55], as shown in Figure 4a,b.



Figure 4. (a) Number of publications based on crop and disease examined; (b) current state of crops and plants explored

during the last 10 years in terms of percentage of research papers.

 

Overall, related to the approaches adopted by the works surveyed, we can generalize that a prediction model for plant

and crop disease should consist of three mandatory steps: pre-processing, feature selection, and classification. The flow

diagram of our survey is shown in Figure 5.

Figure 5. Techniques popularly explored in the domain of plant and crop disease prediction models.

 

The Support Vector Machine, followed by the Artificial Neural Network and Random Forest, were the most employed

techniques. Nevertheless, although te aforementioned techniques and others produced promising results, a restricted

number of studies tested their solutions in different datasets. This underlying trend may be influenced by the restricted

availability of open-data. To obtain available weather and environmental parameters, a large number of studies relied on

third-party organizations, such as national/regional governmental services. Only a restricted number of these works

gathered data with their own on-field IoT networks. According to Kamilaris et al. [15], more big data repositories should

become publicly available.



Furthermore, we noticed that there is a shortage of model validation in real-world scenarios. Appropriate validation is

needed for studies to have an accurate and broad impact. This can be inferred from the fact that such studies require an

extensive observation time as well as requiring the involvement of human resources with different expertise.

4. Conclusions

In this paper, we performed an analysis and classification of forecasting models for plant and crop disease over the past

10 years (2010–2020). Forty-six research works were identified and reviewed, with an examination of the approaches

adopted as well as the pre-processing techniques and data used. Issues and concerns were discussed in Section 2.4.

As we have seen in this study, the prediction of plant and crop disease is a complex problem to be solved due to the

interaction of several environmental and climatic factors. Over the last 10 years, the literature has presented considerable

advancements in understanding these dynamic processes by adopting different scientific approaches. As we observed,

the problem under study requires high-quality, labeled data. However, the lack of open data is slowing the advance of

knowledge in this agricultural sub-domain.

Indeed, regarding the state of the art, only a limited number of contributions has been presented in the literature from

2010 to today. The majority of these have focused on few pathogens and crops; furthermore, only a few of these have

considered data from various heterogeneous sources to predict disease occurrence. These gaps are hindering progress

in achieving development goals and creating products that are able to face realworld scenarios, and so more effort is

required in data collection and in developing novel solutions to prevent and mitigate the impact of crop and plant disease

to food production, especially for those crops which represent staple foods for millions of people who live in the least

developed countries.
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