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The representative of the Lentivirus genus is the human immunodeficiency virus type 1 (HIV-1), the causative agent of

acquired immunodeficiency syndrome (AIDS). To date, there is no cure for AIDS because of the existence of the HIV-1

reservoir. HIV-1 infection can persist for decades de-spite effective antiretroviral therapy (ART), due to the persistence of

infectious latent viruses in long-lived resting memory CD4+ T cells, macrophages, monocytes, microglial cells, and other

cell types. However, the biology of HIV-1 latency remains incompletely understood. Retroviral long terminal repeat region

(LTR) plays an indispensable role in controlling viral gene expression. Reg-ulation of the transcription initiation plays a

crucial role in establishing and maintaining a retro-virus latency. Whether and how retroviruses establish latency and

reactivate remains unclear.
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1. Introduction

The human immunodeficiency virus type 1 (HIV-1) belongs to the family of Retro-viridae, subfamily Orthoretrovirinae, and

genus Lentivirus. HIV¬-1 is firmly associated with the acquired immunodeficiency syndrome (AIDS) . Highly pathogenic

lentivi-ruses, after integration of double-stranded viral DNA into cellular genome, activate transcription of the viral genome.

After synthesis of viral nucleic acid and formation of several viral proteins, to complete the viral life cycle, progeny virions

are produced . The efficiency of the initial transcription of integrated DNA from 5′ long terminal re-peat (LTR) region

promoter determines the level of viral RNA in an infected cell. Pro-viral 5′ LTR promoter contains numerous cis-regulatory

elements, which modulate the rate of viral transcription initiation. However, certain cell types and the cell differen-tiation

processes with respect to diversity of cell activation signals may contribute to substantial variations in transcriptional

activity of LTR . All these variables gener-ate a remarkably broad range in HIV-1 gene expression level. Contrary to

simple ret-roviruses (avian leukemia virus and murine leukemia virus), regulation of lentivirus gene expression involves

both cellular and virally encoded regulatory factors. Conse-quently, RNA production in HIV-1 infection is highly variable.

The latently infected cells are a source of viral reactivation and lead to marked increase of the viral load after a pause of

highly active antiretroviral therapy (HAART). In this context, a better understanding of the molecular mechanisms re-

sponsible for the regulation of proviral latency and reactivation would define rational strategies aimed at purging the HIV-1

reservoirs in treated patients. The regulation of gene expression in HIV-1 is complex and requires multiple steps, including

chromatin organization, allowance of transcription machinery, mRNA processing and its transport to the cytoplasm,

translation and posttranslational processes.

2. LTR Regulatory Elements

Retroviruses integrate into host DNA as proviruses that are flanked by LTRs at each end of the viral DNA. Transcription of

proviral DNA is catalyzed by cellular RNA polymerase II (RNAPII) and initiated at the U3 end of 5ʹ LTR. Each LTR is

composed of three regions: unique 3ʹ (U3), repeated (R), and unique 5ʹ (U5). U3 occupies most of the LTR and plays an

important role in the induction of retroviral transcription, since it contains the viral promoters and other cis-active elements

required for the modulation of promoter activity. The TATA box, located within the LTR promoter element, provides the

binding site for RNAPII, determining the site of initiation and also affecting the efficiency of the initiation of transcription .

The U3 region of HIV-1 LTR contains the crucial regulatory elements for the core promoter region: three specific protein 1

(Sp1) sites and TATA box; for the enhancer region: two nuclear factor-κB sites (NF-κB) and one nuclear factor of activated

T-cells (NF-AT) site; for the modulatory region: three CCAAT/enhancer binding protein (C/EBP) sites, the activating

transcription factor/cyclic AMP response element binding (ATF/CREB) region, two NF-AT sites, two activator protein 1
(AP-1) sites, one upstream stimulatory factor Ets/PU.1, and one T-cell specific transcription factor/lymphoid enhancer

binding factor (TCF/LEF-1) .
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In HIV-1, the following regulatory sequences downstream of the transcription start site are as follows: the initiator (Inr), the

inducer of short transcripts (ITS), and trans-activation responsive element (TAR). TAR forms an RNA stem-loop structure,

which recruits the virally encoded transactivator protein (Tat) to the LTR to modulate the activity of the viral promoter . In

addition, HIV-1 LTR consists of several substantial transcription factor (TF) binding sites including AP-1 sites, an AP-3-like

(AP-3L) sequence, C/EBP/NFAT (nuclear factor for activated T cells) downstream binding site (DS3), two downstream

sequence element (DSE) sites, one downstream binding factor (DBF-1) in R region, and two Sp1 binding sites and gag

leader sequence (GLS) in the U5 . Enhancer functions have been also mapped to the gag–pol regions of simian

immunodeficiency virus (SIV) and HIV, but their role in the virus replication has yet to be established.

The transcription of Lentiviruses is regulated by the interactions between numerous and different viral proteins and

transcription factors with binding sites located in the 5′ LTR. Most of regulatory elements encompass the U3 region.

Regulatory elements situated in R and U5 regions may improve the promoter and enhancer strengths and provide a broad

viral response for stimulating factors and control transcription in cell-type-dependent manner.

3. A Variety of Enhancers with Regulatory Functions

The HIV-1 mainly infects CD4+ T cells, monocytes, and macrophages, and in a lower proportion also dendritic cells (DCs)

and microglial cells. HIV-1 enhancer sequence consists of two NF-ĸB binding sites and three adjacent Sp1 binding sites

that are required for viral transcription [5]. Other factors shown to bind the enhancer include Ets, PU.1, NF-AT, C/EBP, AP-

1, cAMP response element-binding protein/ activating transcription factor (CREB/ATF), upstream stimulatory factor (USF),

Sp1, Sp3 and chicken ovalbumin upstream promoter transcription factor (COUP-TF) and they play role in enhancing the

transcription (Table 1).

Table 1. Key transcription factors involved in regulation of human immunodeficiency virus type 1 (HIV-1) transcription in

different cell types.

Transcription Factor Cell Type

NF-κB  T cells , monocytes, macrophages, iDC, microglial cells

NF-AT T cells

Sp1 microglial cells, T cells, monocytes, macrophages, iDC

Sp3 microglial cells, monocytes, macrophages

AP-1 microglial cells, monocytes, T cells

COUP-TF microglial cells, T cells

Ets-1 T cells

USF monocytes, macrophages, iDC, T cells, microglial cells

C/EBP (NF-IL-6) monocytes, macrophages, iDC, T cells, microglial cells

CREB/ATF T cells, microglial cells, monocytes, macrophages

* transcription factors required for transcriptional activation in cell-type-specific expression of HIV-1; NF-κB, nuclear factor

kappa-light-chain-enhancer of activated B cells; NF-AT, nuclear factor of activated T-cells; Sp1, 3, specific protein 1, 3; AP-

1, activator protein 1; COUP-TF, chicken ovalbumin upstream promoter transcription factor; Ets-1, E26 transformation-

specific (ETS) transcription factor; USF, upstream stimulatory factor; C/EBP, CCAAT/enhancer-binding protein; NF-IL-6,

transcription factor nuclear factor interleukin 6; CREB/ATF, cAMP response element-binding protein/ activating

transcription factor.
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This variety of binding sites may result in maintenance reverse latency in some cells. As an example, NF-κB transcription

factor binding to enhancer sites within LTR activate viral transcription in most HIV-1-infected types of cells . The

transcriptional activity of the NF-κB and other transcription factors in primary immune cells versus transformed cell lines is

listed in Table 2.

Table 2. Regulation of HIV-1 gene transcription in primary immune cells and transformed cell lines.

Transcription
Factor

Cell Type Primary Cells Transformed Cell Line

 

 

 

NF-κB

T cells

• activates transcription in

dopamine-stimulated PBMCs

• activates transcription in

CD4+ T cells by direct

occupancy of enhancer by NF-

κB p50/p65 

• activates transactivation in

TNF-, IL-1-, and IL-7-stimulated

TEC co-cultured with

thymocytes 

• activates transcription in dopamine-

stimulated lymphoid Jurkat T cell line

• activates transcription in Jurkat T cell

line that stably expresses the Tat 

• activates transcription in latently HIV-

1-infected established T lymphoid cell

line J1.1 promoted by MRPs 

monocytes/macrophages

• activates transcription in

macrophages by direct

occupancy of enhancer by NF-

κB p50/p65 

• involved in efficient activation

of viral transcription in

monocytes isolated from PBMC

• activates HIV gene transcription in

monocytic cell line U937 and

promonocytic cell U1 by direct

occupancy of enhancer by NF-κB

p50/p65 

microglial cells nd

• activates transcription in human

microglial MC-3 cell line and

embryonic microglial cell line upon

stimulation with IFNγ, IL1β, and TNFα

 

 

NF-AT

 

 

T cells

• enhances activation of

transcription in CD4+ T cells 

• NF-AT1,2 enhances activation

of transcription in

PMA/ionomycin stimulated

CD4+ T cells 

• NFAT1, 2 positive effect on

transcription in PMA-, PHA-,

bpV-stimulated PBMC 

• efficient binding to the HIV-1 LTR

enhancer in Jurkat-derived CD4+ T

cells isoform CD45(−), stimulated with

PMA/PHA/α-CD3 

• represses Tat-mediated

transactivation in PMA/ionomycin-

stimulated Jurkat T-cells  

• NFAT1, 2 enhances transcription in

Jurkat T cells stimulated with PMA,

PHA and bpV 
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Sp1, 3

 

microglial cells nd

• Sp1 interaction with COUP-TF leads

to activation of HIV gene transcription

in microglial cell line 

• binding CTIP-2 to Sp1 represses Tat-

mediated transcriptional activation HIV

promoter 

• Sp3 represses Sp1 and COUP-TF-

induced activation in human microglial

cell line 

T cells

• Sp1 associated with Tat

activates transcription in CD4+

T cells and PBMCs 

 

 

 

• Tat-induced Sp1 activates promoter

in MT-2 cell line and Jurkat T cells 

• Sp1 assembly pre-initiation complex

at the LTR TATA box and cooperatively

interacts with NF-κB to activate

transcription in Jurkat T cells

stimulated with PMA

monocytes/macrophages

• Sp1-to-Sp3 ratio increases

during monocyte lineage

differentiation, resulting in

increased HIV-1 transcription

• Sp1 activates LTR-driven

transcription in U1 monocytic cells 

• Sp1 has moderate impact on

transcription activation in human

monocytic line U-937 

iDC

• Sp1 activates HIV gene

transcription in DC

differentiated from monocytes

derived from PBMCs 

nd

 

 

AP-1

microglial cells nd

• c-jun and c-fos interact with TRE

sequence and enhance HIV-1 gene

transcription in glial cells 

 

monocytes/

macrophages

• Vpr-activated AP-1 enhances

viral transcription in

macrophages differentiated

from PBMCs 

 

• Vpr-activated AP-1 enhances viral

transcription in U937 cells 

• Nuclear complex of c-fos and c-jun

binds directly to the HIV LTR and

enhances NF-κB activity in human

monocytic cell lines U1 and U937 

• AP-1 activated by Nef stimulates HIV

transcription in U1 and U937 cells 

T cells

• enhances HIV-1 gene

expression in CBMCs more

than in PBMCs 

• c-jun and c-fos do not interact with

TRE sequence and do not enhance

HIV-1 transcription in Jurkat T cells 
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COUP-TF

 

 

microglial cells

• cooperates with Tat to

promote NF-κB- and Sp1-

independent transactivation

HIV-1 transcription in human

fetal microglial cells 

 

• cooperates with Tat and promotes

NF-κB and Sp1-independent activation

HIV-1 transcription in microglial cell

line 

• COUP-TF Sp1 interaction stimulates

HIV transcription in microglial cell line 

• COUP-TF, Sp1, and CTIP2

cooperation suppresses HIV

transcription initiation in microglial

cells 

T cells nd

• COUP-TF interaction with Sp1

synergistically stimulates viral

transcription in Jurkat T cells in

response to cAMP and dopamine 

Ets T cells

• Ets in cooperation with NF-

kB/NFAT activates HIV-1

enhancer in human peripheral

blood T cells 

• Ets in cooperation with USF-1

enhances transcriptional activity of

HIV-1 LTR in Jurkat T cells 

 

 

C/EBP

(NF-IL-6)

 

monocytes/macrophages

• regulates HIV transcription by

recruiting HATs to the LTR in

primary macrophages 

• recruits HATs to LTR and mediates

initiation of transcription in

promonocytic U937 cells 

T cells nd

• is not required in HIV transcription in

Jurkat CD4+ T cell line 

• cooperates with CREB and mediates

prostaglandin E2-induced stimulation

of LTR-driven transcription Jurkat E6.1

microglial cells nd

• in presence of IL-1, IL-6, and TNF- α,

activates LTR-driven transcription

versus C/EBPγ that acts as inhibitor
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CREB

T cells

 

• phospho-CREB recruits CBP

and basal transcription factors,

which increases promoter

activation in primary

lymphocytes 

• phospho-CREB recruits CBP and

basal transcription factors, which

increases promoter activation in MT-4

human T cell line 

• mediates cAMP and dopamine-

induced transcriptional stimulation

through indirect interactions with LTR

in Jurkat T cells 

• cooperates with COUP-TF in the

presence of forskolin, cAMP, and

dopamine to activate HIV-1 gene

transcription in Jurkat T cells 

monocytes/macrophages nd

• CREB homodimers bind to their DNA

site, interact with C/EBPs, and lead to

increase HIV promoter activation in U-

937 and THP-1 human monocytic cell

lines; sequence variations at the

CREB site affect LTR activity 

nd, not determined; TEC, human thymic epithelial cell; MRPs, proinflammatory myeloid-related proteins; PBMC,

peripheral blood mononuclear cell; NF-AT, nuclear factor of activated T cells; PMA, Phorbol 12-myristate 13-acetate; NF-

κB, nuclear factor-kappa B; PHA, phytohemagglutinin; bpV, bis-peroxovana-dium a protein tyrosine phosphatases (PTP)

inhibitor; COUP-TF, chicken ovalbumin upstream promoter transcription factor; MT-2, cell line derived from normal human

cord leukocytes cocultivated with leukemic cells from an adult T cell leukemia (ATL) patient; CBMCs, umbilical cord blood

mononuclear cells; CTIP2, Chicken ovalbumin upstream promoter transcription factor interacting protein 2; cAMP, cyclic

AMP, adenosine 3’,5’-cyclic monophosphate; HATs, histone acetylotransferase; Ets, erythroblast transformation specific

transcription factor; Sp1, transcription factor specificity protein 1; AP-1, activator protein; C/EBP, CCAAT/enhancer-binding

protein; NF-IL-6, transcription factor nuclear factor interleukin 6; CREB, cAMP response element-binding protein; CBP,

CREB binding protein.

In activated CD4+ T lymphocytes, the Sp1 transcription factors are not sufficient to mediate transcription and further

binding NF-ĸB and NF-AT cellular factors to the LTR enhancer region is required to activate transcription. In addition, the

USF, Ets, NF-IL-6 and CREB proteins facilitate efficient transcription. In long-lived latently infected CD4+ T cells, NF-ĸB

and NF-AT, as key factors for initiation of HIV-1 transcription in these cells, are present in very low nuclear concentrations.

In addition, Cyclin T1 protein levels are also very low in comparison to activated T cells. For that reason, the above

mechanisms have been proposed to be probably involved in CD4+ T cell latency .

In monocyte–macrophage lineage cells, regulation of HIV-1 transcription varies considerably during macrophage

differentiation, as numerous transcription factors are expressed in a differentiation-dependent manner. In monocytes, LTR

activity may be regulated during their differentiation stages by changes in the Sp1 (activator):Sp3 (repressor) ratio.

Increased permissiveness of macrophages for HIV-1 replication leads to expression of the cofactors utilized for Tat

transactivation of the LTR, and this leads to a high level of HIV-1 transcription. There are numerous studies supporting

that microglial cells are susceptible to HIV-1 infection and can be latently infected, constituting a major reservoir in the

brain. In contrast to the monocytes, NF-κB, AP-1, and NFAT proteins are constitutively localized in the nucleus of

microglial cells, and the Sp1 expression predominates over the Sp3. Interestingly, latently infected microglial cells can be

reactivated by cytokine stimulation. In contrast to other reservoirs, the NF-kB and Sp1 binding sites are sufficient for HIV-1

transcription in microglial cells [53]. Contrary to CD4+ T cells, which express only Sp1, microglial cells produce both Sp1

and Sp3; the latter acting as transcriptional repressor. In addition, C/EBPɤ is expressed and acts as repressor by

competing with the transcriptional activator C/EBP (Table 2) .

To conclude, the LTRs play a significant role in cell-type-specific expression of the proviral genome. HIV-1 enhancer

sequences contain many binding sites providing mechanisms for a broad viral response to extracellular factors and

regulate transcription in the cell-type-dependent manner. These observations thus emphasize the differences in

mechanisms underlying HIV-1 latency between infected cells.

[49]

[50]

[42]

[42]

[51]

[53]

[52]

[54]



4. Transactivation of LTR by Virus-Encoded Tat Protein

Lentiviruses are capable of promoting the rate of their gene expression through virus-encoded transactivator proteins.

Activation occurs by binding of Tat HIV-1 protein to a specific sequence adjacent to 5′ trans-activation response (TAR)

element RNA transcript . Tat protein of HIV-1 (and related Lentiviruses) interacts with the viral RNA transcript,

through a unique RNA regulatory segment of the LTR termed transactivation-responsive element (TAR). The TAR

secondary RNA structure is formed from transcription of the +19–43 tract in the LTR R region . Various mechanisms of

HIV-1 Tat transactivation have been proposed. One model suggests overriding transcription terminations, since in the

absence of Tat transcripts that initiate in LTR pause after synthesis of about 70 nucleotides. It has also been proposed that

in early steps of viral transcription, the complex of positive transcription elongation factor b (P-TEFb) composed of Cyclin

T1 (CycT1) and cyclin-dependent kinase 9 (CDK9) is recruited to the LTR via nuclear factor kappa B (NF-κB). The

recruitment of Tat and P-TEFb to the TAR hairpin facilitates phosphorylation of RNAP II, which increases their combined

effectiveness and prevents premature termination . On the other hand, several investigations revealed that NF-κB

can promote both transcription initiation and elongation complex, at a similar level to that of Tat, in a manner independent

of Tat. The NF-κB transcription factors induce LTR regulation via interaction with binding sites located within the enhancer

region . Deletion of the NF-κB binding sites strongly reduces basal, as well as Tat-transactivated, LTR activity. The Tat

proteins activate NF-κB through a IκB kinase (IKK), which accelerates the degradation of IκB, a protein that regulates NF-

κB activity by binding NF-κB and translocating to the nucleus . In vitro model systems support an alternative

hypothesis where Tat initiates transcription through a protein–protein interaction with the Sp1 transcription factor. This

paradigm is supported by findings that nucleotide changes within the cis-acting elements recruiting Sp factors to the HIV-1

LTR reduce Tat-mediated LTR activity .

Additionally,viral protein R (Vpr) is another viral accessory protein capable of enhancing the activity of the HIV-1 LTR. Vpr

can bind to histone acetyltransferases (HAT)  CREB-binding protein and p300, glucocorticoid receptor, CycT1, and Tat to

activate transcription . Vpr can also activate NF-κB-directed transcription (reviewed in [1]). HIV-1 LTR C/EBP and

NF-κB complex demonstrates a high affinity for Vpr and a low affinity for C/EBPβ during late-stage HIV in brain cells from

patients with HIV-associated dementia (HAD) . In addition, Kilareski and co-workers identified specific Tat variants

derived from HAD brain, which were defective in LTR transactivation, however still were able to activate promoters of the

other proinflammatory cytokine genes. Collectively, in the tissues of the brain, Tat may become less transcriptionally

competent, however, in this situation, Vpr may facilitate HIV-1 replication by enhancing transcription in the absence of a

fully active Tat. On the other hand, Razooky and co-workers suggested that Tat can control a viral reservoir in infected

resting and memory CD4+ T cells, even if the Tat level in these cells is low. They found that Tat mutants exaggerated

lower levels of HIV-1 expression in the resting cells . In addition, Chakraborty and co-workers data indicated that Tat

promotes latency by generating a negative feedback loop at later stages of infection, which leads to the silencing of HIV-1

promoter .

The primary function attributed to Tat is the transactivation of HIV-1 promoter. Additionally, it has been demonstrated that

Tat enhances HIV-1 virulence by interacting with various cellular proteins in order to induce T cell apoptosis, co-receptor

regulation, and cytokine induction in the host cells . The effect of Tat on many viral activities in the host cell

contributes to the pathogenesis of HIV-1, pointing to this molecule as a potential target for HIV-1 therapy, for example, by

blocking viral replication by targeting Tat . The Tat naturally occurring polymorphisms are usually caused by

viral mutational escape from CD8+ cytotoxic T lymphocyte (CTL) recognition. The host immune responses mediated by

CTLs and less by CD4+ T lymphocytes and B lymphocytes may potentially force selective pressure towards Tat diversity

and affect its activity . It has been proposed that variations in Tat sequence could modulate transactivation and have

implications on HIV-1 latency and the reactivation phase. Ronsard and co-workers reported that the Tat variants with a

change of S46F were able to significantly enhance LTR transactivation compared with wild-type Tat . Additionally, the

change of S46F caused strong Tat interaction with TAR in in vitro and in silico models. In contrast, a naturally occurring

change of the C22S in HIV-1 Oyi strain reduced Tat transactivation activity and was linked with long-term nonprogressive

infections . Furthermore, other naturally occurring polymorphisms within Tat identified in HIV-infected patients at acute

and/or early infection phase (i.e., P10S, W11R, K19R, A42V, and Y47H) have been shown to significantly impair

transactivation activity in the infected CD4+ T lymphocytes . These data suggest that certain naturally occurring

changes can change Tat transactivation activity.
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The infected lymphocytes rapidly produce great numbers of viral particles, and it is clear that Tat protein triggers this

process. Clones with nonsense changes are unable to replicate and thereby disappear from the spectra in vivo. However,

as the infection progresses, some naturally occurring changes in Tat can change its immunogenic properties, prevent

transactivation, and may influence viral latency. Nevertheless, it remains unclear to what extent CTL escape changes

occurring in the Tat epitope may affect the HIV-1 latency kinetic from establishment to reversal stages .
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