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The representative of the Lentivirus genus is the human immunodeficiency virus type 1 (HIV-1), the causative

agent of acquired immunodeficiency syndrome (AIDS). To date, there is no cure for AIDS because of the existence

of the HIV-1 reservoir. HIV-1 infection can persist for decades de-spite effective antiretroviral therapy (ART), due to

the persistence of infectious latent viruses in long-lived resting memory CD4+ T cells, macrophages, monocytes,

microglial cells, and other cell types. However, the biology of HIV-1 latency remains incompletely understood.

Retroviral long terminal repeat region (LTR) plays an indispensable role in controlling viral gene expression. Reg-

ulation of the transcription initiation plays a crucial role in establishing and maintaining a retro-virus latency.

Whether and how retroviruses establish latency and reactivate remains unclear.

retroviruses  human immunodeficiency virus type 1

1. Introduction

The human immunodeficiency virus type 1 (HIV-1) belongs to the family of Retro-viridae, subfamily

Orthoretrovirinae, and genus Lentivirus. HIV¬-1 is firmly associated with the acquired immunodeficiency syndrome

(AIDS) . Highly pathogenic lentivi-ruses, after integration of double-stranded viral DNA into cellular genome,

activate transcription of the viral genome. After synthesis of viral nucleic acid and formation of several viral

proteins, to complete the viral life cycle, progeny virions are produced . The efficiency of the initial transcription of

integrated DNA from 5′ long terminal re-peat (LTR) region promoter determines the level of viral RNA in an infected

cell. Pro-viral 5′ LTR promoter contains numerous cis-regulatory elements, which modulate the rate of viral

transcription initiation. However, certain cell types and the cell differen-tiation processes with respect to diversity of

cell activation signals may contribute to substantial variations in transcriptional activity of LTR . All these variables

gener-ate a remarkably broad range in HIV-1 gene expression level. Contrary to simple ret-roviruses (avian

leukemia virus and murine leukemia virus), regulation of lentivirus gene expression involves both cellular and virally

encoded regulatory factors. Conse-quently, RNA production in HIV-1 infection is highly variable.

The latently infected cells are a source of viral reactivation and lead to marked increase of the viral load after a

pause of highly active antiretroviral therapy (HAART). In this context, a better understanding of the molecular

mechanisms re-sponsible for the regulation of proviral latency and reactivation would define rational strategies

aimed at purging the HIV-1 reservoirs in treated patients. The regulation of gene expression in HIV-1 is complex

and requires multiple steps, including chromatin organization, allowance of transcription machinery, mRNA

processing and its transport to the cytoplasm, translation and posttranslational processes.

[1]

[2]

[3]
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2. LTR Regulatory Elements

Retroviruses integrate into host DNA as proviruses that are flanked by LTRs at each end of the viral DNA.

Transcription of proviral DNA is catalyzed by cellular RNA polymerase II (RNAPII) and initiated at the U3 end of 5ʹ

LTR. Each LTR is composed of three regions: unique 3ʹ (U3), repeated (R), and unique 5ʹ (U5). U3 occupies most

of the LTR and plays an important role in the induction of retroviral transcription, since it contains the viral

promoters and other cis-active elements required for the modulation of promoter activity. The TATA box, located

within the LTR promoter element, provides the binding site for RNAPII, determining the site of initiation and also

affecting the efficiency of the initiation of transcription .

The U3 region of HIV-1 LTR contains the crucial regulatory elements for the core promoter region: three specific

protein 1 (Sp1) sites and TATA box; for the enhancer region: two nuclear factor-κB sites (NF-κB) and one nuclear

factor of activated T-cells (NF-AT) site; for the modulatory region: three CCAAT/enhancer binding protein (C/EBP)

sites, the activating transcription factor/cyclic AMP response element binding (ATF/CREB) region, two NF-AT sites,

two activator protein 1 (AP-1) sites, one upstream stimulatory factor Ets/PU.1, and one T-cell specific transcription

factor/lymphoid enhancer binding factor (TCF/LEF-1) .

In HIV-1, the following regulatory sequences downstream of the transcription start site are as follows: the initiator

(Inr), the inducer of short transcripts (ITS), and trans-activation responsive element (TAR). TAR forms an RNA

stem-loop structure, which recruits the virally encoded transactivator protein (Tat) to the LTR to modulate the

activity of the viral promoter . In addition, HIV-1 LTR consists of several substantial transcription factor (TF)

binding sites including AP-1 sites, an AP-3-like (AP-3L) sequence, C/EBP/NFAT (nuclear factor for activated T

cells) downstream binding site (DS3), two downstream sequence element (DSE) sites, one downstream binding

factor (DBF-1) in R region, and two Sp1 binding sites and gag leader sequence (GLS) in the U5 . Enhancer

functions have been also mapped to the gag–pol regions of simian immunodeficiency virus (SIV) and HIV, but their

role in the virus replication has yet to be established.

The transcription of Lentiviruses is regulated by the interactions between numerous and different viral proteins and

transcription factors with binding sites located in the 5′ LTR. Most of regulatory elements encompass the U3 region.

Regulatory elements situated in R and U5 regions may improve the promoter and enhancer strengths and provide

a broad viral response for stimulating factors and control transcription in cell-type-dependent manner.

3. A Variety of Enhancers with Regulatory Functions

The HIV-1 mainly infects CD4+ T cells, monocytes, and macrophages, and in a lower proportion also dendritic cells

(DCs) and microglial cells. HIV-1 enhancer sequence consists of two NF-ĸB binding sites and three adjacent Sp1

binding sites that are required for viral transcription [5]. Other factors shown to bind the enhancer include Ets,

PU.1, NF-AT, C/EBP, AP-1, cAMP response element-binding protein/ activating transcription factor (CREB/ATF),

upstream stimulatory factor (USF), Sp1, Sp3 and chicken ovalbumin upstream promoter transcription factor

(COUP-TF) and they play role in enhancing the transcription (Table 1).

[4]

[5][6][7][8]

[1]

[9]
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Table 1. Key transcription factors involved in regulation of human immunodeficiency virus type 1 (HIV-1)

transcription in different cell types.

* transcription factors required for transcriptional activation in cell-type-specific expression of HIV-1; NF-κB, nuclear

factor kappa-light-chain-enhancer of activated B cells; NF-AT, nuclear factor of activated T-cells; Sp1, 3, specific

protein 1, 3; AP-1, activator protein 1; COUP-TF, chicken ovalbumin upstream promoter transcription factor; Ets-1,

E26 transformation-specific (ETS) transcription factor; USF, upstream stimulatory factor; C/EBP, CCAAT/enhancer-

binding protein; NF-IL-6, transcription factor nuclear factor interleukin 6; CREB/ATF, cAMP response element-

binding protein/ activating transcription factor.

Transcription Factor Cell Type

NF-κB  T cells , monocytes, macrophages, iDC, microglial cells

NF-AT T cells

Sp1 microglial cells, T cells, monocytes, macrophages, iDC

Sp3 microglial cells, monocytes, macrophages

AP-1 microglial cells, monocytes, T cells

COUP-TF microglial cells, T cells

Ets-1 T cells

USF monocytes, macrophages, iDC, T cells, microglial cells

C/EBP (NF-IL-6) monocytes, macrophages, iDC, T cells, microglial cells

CREB/ATF T cells, microglial cells, monocytes, macrophages

*
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This variety of binding sites may result in maintenance reverse latency in some cells. As an example, NF-κB

transcription factor binding to enhancer sites within LTR activate viral transcription in most HIV-1-infected types of

cells . The transcriptional activity of the NF-κB and other transcription factors in primary immune cells versus

transformed cell lines is listed in Table 2.

Table 2. Regulation of HIV-1 gene transcription in primary immune cells and transformed cell lines.

[10]

Transcription

Factor
Cell Type Primary Cells Transformed Cell Line

 

 

 

NF-κB T cells

• activates transcription in

dopamine-stimulated

PBMCs 

• activates transcription in

CD4+ T cells by direct

occupancy of enhancer by

NF-κB p50/p65 

• activates transactivation

in TNF-, IL-1-, and IL-7-

stimulated TEC co-cultured

with thymocytes 

• activates transcription in

dopamine-stimulated lymphoid

Jurkat T cell line 

• activates transcription in

Jurkat T cell line that stably

expresses the Tat 

• activates transcription in

latently HIV-1-infected

established T lymphoid cell line

J1.1 promoted by MRPs 

monocytes/macrophages

• activates transcription in

macrophages by direct

occupancy of enhancer by

NF-κB p50/p65 

• involved in efficient

activation of viral

transcription in monocytes

isolated from PBMC 

• activates HIV gene

transcription in monocytic cell

line U937 and promonocytic cell

U1 by direct occupancy of

enhancer by NF-κB p50/p65 

microglial cells nd • activates transcription in

human microglial MC-3 cell line

and embryonic microglial cell

[11]

[12]

[13]

[11]

[14]

[15]

[16]

[17]

[18]

[19]
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line upon stimulation with IFNγ,

IL1β, and TNFα 

 

 

NF-AT

 

 

T cells

• enhances activation of

transcription in CD4+ T

cells 

• NF-AT1,2 enhances

activation of transcription in

PMA/ionomycin stimulated

CD4+ T cells 

• NFAT1, 2 positive effect

on transcription in PMA-,

PHA-, bpV-stimulated

PBMC 

• efficient binding to the HIV-1

LTR enhancer in Jurkat-derived

CD4+ T cells isoform CD45(−),

stimulated with PMA/PHA/α-

CD3 

• represses Tat-mediated

transactivation in

PMA/ionomycin-stimulated

Jurkat T-cells  

• NFAT1, 2 enhances

transcription in Jurkat T cells

stimulated with PMA, PHA and

bpV 

 

Sp1, 3

 

microglial cells nd

• Sp1 interaction with COUP-TF

leads to activation of HIV gene

transcription in microglial cell

line 

• binding CTIP-2 to Sp1

represses Tat-mediated

transcriptional activation HIV

promoter 

• Sp3 represses Sp1 and

COUP-TF-induced activation in

human microglial cell line 

T cells • Sp1 associated with Tat

activates transcription in

CD4+ T cells and PBMCs

 

• Tat-induced Sp1 activates

promoter in MT-2 cell line and

Jurkat T cells 

[20][21][22]

[23]

[24]

[25]

[26]

[24]

[18]

[27]
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[28]

[28]
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• Sp1 assembly pre-initiation

complex at the LTR TATA box

and cooperatively interacts with

NF-κB to activate transcription

in Jurkat T cells stimulated with

PMA

monocytes/macrophages

• Sp1-to-Sp3 ratio

increases during monocyte

lineage differentiation,

resulting in increased HIV-1

transcription 

• Sp1 activates LTR-driven

transcription in U1 monocytic

cells 

• Sp1 has moderate impact on

transcription activation in

human monocytic line U-937 

iDC

• Sp1 activates HIV gene

transcription in DC

differentiated from

monocytes derived from

PBMCs 

nd

 

 

AP-1

microglial cells nd

• c-jun and c-fos interact with

TRE sequence and enhance

HIV-1 gene transcription in glial

cells 

 

monocytes/

macrophages

• Vpr-activated AP-1

enhances viral transcription

in macrophages

differentiated from PBMCs

 

• Vpr-activated AP-1 enhances

viral transcription in U937 cells

• Nuclear complex of c-fos and

c-jun binds directly to the HIV

LTR and enhances NF-κB

activity in human monocytic cell

lines U1 and U937 

• AP-1 activated by Nef

stimulates HIV transcription in

[29]

[30]

[31][35]

[32]

[35]

[34]

[35]

[35]

[36]
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U1 and U937 cells 

T cells

• enhances HIV-1 gene

expression in CBMCs more

than in PBMCs 

• c-jun and c-fos do not interact

with TRE sequence and do not

enhance HIV-1 transcription in

Jurkat T cells 

 

 

COUP-TF

 

 

microglial cells

• cooperates with Tat to

promote NF-κB- and Sp1-

independent transactivation

HIV-1 transcription in

human fetal microglial cells

 

• cooperates with Tat and

promotes NF-κB and Sp1-

independent activation HIV-1

transcription in microglial cell

line 

• COUP-TF Sp1 interaction

stimulates HIV transcription in

microglial cell line 

• COUP-TF, Sp1, and CTIP2

cooperation suppresses HIV

transcription initiation in

microglial cells 

T cells nd

• COUP-TF interaction with Sp1

synergistically stimulates viral

transcription in Jurkat T cells in

response to cAMP and

dopamine 

Ets T cells

• Ets in cooperation with

NF-kB/NFAT activates HIV-

1 enhancer in human

peripheral blood T cells 

• Ets in cooperation with USF-1

enhances transcriptional activity

of HIV-1 LTR in Jurkat T cells

 

 

monocytes/macrophages • regulates HIV

transcription by recruiting

HATs to the LTR in primary

macrophages 

• recruits HATs to LTR and

mediates initiation of

transcription in promonocytic

U937 cells 

[37]

[38]
[39]

[40]

[40]

[41]

[42]

[43] [44]

[45] [46]
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C/EBP

(NF-IL-6)

 

T cells nd

• is not required in HIV

transcription in Jurkat CD4+ T

cell line 

• cooperates with CREB and

mediates prostaglandin E2-

induced stimulation of LTR-

driven transcription Jurkat E6.1

microglial cells nd

• in presence of IL-1, IL-6, and

TNF- α, activates LTR-driven

transcription versus C/EBPγ

that acts as inhibitor 

 

 

CREB

T cells

 

• phospho-CREB recruits

CBP and basal

transcription factors, which

increases promoter

activation in primary

lymphocytes 

• phospho-CREB recruits CBP

and basal transcription factors,

which increases promoter

activation in MT-4 human T cell

line 

• mediates cAMP and

dopamine-induced

transcriptional stimulation

through indirect interactions

with LTR in Jurkat T cells 

• cooperates with COUP-TF in

the presence of forskolin, cAMP,

and dopamine to activate HIV-1

gene transcription in Jurkat T

cells 

monocytes/macrophages nd • CREB homodimers bind to

their DNA site, interact with

C/EBPs, and lead to increase

HIV promoter activation in U-

[45]

[47]

[48]

[49]

[50]

[42]

[42]
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nd, not determined; TEC, human thymic epithelial cell; MRPs, proinflammatory myeloid-related proteins; PBMC,

peripheral blood mononuclear cell; NF-AT, nuclear factor of activated T cells; PMA, Phorbol 12-myristate 13-

acetate; NF-κB, nuclear factor-kappa B; PHA, phytohemagglutinin; bpV, bis-peroxovana-dium a protein tyrosine

phosphatases (PTP) inhibitor; COUP-TF, chicken ovalbumin upstream promoter transcription factor; MT-2, cell line

derived from normal human cord leukocytes cocultivated with leukemic cells from an adult T cell leukemia (ATL)

patient; CBMCs, umbilical cord blood mononuclear cells; CTIP2, Chicken ovalbumin upstream promoter

transcription factor interacting protein 2; cAMP, cyclic AMP, adenosine 3’,5’-cyclic monophosphate; HATs, histone

acetylotransferase; Ets, erythroblast transformation specific transcription factor; Sp1, transcription factor specificity

protein 1; AP-1, activator protein; C/EBP, CCAAT/enhancer-binding protein; NF-IL-6, transcription factor nuclear

factor interleukin 6; CREB, cAMP response element-binding protein; CBP, CREB binding protein.

In activated CD4+ T lymphocytes, the Sp1 transcription factors are not sufficient to mediate transcription and

further binding NF-ĸB and NF-AT cellular factors to the LTR enhancer region is required to activate transcription. In

addition, the USF, Ets, NF-IL-6 and CREB proteins facilitate efficient transcription. In long-lived latently infected

CD4+ T cells, NF-ĸB and NF-AT, as key factors for initiation of HIV-1 transcription in these cells, are present in very

low nuclear concentrations. In addition, Cyclin T1 protein levels are also very low in comparison to activated T

cells. For that reason, the above mechanisms have been proposed to be probably involved in CD4+ T cell latency

.

In monocyte–macrophage lineage cells, regulation of HIV-1 transcription varies considerably during macrophage

differentiation, as numerous transcription factors are expressed in a differentiation-dependent manner. In

monocytes, LTR activity may be regulated during their differentiation stages by changes in the Sp1 (activator):Sp3

(repressor) ratio.

Increased permissiveness of macrophages for HIV-1 replication leads to expression of the cofactors utilized for Tat

transactivation of the LTR, and this leads to a high level of HIV-1 transcription. There are numerous studies

supporting that microglial cells are susceptible to HIV-1 infection and can be latently infected, constituting a major

reservoir in the brain. In contrast to the monocytes, NF-κB, AP-1, and NFAT proteins are constitutively localized in

the nucleus of microglial cells, and the Sp1 expression predominates over the Sp3. Interestingly, latently infected

microglial cells can be reactivated by cytokine stimulation. In contrast to other reservoirs, the NF-kB and Sp1

binding sites are sufficient for HIV-1 transcription in microglial cells [53]. Contrary to CD4+ T cells, which express

only Sp1, microglial cells produce both Sp1 and Sp3; the latter acting as transcriptional repressor. In addition,

C/EBPɤ is expressed and acts as repressor by competing with the transcriptional activator C/EBP (Table 2) .

937 and THP-1 human

monocytic cell lines; sequence

variations at the CREB site

affect LTR activity [51]

[53]

[52]

[54]
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To conclude, the LTRs play a significant role in cell-type-specific expression of the proviral genome. HIV-1

enhancer sequences contain many binding sites providing mechanisms for a broad viral response to extracellular

factors and regulate transcription in the cell-type-dependent manner. These observations thus emphasize the

differences in mechanisms underlying HIV-1 latency between infected cells.

4. Transactivation of LTR by Virus-Encoded Tat Protein

Lentiviruses are capable of promoting the rate of their gene expression through virus-encoded transactivator

proteins. Activation occurs by binding of Tat HIV-1 protein to a specific sequence adjacent to 5′ trans-activation

response (TAR) element RNA transcript . Tat protein of HIV-1 (and related Lentiviruses) interacts with the

viral RNA transcript, through a unique RNA regulatory segment of the LTR termed transactivation-responsive

element (TAR). The TAR secondary RNA structure is formed from transcription of the +19–43 tract in the LTR R

region . Various mechanisms of HIV-1 Tat transactivation have been proposed. One model suggests overriding

transcription terminations, since in the absence of Tat transcripts that initiate in LTR pause after synthesis of about

70 nucleotides. It has also been proposed that in early steps of viral transcription, the complex of positive

transcription elongation factor b (P-TEFb) composed of Cyclin T1 (CycT1) and cyclin-dependent kinase 9 (CDK9)

is recruited to the LTR via nuclear factor kappa B (NF-κB). The recruitment of Tat and P-TEFb to the TAR hairpin

facilitates phosphorylation of RNAP II, which increases their combined effectiveness and prevents premature

termination . On the other hand, several investigations revealed that NF-κB can promote both transcription

initiation and elongation complex, at a similar level to that of Tat, in a manner independent of Tat. The NF-κB

transcription factors induce LTR regulation via interaction with binding sites located within the enhancer region .

Deletion of the NF-κB binding sites strongly reduces basal, as well as Tat-transactivated, LTR activity. The Tat

proteins activate NF-κB through a IκB kinase (IKK), which accelerates the degradation of IκB, a protein that

regulates NF-κB activity by binding NF-κB and translocating to the nucleus . In vitro model systems support

an alternative hypothesis where Tat initiates transcription through a protein–protein interaction with the Sp1

transcription factor. This paradigm is supported by findings that nucleotide changes within the cis-acting elements

recruiting Sp factors to the HIV-1 LTR reduce Tat-mediated LTR activity .

Additionally,viral protein R (Vpr) is another viral accessory protein capable of enhancing the activity of the HIV-1

LTR. Vpr can bind to histone acetyltransferases (HAT)  CREB-binding protein and p300, glucocorticoid receptor,

CycT1, and Tat to activate transcription . Vpr can also activate NF-κB-directed transcription (reviewed in [1]).

HIV-1 LTR C/EBP and NF-κB complex demonstrates a high affinity for Vpr and a low affinity for C/EBPβ during

late-stage HIV in brain cells from patients with HIV-associated dementia (HAD) . In addition, Kilareski and co-

workers identified specific Tat variants derived from HAD brain, which were defective in LTR transactivation,

however still were able to activate promoters of the other proinflammatory cytokine genes. Collectively, in the

tissues of the brain, Tat may become less transcriptionally competent, however, in this situation, Vpr may facilitate

HIV-1 replication by enhancing transcription in the absence of a fully active Tat. On the other hand, Razooky and

co-workers suggested that Tat can control a viral reservoir in infected resting and memory CD4+ T cells, even if the

Tat level in these cells is low. They found that Tat mutants exaggerated lower levels of HIV-1 expression in the

[55][56][57]

[58]

[58][59]

[59]

[59][60]

[60]

[61][62]

[61][62]
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resting cells . In addition, Chakraborty and co-workers data indicated that Tat promotes latency by generating

a negative feedback loop at later stages of infection, which leads to the silencing of HIV-1 promoter .

The primary function attributed to Tat is the transactivation of HIV-1 promoter. Additionally, it has been

demonstrated that Tat enhances HIV-1 virulence by interacting with various cellular proteins in order to induce T

cell apoptosis, co-receptor regulation, and cytokine induction in the host cells . The effect of Tat on many

viral activities in the host cell contributes to the pathogenesis of HIV-1, pointing to this molecule as a potential

target for HIV-1 therapy, for example, by blocking viral replication by targeting Tat . The Tat naturally

occurring polymorphisms are usually caused by viral mutational escape from CD8+ cytotoxic T lymphocyte (CTL)

recognition. The host immune responses mediated by CTLs and less by CD4+ T lymphocytes and B lymphocytes

may potentially force selective pressure towards Tat diversity and affect its activity . It has been proposed that

variations in Tat sequence could modulate transactivation and have implications on HIV-1 latency and the

reactivation phase. Ronsard and co-workers reported that the Tat variants with a change of S46F were able to

significantly enhance LTR transactivation compared with wild-type Tat . Additionally, the change of S46F caused

strong Tat interaction with TAR in in vitro and in silico models. In contrast, a naturally occurring change of the C22S

in HIV-1 Oyi strain reduced Tat transactivation activity and was linked with long-term nonprogressive infections .

Furthermore, other naturally occurring polymorphisms within Tat identified in HIV-infected patients at acute and/or

early infection phase (i.e., P10S, W11R, K19R, A42V, and Y47H) have been shown to significantly impair

transactivation activity in the infected CD4+ T lymphocytes . These data suggest that certain naturally occurring

changes can change Tat transactivation activity.

The infected lymphocytes rapidly produce great numbers of viral particles, and it is clear that Tat protein triggers

this process. Clones with nonsense changes are unable to replicate and thereby disappear from the spectra in

vivo. However, as the infection progresses, some naturally occurring changes in Tat can change its immunogenic

properties, prevent transactivation, and may influence viral latency. Nevertheless, it remains unclear to what extent

CTL escape changes occurring in the Tat epitope may affect the HIV-1 latency kinetic from establishment to

reversal stages .
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