Genista tridentata Phytochemical Characterization

Subjects: Biochemistry & Molecular Biology

Contributor: Inês Martins Laranjeira, Alberto Carlos Pires Dias, Filipa Lacerda Pinto-Ribeiro

Genista tridentata (L.) Willk., known as "prickled broom", is a Leguminosae (Fabaceae) species native to the Iberian Peninsula, Morocco, Algeria, and Tunisia. It is used in folk medicine as an anti-inflammatory, for gastrointestinal and respiratory disorders, rheumatism, and headaches, to lower blood pressure, against hypercholesterolemia and hyperglycemia.

Keywords: traditional medicine ; biological properties ; Genista tridentata ; Pterospartum tridentatum ; nutraceuticals

1. Introduction

Wild edible plants are an important piece of the cultural and genetic heritage of distinct world regions, representing high importance, predominantly in rural and suburban areas ^[1]. Furthermore, they are interesting sources of bioactive compounds and need recognition as considerable contributors to human health promotion and disease prevention ^[2].

Genista tridentata (L.) Wilk. (the recognized name for this species), also known as *Pterospartum tridentatum* (L.) Wilk. (the commonly used name in both scientific literature and commercially available extracts. Among other synonyms, *Chamaespartum tridentatum* (P.) Gibbs is also used ^{[3][4]}). Commonly known as "prickled broom", it is a Leguminosae (Fabaceae) species belonging to the subfamily Papilionoideae ^{[5][6]}. In line with scientific literature and the Global Biodiversity Information Facility database ^[Z], the recorded countries of origin for the plant remain consistent, comprising Portugal, Spain, and Morocco. However, it is important to mention that the Plants of the World Online (POWO) database ^[8] also lists Algeria and Tunisia as potential countries of origin for this plant. This shrub can be found in the understory of *Arbutus unedo, Pinus*, and *Eucalyptus* forests, as well as in abandoned lands. It grows spontaneously up to 100 cm in acidic soils ^[9] and presents yellow flowers with a typical odor in alternate branches and coriaceous winged stems ^[10]. Traditionally, it is harvested in the spring between March and June.

G. tridentata is an aromatic plant that is very important in Portuguese gastronomy. The leaves are conventionally used as a condiment/spice for the seasoning of traditional rice and meat dishes ^[11]. Moreover, fresh or shade-dried flowers of *G. tridentata* are also used in folk medicine, in infusions, decoctions, and tonics ^[12] as anti-inflammatory ^{[13][14][15]}, diuretic and depurative of the liver ^{[5][11][16][17]}. It is commonly used to ameliorate colds ^{[5][18]}, in digestive disorders ^{[5][18][19][20]}, intestinal ^{[21][22]} and urologic problems ^{[5][11][15][16][18]}, and rheumatism ^{[5][11][16]}. Additionally, it is also used for respiratory disorders ^{[5][6][13][15][16][13][15][16][13]}, to lower blood pressure ^{[5][6][18]}, against hypercholesterolemia ^{[5][6][18][20][22]} and hyperglycemia ^{[5][6][11][16][17][18][23][24]}, and in weight loss programs ^[5].

2. Phytochemical Characterization

The main compounds found are flavonoids, as well as hydroxycinnamic acids and hydroxybenzoic acids (**Table 1**, **Figure 1**). Additionally, extracts collected in the flowering period (May), as well as flowers, presented a more diverse phytochemical profile than extracts collected during the rest of the year.

Figure 1. Classification of phytochemical compounds identified in *Genista tridentata*. Each distinct category is associated with a unique color.

 Table 1. Major biologically active compounds were found in several samples of *G. tridentata* (X—detected; NA—not available; ND—not detected).

Authors	[17]	[23]		[9]	[15]	[20]	[24]		[25]	[26]	[27]	[24]						[6]	[22]	[15]	[27]	[28]
Extraction method		Methanoli	•										Ad	queous						Ethanol	lic	NA
Part plant used	Crude	flowers	Stems and leaves				Flower	s					Aeria	l parts		In vitr	o culture	Leaves + Flowers	NA	Flower	s	Flowers
Sampling localization	Vila Real	Serra da Estrela	Serra da Estrela	Cinfães	Montesinho	Herbal Shop— DIÉTICA ®	Malcata	Gardunha	Cinfães	Herbal Shop — Ervital	Viseu	Malcat	ta	Gardun	ha	Malcata	Gardunha	Herbal shop— Ervital	Herbal Shop— DIÉTICA ®	Montesinho	Viseu	Herbal shop— Ervital
Sampling period		N	IA		Spring 2019	NA	May	May	NA	Spring 2012	NA	February	Мау	February	Мау		NA	ι.		Spring 2019	NA	Spring 2012
5,5'-Dihydroxy-3'- methoxy- isoflavone-7-O-β- glucoside	ND	ND	ND	x	ND	ND	x	x	ND	x	ND	x	x	x	x	x	x	ND	ND	ND	ND	x
5,5'-Dihydroxi-3'- methoxyisoflavone	ND	ND	ND	ND	x	ND	ND	ND	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	ND
7-Methylorobol	ND	ND	ND	ND	ND	ND	х	ND	x	х	ND	ND	ND	x	х	х	ND	ND	ND	ND	ND	x
Apigenin 5,7- dimethyl	ND	ND	ND	ND	ND	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Apigenin 5,7- dimethyl ether 4'galactoside	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	ND	ND
Biochanin A	х	ND	ND	ND	ND	x	ND	ND	ND	x	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	ND	x

Authors	[17]	[23]		(9)	[15]	[20]	[24]		[25]	[26]	[27]	[24]						6	[22]	[15]	[27]	[28]
Biochanin A O- acetylhexoside-O- hexoside	ND	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	x
Biochanin A O- hexoside	ND	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	x
Biochanin A O- hexoside-O- hexoside	ND	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	x
Biochanin A- glucoside	x	ND	ND	ND	ND	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	ND	ND
Caffeic acid	ND	х	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorogenic acid	ND	ND	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Citric acid	ND	ND	ND	ND	ND	ND	х	x	ND	ND	ND	ND	x	x	x	x	x	ND	ND	ND	ND	ND
Dihydroquercetin 6-C-hesoxide	ND	ND	ND	ND	x	ND	ND	ND	ND	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	x
Ellagic acid	ND	х	x	ND	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	ND
Ferulic acid	ND	x	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Genistein-8-C- glucoside	ND	ND	ND	ND	ND	x	x	x	ND	x	ND	x	x	x	x	x	x	ND	x	ND	ND	x
Ginestein	x	ND	ND	ND	ND	ND	х	х	х	x	x	х	ND	ND	x	x	ND	ND	ND	ND	x	х
Ginestein derivatives	x	ND	ND	ND	x	ND	ND	ND	ND	ND	x	ND	ND	ND	ND	ND	ND	ND	ND	x	x	ND
Ginestin	x	ND	ND	х	ND	ND	ND	ND	х	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	x
Isoquercitrin	ND	ND	ND	x	ND	x	x	x	x	x	x	ND	x	ND	x	x	x	ND	x	ND	x	x
Isorhamnetin-O- hexoside	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	ND	ND	ND
Luteolin-O-(O- acetyl)- glucuronide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	ND	ND	ND
Luteolin-O- glucuronide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	ND	ND	ND
Methylbiochanin A/methylprunetin	ND	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	x
Methylbiochanin A/methylprunetin derivative	ND	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	x
Methylbiochanin A/methylprunetin O-hexoside	ND	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	x
Myricetin-6-C- glucoside	ND	ND	ND	ND	x	x	x	x	x	x	ND	x	x	x	x	x	x	ND	x	x		x
p-Coumaric acid	ND	ND	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentahydroxy- flavonol-di-O- glucoside	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	x	ND	ND	ND	ND
Prunetin	ND	ND	ND	x	ND	ND	x	ND	x	ND	ND	ND	ND	ND	x	ND	ND	ND	ND	ND	ND	x
																			[11]			

Other-compounds found in the literature include essential oils (EOS) (**Table 2**). Grosso et al. (2007) ^[11] studied the EOS is Other Compounds found in the literature include essential oils (EOS) (**Table 2**). Grosso et al. (2007) ^[11] studied the EOS is Other Compounds by whydrodistillation and distillation-extraction of flowers, steins and sleaves, and sterial parts of different populations. Another study ^[29] also characterized EOs of *G. tridentata* using the same methodology. The results show that *G. tridentata* samples presented a yellowish oil with a yield of <0.05% (v/w). The dominant components of the oils were phenylpropanoids, more abundant in aerial parts, and oxygen-containing monoterpenes in the flowers, stems, and leaves. Additionally, Faria et al. (2013, 2016) ^{[30][31]} reported cis-theaspirane and trans-theaspirane as the main components.

Table 2. Composition (%) of the essential oils of *G. tridentata* isolated by hydrodistillation, collected in different years and locations. (AMF02: Flowers, collected in Arneiro das Milhariças in 2002; AMF03: collected in Arneiro das Milhariças in 2003; AML02: collected in Arneiro das Milhariças in 2002; AML03: collected in Arneiro das Milhariças in 2003; PAPN: collected in Pedra de Altar, Proença a nova; PSFPN: collected in Póvoa, Sobreira Formosa, Proença a nova; SCB: collected in Sarzeda, Castelo Branco; MCSB: collected in Milhasa do Corvo, Sarzeda, Castelo Branco; ND—not detected).

		Flowers			Leaves +	+ Stems	Aerial Parts							
Components	Authors	[<u>11]</u>		[29]	[<u>11]</u>									
	RI	AMF02	AMF03	Herbal Shop	AML02	AML03	PAPN	PFSPNa	PFSPNb	SCB	MCSB			
trans-2-Hexenal	866	1.6	0.5	0.1	ND	1.6	ND	ND	1.7	3.2	ND			
cis-3-Hexen-1-ol	868	1.6	1.2	ND	ND	5.3	ND	ND	0.8	3	ND			
cis-2-Hexen-1-ol	882	1.5	1.2	ND	ND	0.8	ND	ND	0.6	1.2	ND			
<i>n</i> -Hexanol	882	0.5	1.6	ND	ND	1.1	ND	ND	1.1	0.7	ND			
n-Heptanal	897	11.8	4.8	0.9	ND	0.5	0.8	ND	ND	0.3	ND			
<i>n</i> -Nonane	900	ND	ND	ND	ND	0.2	ND	ND	2.3	0.2	ND			
Benzaldehyde	927	0.5	0.8	0.3	ND	0.6	1	ND	0.6	0.1	ND			
α-Pinene	930	ND	0.3	0.3	ND	0.8	ND	ND	0.5	0.1	ND			
n-Heptanol	952	0.5	1.6	ND	ND	1.5	ND	ND	ND	ND	1.3			

Authors [17]	[23]	(9)	^当 Flowers	(20) (24)		(25)	Leaves	(<u>27</u>)	Stems		Aerial	Par	ts	(6)	[22]	[15]	[27] [28]
Quercetin deoxyhexosyl- ND hexoside	ND	ND ND Authors		ND ND	ND [29]	ND	× [<u>11]</u>	ND	ND	ND	ND	ND	ND NE)	ND NE	х	ND X
Components hexoside	ND	ND ND	x	ND ND	ND	ND	x	ND	ND	ND	ND	ND	ND NI		ND NE	х	ND X
Quercetin-3-O- rutinoside ND Quercetin	ND			NAMF0®	Herba Shop		AMŁ02		AMŁ03		PA∿PN	ND	P₽SPNa∾		SPNb∾		MCSB
1 ₀ 000 ten-3-0	ND	ND ND N 961 ND	107	ND ND ND 21 x	ме "9.2	ND	™ 11,5	X	ыр 22.6	ND X	ыр 1,7	ND X	29.7 x		ND NO 1,5 NO	25.0	× ND ND 36.8 ND
Rosmarinic acid ND 2-Pentyl furan	ND ND	ND ND 972 ND	24	ND ND ND 1.3 x	,0.8	ND X	°¤5	ND ND	₀ 0,5	ND X	ND ŊD	ND X			х м 2,57 _м	2 1	ND ND ND 1.4 ND
Sissotrin ND n-octanal Syringic acid ND	ND X	973 x			× 0.6	X ND	ŇĎ	ND ND	N₽	ND ND	ŇD	X ND				ND	
Taxifolin X 3-Octanol	ND	ND 974	1.4	ND 1.5	ND ND	ND	ND 1.9	ND		ND		ND			ND NE 1.9	0.3	ND 1.5
	ND X	ND ND 996 ND		x x nd ND nd	× ∾ND	ND ND	™ 043	ND ND	× 04	X ND	× N±D	X ND	ND NI N ND NI		ND X		ND ND ND ND ND
Benzene acetaldehyde		1002	1.8	1.8	ND		0.3		1.2		ND		ND	(0.4	1.4	0.6
ρ-Cymene		1003	ND	ND	0.3		ND		ND		ND		ND	I	ND	ND	ND
1,8-Cineole		1005	0.9	1	0.7		1.1		0.2		ND		ND	I	ND	ND	ND
Limonene		1009	0.9	1	ND		1.1		0.2		ND		ND	(0.3	ND	ND
Acetophenone		1017	ND	1.4	ND		2.1		0.5		ND		ND	I	ND	ND	ND
<i>n</i> -Octanol		1045	0.5	0.4	0.7		2.1		0.3		0.6		ND	I	ND	ND	ND
ρ-Cymenene		1050	ND	ND	0.6		ND		ND		ND		ND	I	ND	ND	ND
Heptanoic acid		1056	0.5	1.2	ND		ND		0.4		ND		ND	I	ND	ND	2.1
Phenyl ethyl alcohol		1064	0.7	1.2	ND		2		1.7		ND		3.6	;	3.3	3.4	6.3
<i>n</i> -Nonanal		1073	14.5	6.1	6.5		4.6		0.9		10.5		4.1	(0.2	0.9	1
Linalol		1074	2.9	0.5	7.1		ND		2		ND		5.2	I	ND	2.3	1
cis-Rose oxide		1083	2.9	0.5	ND		ND		ND		2		ND	i	5.2	2.3	1
Camphor		1095	ND	ND	0.7		ND		ND		ND		ND	I	ND	ND	ND
<i>n</i> -Undecane		1100	ND	ND	ND		ND		ND		ND		1	2	2.3	0.2	ND
<i>trans-</i> Rose oxide		1100	ND	ND	ND		2.1		0.7		ND		1	I	ND	ND	ND
trans- Pinocarveol		1106	ND	ND	0.3		ND		ND		ND		ND	I	ND	0.2	ND
2- <i>trans</i> ,6 <i>cis</i> - Nonadienal		1106	2.1	0.3	0.2		ND		ND		ND		ND	I	ND	ND	ND
2- <i>trans</i> -Nonen- 1-al		1114	0.5	0.4	ND		2.2		0.2		ND		ND	I	ND	ND	ND
Pentyl benzene		1119	1.5	ND	ND		ND		0.3		ND		ND	I	ND	ND	ND
Menthone		1120	ND	ND	0.2		ND		ND		ND		ND	I	ND	ND	ND
Benzyl acetate		1123	ND	ND	0.2		ND		ND		ND		ND	I	ND	ND	ND
Borneol		1134	ND	ND	1.1		ND		ND		ND		ND	I	ND	ND	ND
Lavandulol		1142	ND	ND	0.3		ND		ND		ND		ND	I	ND	ND	ND
Menthol		1148	ND	ND	0.5		ND		ND		ND		ND	I	ND	ND	ND
Terpinen-4-ol		1148	ND	ND	0.7		ND		ND		ND		ND	I	ND	ND	ND
Octanoic acid		1156	0.3	ND	0.5		0.5		ND		ND		ND	I	ND	ND	ND
α-Terpineol		1159	ND	ND	1.8		ND		ND		ND		1.2	(0.8	0.3	ND
Safranal		1160	1.4	0.3	ND		ND		0.5		ND		ND	I	ND	ND	ND

		Flowers			Leaves +	+ Stems	Aerial P	arts			
Components	Authors	[<u>11]</u>		[29]	[<u>11]</u>						
	RI	AMF02	AMF03	Herbal Shop	AML02	AML03	PAPN	PFSPNa	PFSPNb	SCB	MCSB
Methyl chavicol (=estragole)	1163	ND	ND	0.9	ND	ND	ND	ND	ND	ND	ND
<i>n</i> -Decanal	1180	ND	0.3	0.4	ND	ND	ND	ND	ND	ND	ND
Pulegone	1210	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND
Geraniol	1236	0.3	1.6	0.6	4	9.2	3.2	1	-	1.4	2.8
Linalyl acetate	1245	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND
Trans-Anethole	1254	ND	ND	4.7	ND	ND	ND	ND	ND	ND	ND
<i>n</i> -Decanol	1259	0.3	1.6	0.6	4	0.2	3.2	3.4	2.5	3.2	1.9
2-Undecanone	1273	ND	ND	2.2	ND	ND	ND	ND	ND	ND	ND
Perilla alcohol	1274	ND	ND	ND	ND	3.4	ND	ND	ND	0.6	ND
Nonanoic acid	1274	ND	0.3	1.5	2.3	ND	ND	ND	ND	ND	ND
cis-Theaspirane	1279	1.6	2.2	ND	12.7	7.1	14.2	5.3	13.2	9	6.2
2 <i>trans</i> ,4 <i>trans</i> - Decadienal	1285	0.8	1.3	ND	ND	0.1	ND	1.8	ND	2	ND
cis-Transpirane	1286	ND	ND	3.2	ND	ND	ND	ND	ND	ND	ND
Carvacrol	1286	ND	ND	0.3	ND	ND	ND	ND	ND	ND	ND
2- <i>trans-</i> 4- <i>trans-</i> Decadienal	1286	ND	ND	1	ND	ND	ND	ND	ND	ND	ND
<i>trans-</i> Theaspirane	1300	2.4	1.9	3.9	12.1	6.8	17.2	6.3	13.6	10	5.5
Hexyl tiglate ester	1316	ND	ND	0.2	ND	ND	ND	ND	ND	ND	ND
Eugenol	1327	1.4	1.7	0.8	3.5	2.6	ND	3.1	3	3.2	3.6
α-Terpenyl acetate	1334	ND	ND	0.3	ND	ND	ND	ND	ND	ND	ND
α-Longipinene	1338	ND	ND	0.1	ND	ND	ND	ND	ND	ND	ND
Decanoic acid	1350	ND	ND	0.8	ND	ND	ND	ND	ND	ND	ND
<i>trans-</i> β- Dasmascenone	1356	ND	ND	0.8	ND	ND	ND	ND	ND	ND	ND
Geranyl acetate	1370	ND	ND	0.5	ND	ND	ND	ND	ND	ND	ND
α-Copaene	1375	ND	ND	ND	ND	ND	ND	0.9	ND	ND	ND
β-Bourbonene	1379	ND	ND	ND	ND	ND	ND	1.5	ND	1.1	ND
2- Pentadecanone	1390	ND	ND	0.8	ND	ND	ND	ND	ND	ND	ND
Longifolene	1399	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND
β-Caryophyllene	1414	ND	0.4	1.2	ND	ND	ND	2.7	ND	2	0.9
Geranyl acetonea	1434	ND	3.6	0.7	ND	ND	ND	1.2	ND	0.6	ND
allo- Aromadendrene	1456	ND	ND	0.7	ND	ND	ND	ND	ND	ND	ND
trans-β-lonone	1456	ND	ND	1.1	ND	ND	ND	ND	ND	ND	ND
Germacrene-D	1474	ND	0.2	ND	ND	ND	9.7	3.3	ND	0.7	ND

		Flowers			Leaves -	+ Stems	Aerial P	arts			
Components	Authors	[<u>11]</u>		[29]	[<u>11]</u>						
	RI	AMF02	AMF03	Herbal Shop	AML02	AML03	PAPN	PFSPNa	PFSPNb	SCB	MCSB
α-Curcumene	1475	ND	ND	0.5	ND	ND	ND	ND	ND	ND	ND
ƴ-Cadinene	1500	ND	3.3	ND	ND	ND	ND	1.2	ND	1.1	1.9
σ-Cadinene	1505	ND	2.4	ND	ND	ND	ND	1.6	ND	2	1.9
Dodecanoic acid	1551	3.5	2.1	5.3	2.6	0.3	15	ND	ND	0.9	1.1
β-Caryophyllene oxide	1561	ND	ND	ND	ND	ND	ND	1.3	ND	1.2	2.9
<i>n</i> -Tetradecanal	1596	ND	ND	ND	ND	ND	ND	1.1	ND	2.7	1.5
<i>n</i> -Pentadecanal;	1688	ND	ND	ND	ND	ND	ND	ND	ND	0.8	ND
Tetradecanoic acid References	1734	ND	ND	0.2	ND	ND	ND	ND	ND	ND	ND

Hexadecanoic

Hexadecanoic1779NDND0.7ND</

% of identified components71.875.171.878.476.877.182.964.888.582.23. Pinto, D.C.; Simões, M.A.; Silva, A.M. Genista tridentata L.: A rich source of flavonoids with anti-inflammatory activity.
Medicines 2020, 7, 31.Grouped components

4. MSIN BEER, M. AX, MARTHER, D.S.; Neves, B.M.; Silva, A.M. Flavbhoid profile of the Benista Maentata L., & species used ND traditionally on the species of the species of

monoterpenes 5. Coelho, M. I.; Gonçalves, J.C.; Alves, V.; Moldão-Martins, M. Antioxidant activity and phenolic content of extracts from differ**Set deterpape**rtum tridentatum populations growing in Portugal Procedia Food Sci₆ 2011, 1, 1454–1458. hydrocarbons

6. Ferreira, F.M.; Dinis, L.T.; Azedo, P.; Galhano, C.I.; Simões, A.; Cardoso, S.M.; Rosário, M.; Domingues, M.; Pereira, O. **R**: yealhean information of Piero provide the sequitary and toxico logical valuation of Piero provident tradentatum from extracts. CyTA-J. Food 2012, 10, 92–102.

 Phenvlpropanoids
 1.4
 1.7
 6.4
 3.5
 2.6
 ND
 3.1
 3
 3.2
 3.6

 7. GBIF—Global Biodiversity Information Facility. Available online: https://www.gbif.org/search?
 q=Pt@ib sjieldt(u/n%20trident@U\$%(ac@0\$5%) or 0.00%)
 or 0.00%)
 <0.05%</td>
 <0.05%</td>

8. Plants of the World Online (POWO). Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:496422-1#synonyms (accessed on 10 October 2023).

- 9. Vitor, R.F.; Mota-Filipe, H.; Teixeira, G.; Borges, C.; Rodrigues, A.I.; Teixeira, A.; Paulo, A. Flavonoids of an extract of Pterospartum tridentatum showing endothelial protection against oxidative injury. J. Ethnopharmacol. 2004, 93, 363–370.
- Novais, M.H.; Santos, I.; Mendes, S.; Pinto-Gomes, C. Studies on pharmaceutical ethnobotany in Arrábida natural park (Portugal). J. Ethnopharmacol. 2004, 93, 183–195.
- 11. Grosso, A.C.; Costa, M.M.; Ganço, L.; Pereira, A.L.; Teixeira, G.; Lavado, J.M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Essential oil composition of Pterospartum tridentatum grown in Portugal. Food Chem. 2007, 102, 1083–1088.
- Pinela, J.; Barros, L.; Carvalho, A.M.; Ferreira, I.C. Influence of the drying method in the antioxidant potential and chemical composition of four shrubby flowering plants from the tribe Genisteae (Fabaceae). Food Chem. Toxicol. 2011, 49, 2983–2989.
- Gião, M.S.; González-Sanjosé, M.L.; Rivero-Pérez, M.D.; Pereira, C.I.; Pintado, M.E.; Malcata, F.X. Infusions of Portuguese medicinal plants: Dependence of final antioxidant capacity and phenol content on extraction features. J. Sci. Food Agric. 2007, 87, 2638–2647.
- Bremner, P.; Rivera, D.; Calzado, M.A.; Obón, C.; Inocencio, C.; Beckwith, C.; Fiebich, B.L.; Munoz, E.; Heinrich, M. Assessing medicinal plants from south-eastern Spain for potential anti-inflammatory effects targeting nuclear factor-Kappa B and other pro-inflammatory mediators. J. Ethnopharmacol. 2009, 124, 295–305.
- Garcia-Oliveira, P.; Carreira-Casais, A.; Pereira, E.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Stojkovic, D.; Sokovic, M.; Simal-Gandara, J.; Prieto, M.A.; et al. From tradition to health: Chemical and bioactive characterization of five traditional plants. Molecules 2022, 27, 6495.

- 16. Gonçalves, S.; Gomes, D.; Costa, P.; Romano, A. The phenolic content and antioxidant activity of infusions from Mediterranean medicinal plants. Indust. Crops Prod. 2013, 43, 465–471.
- Aires, A.; Marrinhas, E.; Carvalho, R.; Dias, C.; Saavedra, M.J. Phytochemical composition and antibacterial activity of hydroalcoholic extracts of Pterospartum tridentatum and Mentha pulegium against Staphylococcus aureus isolates. BioMed Res. Int. 2016, 2016, 5201879.
- Balanč, B.; Kalušević, A.; Drvenica, I.; Coelho, M.T.; Djordjević, V.; Alves, V.D.; Sousa, I.; Moldão-Martins, M.; Rakic, V.; Nedovic, V.; et al. Calcium–alginate–inulin microbeads as carriers for aqueous carqueja extract. J. Food Sci. 2016, 81, E65–E75.
- Gião, M.S.; González-Sanjosé, M.L.; Muñiz, P.; Rivero-Pérez, M.D.; Kosinska, M.; Pintado, M.E.; Malcata, F.X. Protection of deoxyribose and DNA from degradation by using aqueous extracts of several wild plants. J. Sci. Food Agric. 2008, 88, 633–640.
- Serralheiro, M.L.M.; Falé, P.L.; Ferreira, C.; Rodrigues, A.M.; Cleto, P.; Madeira, P.J.A.; Florêncio, M.H.; Frazão, F.N.; Serralheiro, M.L.M. Antioxidant and anti-acetylcholinesterase activity of commercially available medicinal infusions after in vitro gastrointestinal digestion. J. Med. Plants Res. 2013, 7, 1370–1378.
- Coelho, C.M.M.; de Mattos Bellato, C.; Santos, J.C.P.; Ortega, E.M.M.; Tsai, S.M. Effect of phytate and storage conditions on the development of the 'hard-to-cook' phenomenon in common beans. J. Sci. Food Agric. 2007, 87, 1237–1243.
- Falé, P.L.; Ferreira, C.; Rodrigues, A.; Frazão, F.; Serralheiro, M. Studies on the molecular mechanism of cholesterol reduction by Fraxinus angustifolia, Peumus boldus, Cynara cardunculus and Pterospartum tridentatum infusions. J. Med. Plants Res. 2014, 8, 9–17.
- 23. Luis, A.; Domingues, F.; Duarte, A.P. Bioactive compounds, RP-HPLC analysis of phenolics, and antioxidant activity of some portuguese shrub species extracts. Nat. Product Commun. 2011, 6, 1863–1872.
- Gonçalves, J.C.; Coelho, M.T.; da Graça Diogo, M.; Alves, V.D.; Bronze, M.R.; Coimbra, M.A.; Martins, V.M.; Moldão-Martins, M. In vitro shoot cultures of Pterospartum tridentatum as an alternative to wild plants as a source of bioactive compounds. Nat. Product Commun. 2018, 13, 439–442.
- 25. Paulo, A.; Martins, S.; Branco, P.; Dias, T.; Borges, C.; Rodrigues, A.I.; Costa, M.C.; Teixeira, A.; Mota-Filipe, H. The opposing effects of the flavonoids isoquercitrin and sissotrin, isolated from Pterospartum tridentatum, on oral glucose tolerance in rats. Phytother. Res. 2008, 22, 539–543.
- 26. Roriz, C.L.; Barros, L.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Scientific validation of synergistic antioxidant effects in commercialised mixtures of Cymbopogon citratus and Pterospartum tridentatum or Gomphrena globosa for infusions preparation. Food Chem. 2015, 185, 16–24.
- 27. Gonçalves, A.C.; Bento, C.; Nunes, A.R.; Simões, M.; Alves, G.; Silva, L.R. Multitarget protection of Pterospartum tridentatum phenolic-rich extracts against a wide range of free radical species, antidiabetic activity and effects on human colon carcinoma (Caco-2) cells. J. Food Sci. 2020, 85, 4377–4388.
- Roriz, C.L.; Barros, L.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Pterospartum tridentatum, Gomphrena globosa and Cymbopogon citratus: A phytochemical study focused on antioxidant compounds. Food Res. Int. 2014, 62, 684–693.
- 29. Barbosa, P.; Lima, A.S.; Vieira, P.; Dias, L.S.; Tinoco, M.T.; Barroso, J.G.; Pedro, L.G.; Figueiredo, A.C.; Mota, M. Nematicidal activity of essential oils and volatiles derived from portuguese aromatic flora against the pinewood nematode. J. Nematol. 2010, 42, 8–16.
- 30. Faria, J.M.; Barbosa, P.; Bennett, R.N.; Mota, M.; Figueiredo, A.C. Bioactivity against Bursaphelenchus xylophilus: Nematotoxics from essential oils, essential oils fractions and decoction waters. Phytochemistry 2013, 94, 220–228.
- Faria, J.M.S.; Sena, I.; Ribeiro, B.; Rodrigues, A.M.; Maleita, C.M.N.; Abrantes, I.; Bennet, R.; Mota, M.; Figueiredo, A.C.D.S. First report on Meloidogyne chitwoodi hatching inhibition activity of essential oils and essential oils fractions. J. Pest Sci. 2016, 89, 207–217.