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Biofuel, a cost-effective, safe, and environmentally benign fuel produced from renewable sources, has been accepted as
a sustainable replacement and a panacea for the damaging effects of the exploration for and consumption of fossil-based
fuels.
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| 1. Biofuel as a Renewable Fuel

Since the early 1970s, when the word “biofuel” was first used, authors have defined the term as: (a) a fuel manufactured
either from or by fresh, living micro- or macro-organisms I: (b) a fuel made directly or indirectly from biomass & (c) a
liquid fuel obtained from biomass, e.g., biodiesel produced from fats and oils, biogas generated from animal waste, etc. &!;
(d) a bio-based fuel naturally obtained from wood and wood chips or agricultural residues or chemically converted from
biomass to charcoal, biodiesel, bioethanol, and biomethane 4. Using these definitions, we can summarize that biofuel is
generated from plants, animal waste, manure, sludge, etc., in either a solid, liquid, or gaseous form, and is capable of
being converted to another variety of biofuel 2. Major benefits and paybacks derivable from the deployment of biofuels as
a form of renewable fuel include:

« Biofuels are renewable and are carbon- and CO2/GHG-neutral during the progression of the life cycle €1,

« Less GHG emissions are generated from the utilization of biofuels compared to FB fuels ],

« Biofuels are biodegradable, sustainable, and environmentally benign [&1129],

« Biofuels are largely produced from locally available and accessible resources, applying safe production methods 211221,
« Production and utilization of biofuels enhance home-grown agricultural development and investment 231141,

« Biofuels provide improvements in the health and living conditions of people 1311241,

« Biofuels create jobs and improvements in local livelihoods and reduce energy importations (L1261,

« Economically, biofuel helps to stabilize energy prices, conserve foreign exchange, and generate employment at the
macroeconomic leve| L7181,

 Household usage of biofuel does not trigger life-threatening health conditions, as opposed to FB fuels 1120,

Notwithstanding these advantages, the high initial cost of production and storage of biofuels can be a deterrent for
potential producers and users. There are justifiable concerns that the increased demand for biofuel will increase the cost
of the relevant agricultural and woody raw materials, as well as other feedstocks (2122 Also, continuous demand for
wood can lead to rapid deforestation, while huge parcels of land are required to cultivate special trees and other inedible
oils for biofuel production. In specific terms, methane, a major component of biogas, is a major contributor to global
climate change and continuous usage of biogas can exacerbate ozone layer depletion 23, while biodiesel, a form of
biofuel, generates high NOx emission and contributes to higher engine wear compared to FB fuel 24, Despite the
obstacles, biofuel is a clean, sustainable, and affordable energy resource choice that can replace FB fuels and rescue
humankind from the looming environmental disaster. The adaptation of biofuels as sustainable fuels in various sectors of
the economy is one of the strategies for CO2 reduction and carbon mitigation [221126],

2.1. Classification of Biofuels

2.1.1. Classification Based on the Physical State



Solid Biofuels

Generally, any solid biomass material can be described as solid biofuel. Solid biomass is principally any solid feedstock
that can be converted into biofuel 22, Examples of such solid biomass include lignocellulosic biomass and various types
of solid waste [28]. Table 1 shows various categories of solid biofuel and their examples. Ideally, each of these raw solid
biomasses can be used directly as solid biofuels or as feedstock for other forms of biofuel production.

Table 1. Categories and examples of solid biofuel [22EABELIE2](33]

Lignocellulosic Biomass

Solid Waste
Agricultural Residues Forest Residues Energy Crops
Firewoods
Rice straw Wood chips
R Wood branches Switchgrass
Rice husk . . .
Sawdust Miscanthus Municipal solid waste
Wheat straw B
Fruit bunch Energy cane grass Processed paper
Sorghum straw - . : R .
Willow chips Hybrid Pennisetum Plastics
Corn stover . s
Black locust Triarrhena lutarioriparia Wastewater sludge
Sugarcane bagasse -
Pine Energy cane leaf Food waste
Sugarcane peel . .
Spruce Energy cane stem Dried animal manure
Barley straw
olive pul Eucalyptus Grass leaf Poultry waste
Gra egeel; Softwood Grass stem
p Hardwood

Hybrid poplar

Compiled by the authors.

Liquid Biofuels

Liquid biofuels refer to any renewable fuel in liquid form. They are mainly used as transport fuels. Notable examples of
liquid biofuels are biodiesel, biomethanol, bioethanol, biobutanol, biopropanol, bio-oil, jet fuel, etc. [B41E51[36],

Gaseous Biofuels

Biogas/biomethane, biohydrogen, and biosyngas are the commonest examples of gaseous biofuels. They have a wide
variety of applications, including for thermal, transport, and heat uses and electricity/power generation.

2.1.2. Classification Based on Technology Maturity

According to the degree of technology maturity or status of the commercialization technologies, biofuels are often
categorized as conventional biofuels and advanced biofuels, as shown in Figure 1.
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Figure 1. Classification of biofuels based on technology maturity. Adapted from BZ. Developed by the authors.

2.1.3. Classification Based on the Generation of Feedstock

Feedstocks for biofuel production are divided into three categories in terms of their generation: first-generation feedstock,
second-generation feedstock, and third-generation feedstock. The choice of feedstock has a huge influence on the
development and utilization of biofuel as a substitute for FB fuels. Feedstocks are chosen based on price, hydrocarbon



content, and biodegradability. For example, edible feedstocks and those containing pure sugars are relatively expensive.
Simple sugars are preferred as feedstocks because they are easy to decompose with microbes while lignocellulosic
biomasses are selected based on their relative affordability.

2.1.4. Classification Based on the Generation of Products

Primary Biofuels

The main feature of primary biofuels, also known as natural biofuel 8! or zero-generation biofuel, is that they are used the
way they occur without any modifications, alterations, processing, or pre-treatment. Examples of primary biofuels include
firewood, wood chips, pellets, animal waste, forest and crop residues, and landfill gas. Notable areas of application of
primary biofuels include cooking, household heating, brick kilns, drying, roasting, and electricity generation. This type of
biofuel is readily available and its utilization does not require any special skill or infrastructure. However, their utilization is
crude, compromises air quality, and may negatively impact the health of the user 220,

First-Generation Biofuels

The need to get a sustainable and viable alternative to finite energy sources gave rise to the development of First
Generation Biofuels (1GB). Major examples include biodiesel, biogas, bioalcohols, biosyngas, biomethanol, and
bioethanol. Major feedstocks for the production of 1GB include edible (food) crops like corn, wheat, palm oil, soybeans,
edible vegetable oil 1, rapeseed, Karanja, Moringa oleifeara, Jatropha curcas 42, corn, cereals, sugar cane, wood,
grains, straw, charcoal, household waste, and dried manure 3. Though 1GB is biodegradable and offers great
environmental and social benefits, the food vs. fuel trade-off and extensive area and time required to grow the inedible
feedstock are some of its drawbacks 44l Also, the high cost of feedstock, which was found to consume over 70% of the
generation cost, is discouraging [4211461[47],

Second-Generation Biofuels

Second-Generation Biofuels (2GB), which were developed as a solution to some of the drawbacks associated with 1GB,
can be produced from inedible feedstocks like waste cooking oil 48, waste animal fats “2, recovered oil B9, and
lignocellulosic biomass, like grass, wood, sugarcane bagasse, agricultural residues, forest residues, and municipal solid
waste [BlB2l a5 well as from bioethanol, biodiesel, biosyngass, biomass to liquid biodiesel conversion, bio-oil,
biohydrogen, bioalcohols, biodimethylfuran, and bio-Fischer-Tropsch 23l34. The generation of 2GB does not affect the
food chain and the cost of feedstocks is relatively low, but the production technologies are still complex and have not been

commercialized yet (51561,

Third-Generation Biofuels

The challenges associated with 1GB and the 2GB gave rise to the development of the Third Generation Biofuels (3GB),
particularly with regard to feedstock selection. Algae, which is the major feedstock for 3GB, does not interfere with the
food chain and requires no land or freshwater for cultivation, either naturally or artificially 24. Other feedstocks for 3GB
include yeast, fungi, and cyanobacteria, while examples of 3GB include bioethanol, vegetable oil, biodiesel, biomethanol,
and jet fuels. In recent years, 3GB has attracted more investment, particularly in algae cultivation and conversion
technologies 28],

Fourth-Generation Biofuels

Fourth Generation Biofuels (4GB) are produced from genetically or metabolically engineered feedstock from algae. Unlike
2GB and 3GB, the production of this generation of biofuels ensures sustainable production and catches CO2 emissions
from oxygenated fuel combustion throughout the entire production progression B9, The application of production
technologies has drastically reduced the cost of production, making it economically competitive. Major examples of 4GB
include hydrogenated renewable diesel, bio-gasoline, green aviation fuel, vegetable oil, and biodiesel.

| 2. Biofuel as Internal Combustion Engine Fuels

Transportation is one of the necessities of life and a major contributor to the socio-economic growth of countries. The
ease of the movement of goods and services is one of the measures of the quality of life of individuals. Governments
across jurisdictions devote significant efforts and resources to ensure affordable and safe transportation services. The
transportation sector consumes over 90% of the total FB fuel products and over 25% of global energy [BEL The
proportion of the total energy used for on-road transport is projected to increase from the present 28% to 50% by 2030
and further to 80% by 2050 (62, The total energy consumption in the transport sector was 110 million TJ in 2015 including



passenger vehicles (cars and bikes), buses, air, passenger rail, and air freight. Heavy trucks, light trucks, and marine
transport jointly consume 35% of the transportation sector energy, as shown in Figure 2 631841 The 129 billion liters of
liquid biofuel used in 2016 is projected to rise to 652 billion liters by 2050, while about 180 billion liters of biodiesel will be
needed in the transport sector in 2050, as shown in Figure 3 [62],
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Figure 3. Biofuel in the transport sector, 2016 and 2050 scenarios. Adapted from 62, Developed by the authors.

Liquid and gaseous biofuels are used to power ICEs. However, liquid biofuels are preferred over gaseous biofuels for
vehicle propulsion. This is because liquid biofuels have a higher energy density than gaseous fuels, thereby allowing
vehicles to possess immense range. Table 2 shows the energy stored per liter for petrol or Petroleum-Based Gasoline
(PBG) fuel, PBD fuel, and some biofuels. Gaseous fuels require pressurized tanks and they must be larger for an equal
qguantity of stored energy compared to liquid fuels. Also, refueling is more straightforward, easier, and faster with liquid

fuels than gaseous fuels.

Table 2. Energy stored per liter of fuel 8],

Fuel Stored Energy (MJ)
Diesel 36
Gasoline 33
Biodiesel 33
Methanol 16
Ethanol 21

Liquid H2 (at -253 °C) 8.5



Fuel Stored Energy (MJ)

Compressed H2 (at 250 bar) 2.5

The use of a fuel as an ICE fuel depends on its properties. Table 3 shows some properties of diesel, gasoline, and some
liquid and gaseous biofuels. The density is calculated as the mass per unit volume. The density of a fuel is determined by
the mass of fuel entering the combustion chamber and the air/fuel ratio. A Higher Heating Value (HHV) is the quantity of
heat realized when a unit amount of fuel is completely combusted. HHV is obtained by cooling the products of
combustion, leading to the formation of water vapor EAE8l The HHV of fuel is directly proportional to the quantity of
carbon in the fuel and the ratio of C-H to O2-N2. Conversely, the Lower Heating Value (LHV) of a fuel is the energy
content of the fuel. The distinction between the HHV and LHV is a measure of the heat content of the condensed water
vapor formed during combustion. The density and heating values determine the energy available in the fuel, along with
the volume and mass. The Cetane Number (CN) is a function of the amount of time lag between the fuel injection and
auto-ignition [84. The CN is used to classify PBD fuel and measures the ability of the fuel to self-ignite. Fuels with high
CNs are good for Cl engines because this ensures that the engine enjoys an excellent start and runs smoothly,
particularly during cold weather. A low CN tends to result in incomplete combustion and exacerbates the emission of
dangerous gases (69,

Kinematic viscosity is a property that influences the atomization properties, the size of the droplets and spray penetration,
and the potential of atomized fuel. Fuels with high kinematic viscosity values suffer from poor fuel atomization during the
spray and increased wear rate of the engine, pump parts, and injectors, which jointly result in poor combustion and
increased emissions /9. Ethanol and dimethyl ether have lower viscosity values and are more capable of making fine
droplet sprays than PBD fuel. The flash point measures the temperature at which sufficient water vapor is released to
generate the appropriate quantity of the water vapor—air mixture and relates to the safe handling and transportation of the
fuel. A fuel with a flashpoint below 38 °C (100 °F) is considered flammable /1. The latent heat of vaporization quantifies
the degree of coolness experienced as a result of fuel evaporation. The stoichiometric Air/Fuel ratio (A/F) of a fuel is a
measure of the hydrogen/carbon ratio of the fuel and the quantity of oxygen contained in the compound 2. The Research
Octane Number (RON) is also used to classify PBG fuel and measures the ability of the fuel to self-ignite. High RONs are
good for spark ignition (SI) engines 2. The Reid vapor pressure is also a critical fuel fingerprint for measuring the
behavior of fuel, particularly when the Sl engine is appropriately carbureted and fueled. The ease with which the spark
ignites the air/fuel mixture indicates the flammability limit of the fuel. Hydrogen fuel, a form of renewable fuel, is reputed to
possess the highest flammability limit.

Table 3. Physical and chemical properties of some transportation fuels [E8IZ4IZ5I761(77]

Property PBG PBD Methanol Ethanol DME Biogas Hydrogen Biodiesel E-i:sel
Chemical 11870 CnHL8n CH3OH C2HS50H CH3OCH3  CH4 H2 c15H31CO2cH3 2t
formula Cc20
Density 774-
(kg/m?) 720-780 820-870 800 790 667 - 70 850-885 782
Kinetic
viscosity at 40 0.7 2.0-3.5 0.75 1.5 0.18 - - 4.43 2-4.5
°C (cSt)
Cetane 13-17 45-55 5 8 55-60 - - 4565 72
number
Self-ignition
temperature 260? 2102 470 365 320 580 500 220 315
(°C)
Lower heating a
44 43 19.7 28.6 28.2 24 120 37 43.5

value (MJ/kg)

Lower heating

value (liquid) 33 36 16 21 19 - 8.5 33 -
(MIIL)
Higher
heating value 3.8 3.9 3.5 - 3.4 3.1 2.0 - -
(mixture)

(kJlkg)



F-T

Property PBG PBD Methanol Ethanol DME Biogas Hydrogen Biodiesel Diesel

Adiabatic
temperature 1995 - 1950 1965 2020 1954 2510 2000
(°C)
Boiling
temperature 25-210 180-360 65 78 -25 -162 -253 250-350 157.6
(°C)

Reid vapor
pressure at 38 55-100 <1.5 32 16 800
°C (kPa)

Stoichiometric

1452 142 132
AIF ratio 5 6.4 9.0 9.0 17 34.1 3 15

Research
octane 98 - 115 110 - 120 106
number

Enthalpy of
vaporization 3502 2702 1100 900 375 510 455
(kJ/kg)

Flammability

limit (% vol.) 1.3-8 0.6-8 7-36 4.3-19 3.4-19 - 4-75

Flash point

o -40 60-80 11 12 -41 - - 62 500
(°C)

Oxygen

content (wt.%) 50 35 34.8 - . 10.7

Carbon

content (wt.%) - - 52.2 - - 76.9 86.44

Hydrogen
- - - - 13 - - 12.4 13.56
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