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Crop rotation is an important determining factor of crop productivity. Sustainable agriculture requires correct rules of crop

rotation. Failure to comply with these rules can lead to deterioration of soil biochemical characteristics and land

degradation.
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1. Introduction

Crop rotation is a necessary practice for sustainable food production. In many countries, crop rotation rules are regulated

at the state level. This is especially important now, when Europe is moving toward the implementation of Green Deal

practices to mitigate anthropogenic influences on climate change. The main task of agricultural management is to

preserve the original composition and productivity of soils. The physical and chemical parameters of soils directly affect

the condition of plants . At the same time, noncompliance with recognized positive agricultural practices leads to the

deterioration of soil fertility and soil quality due to the imbalance of nutrients and the disappearance of beneficial

microflora in soils and the biodiversity that supports important processes in soils.

2. Crop Rotation Violation Impact on the Agricultural Productivity

Crop rotation violation leads to a significant change in the carbon content of soils. Currently, studies of the impact of

agricultural management and of changes in plant species on agricultural lands is focused on soil quality. Interesting

research in this area was made by Zuber et al. in 2018 —the scholars evaluate the effect of long-term crop rotation and

tillage on the quantity of carbon and nitrogen stored in the soil organic matter. Itwas conducted for the state of Illinois in

the United States on the basis of in situ measurements on the test sites. It shows that some crop rotation schemes, such

as corn-soybean-wheat, can increase the soil organic carbon (SOC) stocks in the soil, whereas crop rotation schemes

such as soybean-soybean-soybean reduce SOC and total nitrogen content. Another research project was done for the

Anhui province, China . The high accuracy of the estimation of organic carbon in the topsoil based on a combination of

vegetation variables with crop rotation types. It showed the importance of crop rotation information and the effectiveness

of its use to assess the change and state of organic carbon.

3. Land Degradation Monitoring with Use of Satellite Data

The main purpose of modern agricultural practices is to achieve high crop productivity with a neutral level of land

degradation. The implementation of these practices would allow farmers to use the full potential of agrarian lands without

harming the environment and thus to overcome hunger and to ensure food security in the future.

In practice, land productivity indicators can be assessed with remote sensing imagery. In this case, integrated approaches

are used to take into account the carbon content in the soil, trends in vegetation indices, and changes in land cover. All

these indicators are interrelated—land use changes lead to a significant change in the carbon content of soils. This

methodology is used to assess the sustainable development goals (SDGs) indicator 15.3.1, “Proportion of land that is

degraded over total land area” . In this case, the maps of changes in land cover are used as a separate sub-indicator

that reflects the positive, neutral, or negative human impact on the land surface and as a means to assess changes in

carbon content in the soil. The biophysical parameters of land productivity can be obtained from satellite images. Land

productivity indicators estimated by remote sensing vegetation indices (VIs) are generally accepted for mapping and

assessing land degradation and desertification . They are widely used for countries in Europe  as well as in Asia 

and Africa . Different combinations of vegetation indices, which are studied as time series, are used and reflect the
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dynamics of vegetation and its biophysical indicators. The most popular indicator is the normalized difference vegetation

index (NDVI), which is used for land productivity mapping for indicator 15.3.1 and for supporting the calculation of

indicator 2.4.1, “Proportion of agricultural area under productive and sustainable agriculture” in a 2020 study by Kussul et

al. . The most common collection of satellite NDVI for land productivity maps is the MODIS data collection (MOD13Q1-

coll6). However, today’s satellite data processing methods and available satellite missions provide information on land

productivity from higher spatial resolution NDVI.

Another vegetation index, the enhanced vegetation index (EVI), is more sensitive in areas with dense vegetation. Similar

to NDVI, it can be used to quantify vegetation greenness. In addition to VIs, biophysical variables could be extracted from

satellite data, including the leaf area index (LAI) and the fraction of absorbed photosynthetically active radiation (FAPAR).

LAI is extracted from satellite data using complex biophysical models and better conveys the biophysical characteristics of

the plant . This index describes the amount of biomass on the earth’s surface and its condition, and it makes it possible

to qualitatively assess the crop yield and deliver land productivity maps . Another biophysical variable, FAPAR, makes it

possible to assess photosynthesis in plants and the absorption of solar energy. This biophysical characteristic directly

indicates the primary productivity of photosynthesis. One more interesting vegetation index is the land surface water index

(LSWI), which is commonly used for drought monitoring and reflects the total amount of water in vegetation and its soil

background. The response of LSWI to rainfall indicates the usability of this index for water state monitoring for agricultural

crops, especially in the critical time of the crops’ development stages in the early part of the season .

4. Crop Classification in Agricultural Monitoring

Most developed countries provide crop mapping based on satellite data on a regular basis or are working on the

operationalization of crop mapping technologies. Accurate crop maps are in themselves a valuable product of data

processing, and the availability of such products for one area for different years provides great opportunities for the

qualitative analysis of land use practices. A good example of a large collection of historical crop maps is the United States’

Cropland Data Layer, which has been making crop maps publicly available annually since 1997 . The availability of

long-term crop classification maps gives the possibility to get a better understanding of agricultural patterns for different

territories and conduct very accurate forecasts. The research by Johnson D. et al.  shows that historical crop

classification maps can be a valuable source of information for the pre-season or in-season crop classification. So, the

pre-season crop classification map for the Corn Belt in the Unites States that was built with use of only previous

classification maps can achieve 70% accuracy. In European countries that use the Land Parcel Identification System 

as part of the Common Agriculture Policy, almost all crop information for agricultural parcels is provided by farmers; even

in these cases, there is still a need to deliver such maps to analyze and validate the collected information. For this aim in

Europe, there are systems that provide the automatic processing of satellite data and land cover and building of crop type

maps, such as Sen-2-agri and Sen-4-CAP . Thus, remote sensing data of the Copernicus program and machine

learning land cover and crop type classification models are already having a lot of application in European Union for

supporting CAP . In 2021, the first European continental scale crop classification map based on Sentinel-1 data was

published by the European Commission team . The next steps will be the operationalization of continental scale crop

classification technologies and the creation of crop maps for other years.

5. Sunflower Crop Rotation's Biophysical Impact on Agricultural Fields

The five-year monocropping model with the binary representation of sunflower planting confirms the negative effect of

frequent planting of sunflowers. It shows the strong relationship between the number of years of sunflower plantings in the

crop rotation and a decline in the vegetation indices. Additionally, it demonstrates that this effect is more significant for

small intervals between sunflower plantings. This analysis also showed that planting sunflowers once per seven years

according to the crop rotation rules in Ukraine is rational because of the high positive influence on the vegetation indices.

However, starting from the sunflower planting interval equal to three years, the negative effect from sunflower planting is

not observed. Thus, planting sunflowers once every four years would be infrequent enough to avoid negative

consequences and land degradation. Analysis of crop rotations of all major crops over three years shows that different

crop rotations with and without violations have different effects on sunflower productivity. All crop rotations with previously

planted sunflowers had the highest negative effect on the vegetation indices. The worst crop rotation with the highest

negative effect for most crop types and biophysical characteristics is crop rotation violations for sunflowers. In addition,

there is a tendency to use more sustainable crop rotation schemes for long-term crop rotation strategy and common

violations of rules and use of unsustainable crop rotations for the short-term strategies.
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