

Ocean Remote Sensing Techniques and Applications

Subjects: **Oceanography**

Contributor: Meisam Amani , Armin Moghimi , S. Mohammad Mirmazloumi , Babak Ranjgar , Arsalan Ghorbanian , Saeid Ojaghi , Hamid Ebrahimi , Amin Naboureh , Mohsen Eslami Nazari , Sahel Mahdavi , Sayyed Hamed Alizadeh Moghaddam , Reza Mohammadi Asiyabi , Seyed Ali Ahmadi , Soroosh Mehravar , Farzane Mohseni , Shuanggen Jin

Oceans cover over 70% of the Earth's surface and provide numerous services to humans and the environment. Therefore, it is crucial to monitor these valuable assets using advanced technologies. In this regard, Remote Sensing (RS) provides a great opportunity to study different oceanographic parameters using archived consistent multitemporal datasets in a cost-efficient approach. Various types of RS techniques have been developed and utilized for different oceanographic applications.

remote sensing

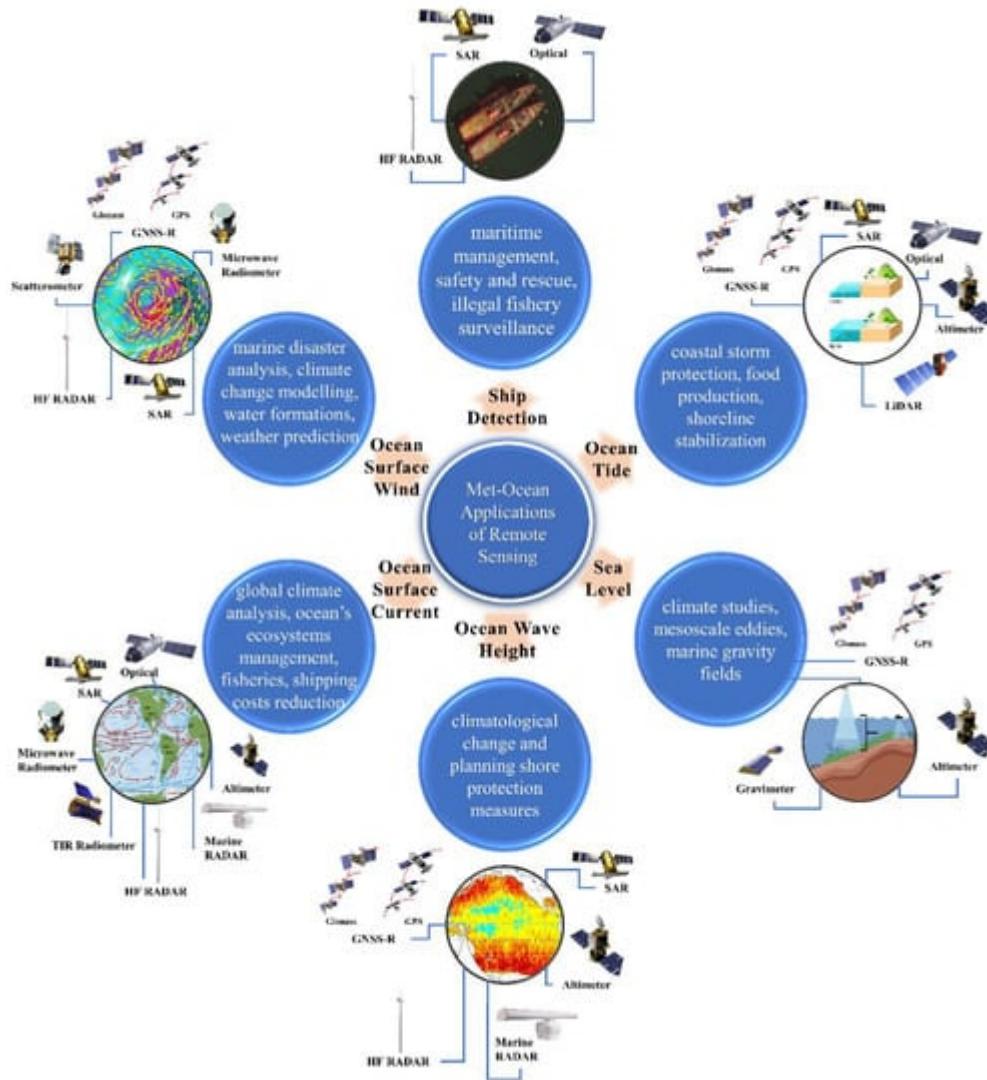
ocean

ocean wind

ocean current

1. Introduction

Oceans cover more than 70% of the Earth's surface and provide countless benefits. For example, the oceans produce over 50% of the world's oxygen and store carbon dioxide. Moreover, the oceans transport heat from the equator to the poles and regulate climate patterns. Additionally, oceans play a key role in transportation, food provision, and economic growth. Oceans are also important for recreational activities [1][2][3]. Considering the importance of ocean environments, it is important to protect them using advanced technologies. To this end, datasets collected by in situ, shipborne, airborne, and spaceborne systems are being utilized.


Although in situ measurements provide the most accurate datasets for ocean studies, they have several limitations. For example, they are point-based observations and cover small areas. Moreover, deployment and maintenance of in situ platforms (e.g., buoys) are expensive and labor-intensive [4]. Shipborne approaches also have their own disadvantages. For instance, they can only measure Ocean Surface Wind (OSW) along specific tracks, and the vastness and remoteness of ocean environments hinder surveillance of human activities because authorities cannot frequently provide effective vessel control [5]. On the other hand, ocean mapping and monitoring using airborne and spaceborne Remote Sensing (RS) systems are of significant interest due to the large coverage, a wide range of temporal and spatial resolutions, as well as low cost of the corresponding datasets [6][7][8]. The understanding of ocean environments, including marine animals, oceanic biogeochemical processes, and the relationship between oceans and climate changes, has considerably improved due to the availability of global, repetitive, and consistent archived satellite observations. It should be noted that although RS provides a great

opportunity for ocean studies, it does not obviate the necessity of in situ measurements, and they usually play a supporting role to each other in different oceanographic applications.

Different methods have been so far developed to derive oceanographic parameters from RS datasets. These methods can be generally divided into three groups of statistical, physical, and Machine Learning (ML) models. Statistical algorithms are mainly based on the correlation relationships between in situ measurements of oceanographic parameters and the information collected by RS systems. These models are usually easy to develop and provide fairly reasonable accuracies. However, they require in situ data, which are sometimes not available over remote ocean areas. These models also need to be optimized for different study areas. Physical models (e.g., Radiative Transfer (RT)) are based on the physical laws of the RS systems. Although these models usually provide better results than statistical models, they require many inputs that are usually not available. Recently, ML algorithms, either traditional (e.g., Random Forest (RF) and Support Vector Machine (SVM)) or more advanced models (e.g., Convolutional Neural Network (CNN)), have been frequently utilized for various oceanographic applications. Generally, like many other applications of RS, Deep Learning (DL) methods provide higher accuracies compared to statistical, physical, and traditional ML algorithms [9][10][11]. However, it should be noted that DL methods require a very large number of training data and are computationally expensive [12]. Consequently, it is sometimes more reasonable to utilize other, less-costly ML algorithms [13][14].

3. RS Applications in Ocean

As discussed in the Introduction, six oceanographic applications of RS are explained in Part 1. These applications, along with the RS systems which can be used to study them, are illustrated in **Figure 1**. More detailed discussions are also provided in the following six subsections.

Figure 1. Overview of the met-ocean applications of RS which are discussed.

3.1. Ocean Surface Wind (OSW)

OSW is an essential parameter for various applications, such as marine disaster monitoring, climate change modeling, water mass formations, and Numerical Weather Prediction (NWP) [15][16][17][18]. Considering the limitations of the traditional methods for OSW estimation (e.g., anemometers and buoys) [15][19], RS observations have emerged as cost-effective techniques [20]. Remotely sensed OSW information mainly relies on the relationship between the OSW and the sea surface roughness, which represents emissive and reflective properties of the ocean surface [18]. Five RS systems have been frequently applied to measure OSW: microwave radiometer, GNSS-R, SAR, scatterometer, and HF radar. The advantages and disadvantages of each system, summarized in **Table 1**, are discussed in more detail in the following subsections.

Table 1. Different RS systems for OSW estimation along with their advantages and disadvantages.

RS System (Passive/Active)	RS System (Type)	Advantage	Disadvantage
Passive	Microwave radiometer	Appropriate efficiency in high wind speeds, large-scale coverage	Low accuracy for OSW direction estimation in low wind speeds, coarse spatial resolution
	GNSS-R	Higher spatial and temporal resolution, less sensitivity atmospheric attenuation, low-cost, low weight, low power needs for receivers, unique sensing geometry	Inadequate number of satellites, need more investigation and validation
Active	SAR	High spatial resolution, applicable at both low and high wind speeds	Speckle noise issue, challenging preprocessing steps
	Scatterometer	Good efficiency in low wind speeds, global coverage	Coarse spatial resolution, saturated signal in high wind speeds, rain contamination
	HF radar	Reasonable accuracy at different wind speeds, large-scale coverage	Availability of OSW data only at specific coastal locations where the HF radar has been installed

References

1. Devi, G.K.; Ganasri, B.P.; Dwarakish, G.S. Applications of Remote Sensing in Satellite Oceanography: A Review. *Aquat. Procedia* **2015**, *4*, 579–584.

3.2. Ocean Surface Current (OSC) [\[2\]](#) [\[3\]](#) [\[4\]](#) [\[5\]](#) [\[6\]](#) [\[7\]](#) [\[8\]](#) [\[9\]](#) [\[10\]](#) [\[11\]](#) [\[12\]](#) [\[13\]](#) [\[14\]](#) [\[15\]](#) [\[16\]](#) [\[17\]](#) [\[18\]](#) [\[19\]](#) [\[20\]](#) [\[21\]](#) [\[22\]](#) [\[23\]](#) [\[24\]](#) [\[25\]](#) [\[26\]](#) [\[27\]](#) [\[28\]](#) [\[29\]](#) [\[30\]](#) [\[31\]](#) [\[32\]](#) [\[33\]](#) [\[34\]](#) [\[35\]](#) [\[36\]](#) [\[37\]](#) [\[38\]](#) [\[39\]](#) [\[40\]](#) [\[41\]](#) [\[42\]](#) [\[43\]](#) [\[44\]](#) [\[45\]](#) [\[46\]](#) [\[47\]](#) [\[48\]](#) [\[49\]](#) [\[50\]](#) [\[51\]](#) [\[52\]](#) [\[53\]](#) [\[54\]](#) [\[55\]](#) [\[56\]](#) [\[57\]](#) [\[58\]](#) [\[59\]](#) [\[60\]](#) [\[61\]](#) [\[62\]](#) [\[63\]](#) [\[64\]](#) [\[65\]](#) [\[66\]](#) [\[67\]](#) [\[68\]](#) [\[69\]](#) [\[70\]](#) [\[71\]](#) [\[72\]](#) [\[73\]](#) [\[74\]](#) [\[75\]](#) [\[76\]](#) [\[77\]](#) [\[78\]](#) [\[79\]](#) [\[80\]](#) [\[81\]](#) [\[82\]](#) [\[83\]](#) [\[84\]](#) [\[85\]](#) [\[86\]](#) [\[87\]](#) [\[88\]](#) [\[89\]](#) [\[90\]](#) [\[91\]](#) [\[92\]](#) [\[93\]](#) [\[94\]](#) [\[95\]](#) [\[96\]](#) [\[97\]](#) [\[98\]](#) [\[99\]](#) [\[100\]](#) [\[101\]](#) [\[102\]](#) [\[103\]](#) [\[104\]](#) [\[105\]](#) [\[106\]](#) [\[107\]](#) [\[108\]](#) [\[109\]](#) [\[110\]](#) [\[111\]](#) [\[112\]](#) [\[113\]](#) [\[114\]](#) [\[115\]](#) [\[116\]](#) [\[117\]](#) [\[118\]](#) [\[119\]](#) [\[120\]](#) [\[121\]](#) [\[122\]](#) [\[123\]](#) [\[124\]](#) [\[125\]](#) [\[126\]](#) [\[127\]](#) [\[128\]](#) [\[129\]](#) [\[130\]](#) [\[131\]](#) [\[132\]](#) [\[133\]](#) [\[134\]](#) [\[135\]](#) [\[136\]](#) [\[137\]](#) [\[138\]](#) [\[139\]](#) [\[140\]](#) [\[141\]](#) [\[142\]](#) [\[143\]](#) [\[144\]](#) [\[145\]](#) [\[146\]](#) [\[147\]](#) [\[148\]](#) [\[149\]](#) [\[150\]](#) [\[151\]](#) [\[152\]](#) [\[153\]](#) [\[154\]](#) [\[155\]](#) [\[156\]](#) [\[157\]](#) [\[158\]](#) [\[159\]](#) [\[160\]](#) [\[161\]](#) [\[162\]](#) [\[163\]](#) [\[164\]](#) [\[165\]](#) [\[166\]](#) [\[167\]](#) [\[168\]](#) [\[169\]](#) [\[170\]](#) [\[171\]](#) [\[172\]](#) [\[173\]](#) [\[174\]](#) [\[175\]](#) [\[176\]](#) [\[177\]](#) [\[178\]](#) [\[179\]](#) [\[180\]](#) [\[181\]](#) [\[182\]](#) [\[183\]](#) [\[184\]](#) [\[185\]](#) [\[186\]](#) [\[187\]](#) [\[188\]](#) [\[189\]](#) [\[190\]](#) [\[191\]](#) [\[192\]](#) [\[193\]](#) [\[194\]](#) [\[195\]](#) [\[196\]](#) [\[197\]](#) [\[198\]](#) [\[199\]](#) [\[200\]](#) [\[201\]](#) [\[202\]](#) [\[203\]](#) [\[204\]](#) [\[205\]](#) [\[206\]](#) [\[207\]](#) [\[208\]](#) [\[209\]](#) [\[210\]](#) [\[211\]](#) [\[212\]](#) [\[213\]](#) [\[214\]](#) [\[215\]](#) [\[216\]](#) [\[217\]](#) [\[218\]](#) [\[219\]](#) [\[220\]](#) [\[221\]](#) [\[222\]](#) [\[223\]](#) [\[224\]](#) [\[225\]](#) [\[226\]](#) [\[227\]](#) [\[228\]](#) [\[229\]](#) [\[230\]](#) [\[231\]](#) [\[232\]](#) [\[233\]](#) [\[234\]](#) [\[235\]](#) [\[236\]](#) [\[237\]](#) [\[238\]](#) [\[239\]](#) [\[240\]](#) [\[241\]](#) [\[242\]](#) [\[243\]](#) [\[244\]](#) [\[245\]](#) [\[246\]](#) [\[247\]](#) [\[248\]](#) [\[249\]](#) [\[250\]](#) [\[251\]](#) [\[252\]](#) [\[253\]](#) [\[254\]](#) [\[255\]](#) [\[256\]](#) [\[257\]](#) [\[258\]](#) [\[259\]](#) [\[260\]](#) [\[261\]](#) [\[262\]](#) [\[263\]](#) [\[264\]](#) [\[265\]](#) [\[266\]](#) [\[267\]](#) [\[268\]](#) [\[269\]](#) [\[270\]](#) [\[271\]](#) [\[272\]](#) [\[273\]](#) [\[274\]](#) [\[275\]](#) [\[276\]](#) [\[277\]](#) [\[278\]](#) [\[279\]](#) [\[280\]](#) [\[281\]](#) [\[282\]](#) [\[283\]](#) [\[284\]](#) [\[285\]](#) [\[286\]](#) [\[287\]](#) [\[288\]](#) [\[289\]](#) [\[290\]](#) [\[291\]](#) [\[292\]](#) [\[293\]](#) [\[294\]](#) [\[295\]](#) [\[296\]](#) [\[297\]](#) [\[298\]](#) [\[299\]](#) [\[300\]](#) [\[301\]](#) [\[302\]](#) [\[303\]](#) [\[304\]](#) [\[305\]](#) [\[306\]](#) [\[307\]](#) [\[308\]](#) [\[309\]](#) [\[310\]](#) [\[311\]](#) [\[312\]](#) [\[313\]](#) [\[314\]](#) [\[315\]](#) [\[316\]](#) [\[317\]](#) [\[318\]](#) [\[319\]](#) [\[320\]](#) [\[321\]](#) [\[322\]](#) [\[323\]](#) [\[324\]](#) [\[325\]](#) [\[326\]](#) [\[327\]](#) [\[328\]](#) [\[329\]](#) [\[330\]](#) [\[331\]](#) [\[332\]](#) [\[333\]](#) [\[334\]](#) [\[335\]](#) [\[336\]](#) [\[337\]](#) [\[338\]](#) [\[339\]](#) [\[340\]](#) [\[341\]](#) [\[342\]](#) [\[343\]](#) [\[344\]](#) [\[345\]](#) [\[346\]](#) [\[347\]](#) [\[348\]](#) [\[349\]](#) [\[350\]](#) [\[351\]](#) [\[352\]](#) [\[353\]](#) [\[354\]](#) [\[355\]](#) [\[356\]](#) [\[357\]](#) [\[358\]](#) [\[359\]](#) [\[360\]](#) [\[361\]](#) [\[362\]](#) [\[363\]](#) [\[364\]](#) [\[365\]](#) [\[366\]](#) [\[367\]](#) [\[368\]](#) [\[369\]](#) [\[370\]](#) [\[371\]](#) [\[372\]](#) [\[373\]](#) [\[374\]](#) [\[375\]](#) [\[376\]](#) [\[377\]](#) [\[378\]](#) [\[379\]](#) [\[380\]](#) [\[381\]](#) [\[382\]](#) [\[383\]](#) [\[384\]](#) [\[385\]](#) [\[386\]](#) [\[387\]](#) [\[388\]](#) [\[389\]](#) [\[390\]](#) [\[391\]](#) [\[392\]](#) [\[393\]](#) [\[394\]](#) [\[395\]](#) [\[396\]](#) [\[397\]](#) [\[398\]](#) [\[399\]](#) [\[400\]](#) [\[401\]](#) [\[402\]](#) [\[403\]](#) [\[404\]](#) [\[405\]](#) [\[406\]](#) [\[407\]](#) [\[408\]](#) [\[409\]](#) [\[410\]](#) [\[411\]](#) [\[412\]](#) [\[413\]](#) [\[414\]](#) [\[415\]](#) [\[416\]](#) [\[417\]](#) [\[418\]](#) [\[419\]](#) [\[420\]](#) [\[421\]](#) [\[422\]](#) [\[423\]](#) [\[424\]](#) [\[425\]](#) [\[426\]](#) [\[427\]](#) [\[428\]](#) [\[429\]](#) [\[430\]](#) [\[431\]](#) [\[432\]](#) [\[433\]](#) [\[434\]](#) [\[435\]](#) [\[436\]](#) [\[437\]](#) [\[438\]](#) [\[439\]](#) [\[440\]](#) [\[441\]](#) [\[442\]](#) [\[443\]](#) [\[444\]](#) [\[445\]](#) [\[446\]](#) [\[447\]](#) [\[448\]](#) [\[449\]](#) [\[450\]](#) [\[451\]](#) [\[452\]](#) [\[453\]](#) [\[454\]](#) [\[455\]](#) [\[456\]](#) [\[457\]](#) [\[458\]](#) [\[459\]](#) [\[460\]](#) [\[461\]](#) [\[462\]](#) [\[463\]](#) [\[464\]](#) [\[465\]](#) [\[466\]](#) [\[467\]](#) [\[468\]](#) [\[469\]](#) [\[470\]](#) [\[471\]](#) [\[472\]](#) [\[473\]](#) [\[474\]](#) [\[475\]](#) [\[476\]](#) [\[477\]](#) [\[478\]](#) [\[479\]](#) [\[480\]](#) [\[481\]](#) [\[482\]](#) [\[483\]](#) [\[484\]](#) [\[485\]](#) [\[486\]](#) [\[487\]](#) [\[488\]](#) [\[489\]](#) [\[490\]](#) [\[491\]](#) [\[492\]](#) [\[493\]](#) [\[494\]](#) [\[495\]](#) [\[496\]](#) [\[497\]](#) [\[498\]](#) [\[499\]](#) [\[500\]](#) [\[501\]](#) [\[502\]](#) [\[503\]](#) [\[504\]](#) [\[505\]](#) [\[506\]](#) [\[507\]](#) [\[508\]](#) [\[509\]](#) [\[510\]](#) [\[511\]](#) [\[512\]](#) [\[513\]](#) [\[514\]](#) [\[515\]](#) [\[516\]](#) [\[517\]](#) [\[518\]](#) [\[519\]](#) [\[520\]](#) [\[521\]](#) [\[522\]](#) [\[523\]](#) [\[524\]](#) [\[525\]](#) [\[526\]](#) [\[527\]](#) [\[528\]](#) [\[529\]](#) [\[530\]](#) [\[531\]](#) [\[532\]](#) [\[533\]](#) [\[534\]](#) [\[535\]](#) [\[536\]](#) [\[537\]](#) [\[538\]](#) [\[539\]](#) [\[540\]](#) [\[541\]](#) [\[542\]](#) [\[543\]](#) [\[544\]](#) [\[545\]](#) [\[546\]](#) [\[547\]](#) [\[548\]](#) [\[549\]](#) [\[550\]](#) [\[551\]](#) [\[552\]](#) [\[553\]](#) [\[554\]](#) [\[555\]](#) [\[556\]](#) [\[557\]](#) [\[558\]](#) [\[559\]](#) [\[560\]](#) [\[561\]](#) [\[562\]](#) [\[563\]](#) [\[564\]](#) [\[565\]](#) [\[566\]](#) [\[567\]](#) [\[568\]](#) [\[569\]](#) [\[570\]](#) [\[571\]](#) [\[572\]](#) [\[573\]](#) [\[574\]](#) [\[575\]](#) [\[576\]](#) [\[577\]](#) [\[578\]](#) [\[579\]](#) [\[580\]](#) [\[581\]](#) [\[582\]](#) [\[583\]](#) [\[584\]](#) [\[585\]](#) [\[586\]](#) [\[587\]](#) [\[588\]](#) [\[589\]](#) [\[590\]](#) [\[591\]](#) [\[592\]](#) [\[593\]](#) [\[594\]](#) [\[595\]](#) [\[596\]](#) [\[597\]](#) [\[598\]](#) [\[599\]](#) [\[600\]](#) [\[601\]](#) [\[602\]](#) [\[603\]](#) [\[604\]](#) [\[605\]](#) [\[606\]](#) [\[607\]](#) [\[608\]](#) [\[609\]](#) [\[610\]](#) [\[611\]](#) [\[612\]](#) [\[613\]](#) [\[614\]](#) [\[615\]](#) [\[616\]](#) [\[617\]](#) [\[618\]](#) [\[619\]](#) [\[620\]](#) [\[621\]](#) [\[622\]](#) [\[623\]](#) [\[624\]](#) [\[625\]](#) [\[626\]](#) [\[627\]](#) [\[628\]](#) [\[629\]](#) [\[630\]](#) [\[631\]](#) [\[632\]](#) [\[633\]](#) [\[634\]](#) [\[635\]](#) [\[636\]](#) [\[637\]](#) [\[638\]](#) [\[639\]](#) [\[640\]](#) [\[641\]](#) [\[642\]](#) [\[643\]](#) [\[644\]](#) [\[645\]](#) [\[646\]](#) [\[647\]](#) [\[648\]](#) [\[649\]](#) [\[650\]](#) [\[651\]](#) [\[652\]](#) [\[653\]](#) [\[654\]](#) [\[655\]](#) [\[656\]](#) [\[657\]](#) [\[658\]](#) [\[659\]](#) [\[660\]](#) [\[661\]](#) [\[662\]](#) [\[663\]](#) [\[664\]](#) [\[665\]](#) [\[666\]](#) [\[667\]](#) [\[668\]](#) [\[669\]](#) [\[670\]](#) [\[671\]](#) [\[672\]](#) [\[673\]](#) [\[674\]](#) [\[675\]](#) [\[676\]](#) [\[677\]](#) [\[678\]](#) [\[679\]](#) [\[680\]](#) [\[681\]](#) [\[682\]](#) [\[683\]](#) [\[684\]](#) [\[685\]](#) [\[686\]](#) [\[687\]](#) [\[688\]](#) [\[689\]](#) [\[690\]](#) [\[691\]](#) [\[692\]](#) [\[693\]](#) [\[694\]](#) [\[695\]](#) [\[696\]](#) [\[697\]](#) [\[698\]](#) [\[699\]](#) [\[700\]](#) [\[701\]](#) [\[702\]](#) [\[703\]](#) [\[704\]](#) [\[705\]](#) [\[706\]](#) [\[707\]](#) [\[708\]](#) [\[709\]](#) [\[710\]](#) [\[711\]](#) [\[712\]](#) [\[713\]](#) [\[714\]](#) [\[715\]](#) [\[716\]](#) [\[717\]](#) [\[718\]](#) [\[719\]](#) [\[720\]](#) [\[721\]](#) [\[722\]](#) [\[723\]](#) [\[724\]](#) [\[725\]](#) [\[726\]](#) [\[727\]](#) [\[728\]](#) [\[729\]](#) [\[730\]](#) [\[731\]](#) [\[732\]](#) [\[733\]](#) [\[734\]](#) [\[735\]](#) [\[736\]](#) [\[737\]](#) [\[738\]](#) [\[739\]](#) [\[740\]](#) [\[741\]](#) [\[742\]](#) [\[743\]](#) [\[744\]](#) [\[745\]](#) [\[746\]](#) [\[747\]](#) [\[748\]](#) [\[749\]](#) [\[750\]](#) [\[751\]](#) [\[752\]](#) [\[753\]](#) [\[754\]](#) [\[755\]](#) [\[756\]](#) [\[757\]](#) [\[758\]](#) [\[759\]](#) [\[760\]](#) [\[761\]](#) [\[762\]](#) [\[763\]](#) [\[764\]](#) [\[765\]](#) [\[766\]](#) [\[767\]](#) [\[768\]](#) [\[769\]](#) [\[770\]](#) [\[771\]](#) [\[772\]](#) [\[773\]](#) [\[774\]](#) [\[775\]](#) [\[776\]](#) [\[777\]](#) [\[778\]](#) [\[779\]](#) [\[780\]](#) [\[781\]](#) [\[782\]](#) [\[783\]](#) [\[784\]](#) [\[785\]](#) [\[786\]](#) [\[787\]](#) [\[788\]](#) [\[789\]](#) [\[790\]](#) [\[791\]](#) [\[792\]](#) [\[793\]](#) [\[794\]](#) [\[795\]](#) [\[796\]](#) [\[797\]](#) [\[798\]](#) [\[799\]](#) [\[800\]](#) [\[801\]](#) [\[802\]](#) [\[803\]](#) [\[804\]](#) [\[805\]](#) [\[806\]](#) [\[807\]](#) [\[808\]](#) [\[809\]](#) [\[810\]](#) [\[811\]](#) [\[812\]](#) [\[813\]](#) [\[814\]](#) [\[815\]](#) [\[816\]](#) [\[817\]](#) [\[818\]](#) [\[819\]](#) [\[820\]](#) [\[821\]](#) [\[822\]](#) [\[823\]](#) [\[824\]](#) [\[825\]](#) [\[826\]](#) [\[827\]](#) [\[828\]](#) [\[829\]](#) [\[830\]](#) [\[831\]](#) [\[832\]](#) [\[833\]](#) [\[834\]](#) [\[835\]](#) [\[836\]](#) [\[837\]](#) [\[838\]](#) [\[839\]](#) [\[840\]](#) [\[841\]](#) [\[842\]](#) [\[843\]](#) [\[844\]](#) [\[845\]](#) [\[846\]](#) [\[847\]](#) [\[848\]](#) [\[849\]](#) [\[850\]](#) [\[851\]](#) [\[852\]](#) [\[853\]](#) [\[854\]](#) [\[855\]](#) [\[856\]](#) [\[857\]](#) [\[858\]](#) [\[859\]](#) [\[860\]](#) [\[861\]](#) [\[862\]](#) [\[863\]](#) [\[864\]](#) [\[865\]](#) [\[866\]](#) [\[867\]](#) [\[868\]](#) [\[869\]](#) [\[870\]](#) [\[871\]](#) [\[872\]](#) [\[873\]](#) [\[874\]](#) [\[875\]](#) [\[876\]](#) [\[877\]](#) [\[878\]](#) [\[879\]](#) [\[880\]](#) [\[881\]](#) [\[882\]](#) [\[883\]](#) [\[884\]](#) [\[885\]](#) [\[886\]](#) [\[887\]](#) [\[888\]](#) [\[889\]](#) [\[890\]](#) [\[891\]](#) [\[892\]](#) [\[893\]](#) [\[894\]](#) [\[895\]](#) [\[896\]](#) [\[897\]](#) [\[898\]](#) [\[899\]](#) [\[900\]](#) [\[901\]](#) [\[902\]](#) [\[903\]](#) [\[904\]](#) [\[905\]](#) [\[906\]](#) [\[907\]](#) <a href

to Wahab, S.; Al-Subaihi, M.; Balloch, T.; Beland, S. A probability-based daytime algorithm for transient ice detection using GOES-16 imagery. *IEEE Trans. Sel. Top. Appl. Earth Obs. Remote Sens.* 2020, 14, 1363–1373.

9. Kruk, R.; Fuller, M.C.; Komarov, A.S.; Isleifson, D.; Jeffrey, I. Proof of concept for sea ice stage of development classification using deep learning. *Remote Sens.* 2020, 12, 2486.
10. Chi, J.; Kim, H.-C. Prediction of arctic sea ice concentration using a fully data driven deep neural network. *Remote Sens.* 2017, 9, 1305.
11. Gao, Y.; Gao, F.; Dong, J.; Wang, S. Transferred deep learning for sea ice change detection from synthetic-aperture radar images. *IEEE Geosci. Remote Sens. Lett.* 2019, 16, 1655–1659.
12. Marmanis, D.; Datcu, M.; Esch, T.; Stilla, U. Deep learning earth observation classification using ImageNet pretrained networks. *IEEE Geosci. Remote Sens. Lett.* 2015, 13, 105–109.
13. Liu, H.; Guo, H.; Zhang, L. SVM-based sea ice classification using textural features and concentration from RADARSAT-2 dual-pol ScanSAR data. *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.* 2014, 8, 1601–1613.

Figure 1. The global ocean currents, including warm currents (red line), cold currents (blue line), and neutral current (black line) adopted from https://commons.wikimedia.org/wiki/File:Corrientes_oceanicas.png (accessed on 8 October 2022).

14. Su, H.; Wang, Y.; Xiao, J.; Yan, X.; H. Classification of MODIS images combining surface temperature and texture features using the Support Vector Machine method for estimation of the extent of sea ice in the frozen Bohai Bay, China. *Int. J. Remote Sens.* 2015, 36, 2734–2750.

Ocean currents can also be categorized into two groups according to their depth: surface and deep (subsurface) 15. Chelton, D.B.; Schlax, M.G.; Freilich, M.H.; Milliff, R.F. Satellite measurements reveal persistent [21][27][31]. The surface currents are horizontal water streams that occur on local to global scales, and their effects small-scale features in ocean winds. *Science* 2004, 303, 978–983.

16. are primarily restricted to the top 400 m of ocean water [21][32]. Along the coasts and offshore regions, there are local surface currents, which are typically small and short-lived (e.g., hourly/seasonal), generated by tides, waves, 17. Isaksen, L.; Stoffelen, A. ERS scatterometer wind data impact on ECMWF's tropical cyclone forecasts. *IEEE Trans. Geosci. Remote Sens.* 2000, 38, 1885–1892.

18. 18. Rodriguez, E.; Bouassa, M.; Chelton, D.; Farrar, J.T.; Long, D.; Perkovic-Martin, D.; Samelson, R. The winds and currents mission concept. *Front. Mar. Sci.* 2019, 6, 438.

19. 19. Villas Bôas, A.B.; Ardhuin, F.; Ayet, A.; Bourassa, M.A.; Brandt, P.; Chapron, B.; Cornuelle, B.D.; Farrar, J.T.; Fewings, M.R.; Fox-Kemper, B. Integrated observations of global surface winds, deflected by the Coriolis force and the restriction of flow by continental deflections [21][23][32]. These currents travel over long distances in the same direction as the wind and at a speed of approximately 3 to 4% of winds' speed [21][32]. However, the Coriolis force deflects these currents from the equator to the right direction in the Northern Hemisphere and the left in the Southern Hemisphere, which creates the clockwise and counterclockwise circular patterns or gyres, respectively [21][23][24][32][33].

20. 20. In contrast, the deep ocean currents are vertical streams under the influence of the thermohaline circulation, generated by density differences and dependent on temperature and salinity [21][34]. Deep ocean currents are fueled by SAR remote sensing and are in conjunctions with buoys and HF radar data [35].

21. 21. Figa, J.; He, Y.; Hersbach, H. Remotely sensed winds and wind stresses for marine forecasting and using offshore, shipborne, and spaceborne platforms. **Table 2** also summarizes these systems along with their 22. 22. ocean modeling. *Proc. Ocean.* 2010, 9.

23. 23. More details about the applications of each system are also provided in the following subsections.

24. 24. Depending on the scale of the ocean currents, they are measured by different methods. **Figure 2** illustrates various 25. 25. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

26. 26. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

27. 27. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

28. 28. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

29. 29. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

30. 30. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

31. 31. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

32. 32. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

33. 33. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

34. 34. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

35. 35. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

36. 36. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

37. 37. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

38. 38. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

39. 39. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

40. 40. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

41. 41. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

42. 42. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

43. 43. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

44. 44. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

45. 45. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

46. 46. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

47. 47. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

48. 48. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

49. 49. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

50. 50. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

51. 51. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

52. 52. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

53. 53. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

54. 54. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

55. 55. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

56. 56. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

57. 57. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

58. 58. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

59. 59. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

60. 60. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

61. 61. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

62. 62. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

63. 63. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

64. 64. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

65. 65. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

66. 66. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

67. 67. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

68. 68. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

69. 69. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

70. 70. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

71. 71. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

72. 72. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

73. 73. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

74. 74. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

75. 75. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

76. 76. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

77. 77. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

78. 78. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

79. 79. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

80. 80. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

81. 81. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

82. 82. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

83. 83. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

84. 84. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

85. 85. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

86. 86. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

87. 87. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

88. 88. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

89. 89. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

90. 90. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

91. 91. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

92. 92. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

93. 93. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

94. 94. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

95. 95. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

96. 96. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

97. 97. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

98. 98. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

99. 99. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

100. 100. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

101. 101. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

102. 102. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

103. 103. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

104. 104. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

105. 105. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

106. 106. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

107. 107. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

108. 108. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

109. 109. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

110. 110. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

111. 111. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

112. 112. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

113. 113. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

114. 114. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

115. 115. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

116. 116. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

117. 117. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

118. 118. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

119. 119. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

120. 120. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

121. 121. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

122. 122. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

123. 123. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

124. 124. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

125. 125. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

126. 126. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

127. 127. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

128. 128. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

129. 129. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

130. 130. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

131. 131. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

132. 132. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

133. 133. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

134. 134. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

135. 135. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

136. 136. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

137. 137. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

138. 138. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

139. 139. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

140. 140. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

141. 141. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

142. 142. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

143. 143. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

144. 144. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

145. 145. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

146. 146. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

147. 147. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

148. 148. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

149. 149. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

150. 150. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

151. 151. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

152. 152. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

153. 153. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

154. 154. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

155. 155. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

156. 156. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

157. 157. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

158. 158. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

159. 159. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

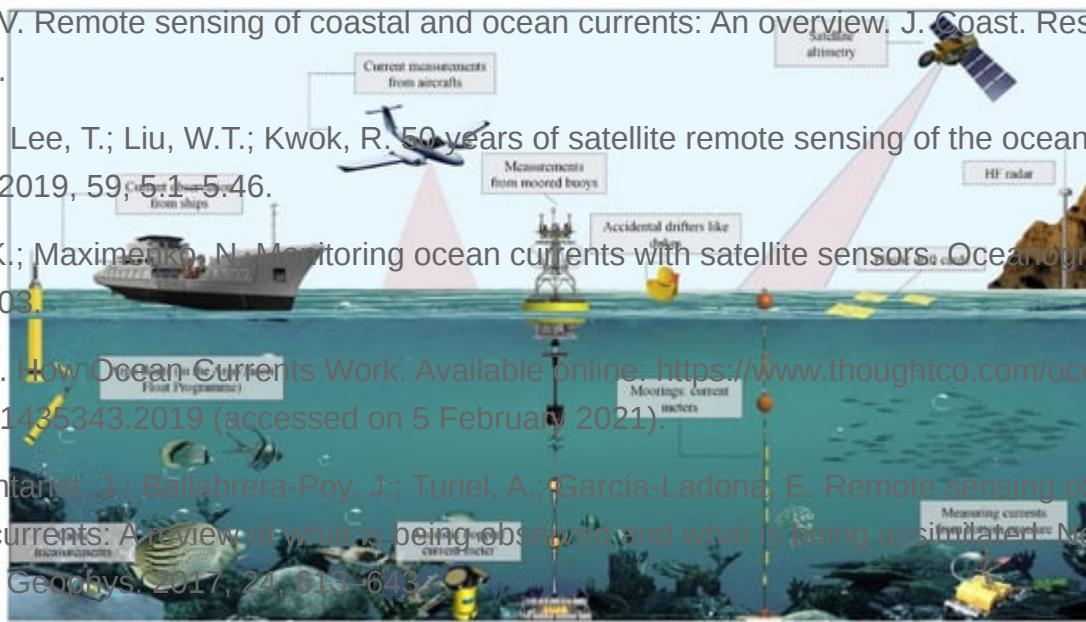
160. 160. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

161. 161. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

162. 162. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

163. 163. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

164. 164. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC


165. 165. in situ and RS methods for ocean current estimation. It should be noted that the focus of this Section is on the OSC

21. Klemas, V. Remote sensing of coastal and ocean currents: An overview. *J. Coast. Res.* 2012, 28, 576–586.

22. Fu, L.-L.; Lee, T.; Liu, W.T.; Kwok, R. 50 years of satellite remote sensing of the ocean. *Meteorol. Monogr.* 2019, 59, 5.1–5.46.

23. Dohan, K.; Maximenko, N. Monitoring ocean currents with satellite sensors. *Oceanography* 2010, 23, 94–103.

24. Briney, A. How Ocean Currents Work. Available online: <https://www.thoughtco.com/ocean-currents-1435343>. 2019 (accessed on 5 February 2021).

25. Isern-Fontanet, J.; Ballabrera-Poy, J.; Turiel, A.; García-Ladona, E. Remote sensing of ocean surface currents: A review of what is being observed and what is being assimilated. *Nonlinear Process. Geophys.* 2017, 24, 613–643.

26. Gille, S.T.; Metzger, E.J.; Tokmakian, R. Seafloor Topography and Ocean Circulation; Naval Research Lab Stennis Figure 2. Different methods for ocean current estimation. Stennis Space Center, MS, USA, 2004.

Table 2. Different RS systems for OSC estimation along with their advantages and limitations.

27. Dagestad, K.-F.; Röhrs, J. Prediction of ocean surface trajectories using satellite derived vs.

RS System (Passive/Active)	RS System (Type)	Advantage	Disadvantage
2	Optical	Provides high spatial resolution images for retrieving and characterizing spatiotemporal OSC	Calibrating issues due to defining several input parameters, limited by cloud cover, requires a reliable operational procedure for feature tracking, not suitable for nighttime
3	Passive	TIR radiometers	Limited by cloud cover, edge-of-scan distortions, hard for features to evolve due to degradation of their surface signature
3	Microwave radiometers	Can measure under clouds and in all weather conditions except for rain, OSC estimation at a global scale	Coarse resolution, limited to regions with sun-glitter, rain, or proximity to land
3	Active	SAR	Difficult data interpretation, speckle noise, different ice types might have similar scattering behavior, similarity of wind roughened water and ice
3	Altimeter	Almost daily global coverage, accurate topography for SI	Error due to the roughened sea surface, no physical

RS System (Passive/Active)	RS System (Type)	Advantage	Disadvantage
		thickness measurement, ability to map small leads	characteristics
	HF radar	Suitable for global-scale studies	Limited data availability, not frequent observations
	Marine radar	Not limited by cloud cover and daytime, long-time data archive	Unable to provide images, signal loss in propagation into dense ice, unable to detect SI presence constantly

perspective. Fi landslides, tsunamis, and storm surges) [36] and internal waves (e.g., subsurface waves at the boundary between two water layers) [37] can also generate ocean waves. OWH information is a critical parameter for coastal construction, ship navigation, and human activities in the oceans [38].

41. James, S.C.; Zhang, Y.; O'Donncha, F. A machine learning framework to forecast wave conditions. *Coast. Eng.* **2018**, *137*, 1–10. The datasets collected by different RS systems, such as GNSS-R, SAR, altimeter, and marine radar, have been utilized for OWH estimation. In this regard, various models have been applied to retrieve OWH from these datasets [29]. For example, due to the complexity of physical models (e.g., RRT models), empirical and semiempirical models have also been developed to estimate OWH [40]. The simplicity of empirical and semiempirical models has also led to the development of ML algorithms [41]. In this regard, DL algorithms, as the most advanced ML models, have received more attention due to their promising performance. For example, Shao et al. [42] proposed a hybrid statistical and a DL model in South China to predict several ocean surface variables, including OWH. In Liu et al. [43], a short-term memory deep network was also proposed to consider the time domain data in OWH estimation. 44. Seiz, G.; Foppa, N. National climate observing system of switzerland (GCOS Switzerland). *Adv. Sci. Res.* **2011**, *6*, 95–102. Table 3 summarizes the advantages and disadvantages of each of these RS systems. In the following subsections, the studies that have been conducted to measure OWH based on various RS systems are discussed in more detail.

45. Shum, C.; Ries, J.; Tapley, B. The accuracy and applications of satellite altimetry. *Geophys. J. Int.* **1995**, *121*, 321–336.

Table 3. Different RS systems for OWH estimation along with their advantages and disadvantages.

46. Wang, G.; Su, J.; Chu, P.C. Mesoscale eddies in the South China Sea observed with altimeter

RS System (Passive/Active)	RS System (Type)	Advantage	Disadvantage
Passive	GNSS-R	High temporal and spatial resolution, all-weather capability, low cost	High dependency on the angle of incidence, relatively low accuracy
Active	SAR	High spatial resolution, image-based measurement, significantly less affected by the atmosphere, all-day and weather capability	Small swath width
	Altimeter	Large swath width and global coverage, data availability of four decades, nadir-looking geometry, range-based estimation, relatively insensitive to cloud droplet size and rainfall rate, better	Low spatial and temporal resolutions, spot-based measurements, more affected by the atmosphere, more

RS System (Passive/Active)	RS System (Type)	Advantage	Disadvantage
		spatial resolution in the along-flight direction	sensitive to wind and wave direction
	HF radar	Reasonable accuracy at different wind speeds, large scale coverage	Availability of OSW data only at specific coastal locations where the HF radar has been installed

[46][47]	[44]	Marine radar	High spatial and temporal resolutions, cost-effective, better SNR ratio, not affected by atmospheric conditions	Only for local scales, operates at grazing incidence, better to be integrated with buoys and shipborne measurements
----------	------	--------------	---	---

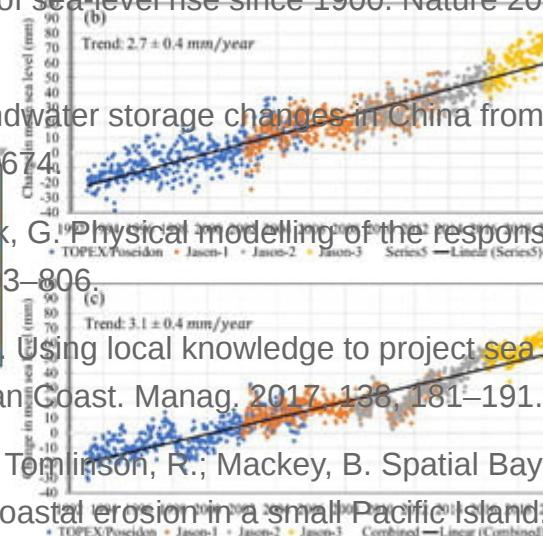
instance, the Intergovernmental Panel for Climate Change (IPCC) reported a Global Mean Sea Level (GMSL) rise of 3.6 mm/year between 2006 and 2015 [48][49]. However, the relative rate of SL change is not globally identical because it depends on different spatial and temporal parameters (see Figure 3).

54. Frederikse, T.; Landerer, F.; Caron, L.; Adhikari, S.; Parkes, D.; Humphrey, V.W.; Dangendorf, S.; Hogarth, P.; Zanna, L.; Cheng, L. The causes of sea-level rise since 1900. *Nature* 2020, 584, 393–397.

55. Feng, W.; Shum, C.; Zhong, M.; Pan, Y. Groundwater storage changes in China from satellite gravity: An overview. *Remote Sens.* 2018, 10, 674.

56. Tuck, M.E.; Kench, P.S.; Ford, M.R.; Masselink, G. Physical modelling of the response of reef islands to sea-level rise. *Geology* 2019, 47, 803–806.

57. Reineman, D.C.; Thomas, L.N.; Caldwell, M.R. Using local knowledge to project sea level rise impacts on wave resources in California. *Ocean Coast. Manag.* 2017, 138, 181–191.


58. Sahin, O.; Stewart, R.A.; Faivre, G.; Ware, D.; Tomlinson, R.; Mackey, B. Spatial Bayesian Network for predicting sea level rise induced coastal erosion in a small Pacific Island. *J. Environ. Manag.* 2019, 238, 341–351.

59. Meyer, R.; Engesaard, P.; Sonnenborg, T.O. Origin and dynamics of saltwater intrusion in a regional aquifer: Combining 3-D saltwater modeling with geophysical and geochemical data. *Water Resour. Res.* 2019, 55, 1792–1813.

60. Varela, M.R.; Patricio, A.R.; Anderson, K.; Broderick, A.C.; DeBell, L.; Hawkes, A.; Tilley, D.; Snape, R.T.; Westoby, M.J.; Godley, B.J. Assessing climate change associated sea level rise impacts on sea turtle nesting beaches using drones, photogrammetry and a novel GPS system and do not perfectly matches the SL change [52]. However, with the advancement of RS technology, satellites provide valuable datasets to study SL at different local to global scales. In addition to studies that only focused on SL measurements using RS systems, many studies related SL observations to different environmental variables.

61. Kheir, A.M.; El Baroudy, A.; Alad, M.A.; Zoghdan, M.G.; Abd El-AZIZ, M.A.; Ali, M.G.; Fullen, M.A. Impacts of rising temperature, carbon dioxide concentration and sea level on wheat production in North Nile delta. *Sci. Total Environ.* 2019, 651, 3161–3173.

seawater [53], Antarctic and Greenland ice sheet melting [54], and land-water storage change due to the groundwater depletion [55]. Consequently, SL rise has many environmental and economic impacts, including reef

Figure 3. (a) Global SL change between 1993 and 2022. Regional mean SL changes and trends of (b) the Atlantic Ocean and (c) the Pacific Ocean calculated from a combination of TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3 satellite altimetry datasets. Satellite altimetry data were downloaded from [50].

60. Varela, M.R.; Patricio, A.R.; Anderson, K.; Broderick, A.C.; DeBell, L.; Hawkes, A.; Tilley, D.; Snape, R.T.; Westoby, M.J.; Godley, B.J. Assessing climate change associated sea level rise impacts on sea turtle nesting beaches using drones, photogrammetry and a novel GPS system and do not perfectly matches the SL change [52]. However, with the advancement of RS technology, satellites provide valuable datasets to study SL at different local to global scales. In addition to studies that only focused on SL measurements using RS systems, many studies related SL observations to different environmental variables. Through these analyses, it was widely argued that the main contributors to SL rise are thermal expansion of seawater [53], Antarctic and Greenland ice sheet melting [54], and land-water storage change due to the groundwater depletion [55]. Consequently, SL rise has many environmental and economic impacts, including reef

Glacier stabilization [56], wave characterization [57], and oceanic sea-level changes and potential risks [58] to sea-level flooding impacts under [60] global warming [61]. Hydrology [2019, 3, 60, 272–286], flooding [62], seaport infrastructure susceptibility [63], wetland inundation and displacement [64], island and offshore baseline loss [65], tidal dynamics [63], Christodoulou, A.; Christidis, P.; Demirel, H. Sea-level rise in ports: A wider focus on impacts [66], and length-of-day changes [67]. *Marit. Econ. Logist.* 2019, 21, 482–496.

64. Parker, M.; Royston, K. E. *Sea-level rise and climate change: Impacts on dry land and coastal Pacific Coast* [68] [69] [70] [71] [72]. *Estuaries and Coasts* 2019, 42, 1219–1232. of these systems applied for SL mapping are provided in **Table 4**.

The following subsections discuss the applications of each system.

65. Oral, N. International Law as an Adaptation Measure to Sea-level Rise and Its Impacts on Islands and Offshore Features. *Int. J. Mar. Coast. Law* 2019, 34, 415–439.

66. Lafta, A.A.; Altaei, S.A.; Al-Hashimi, N.H. Impacts of potential sea-level rise on tidal dynamics in

RS System (Passive/Active)	RS System (Type)	Advantage	Disadvantage	
6 Passive	GNSS-R	Provides frequent all-weather data for regional to global studies	Requires data collected over a long period to enhance the accuracy of the SL estimation	93–
6	Altimeter	All-weather data acquisition with global coverage	Relatively coarse spatial resolution and low temporal resolution	aircraft
6 Active	Gravimeter	All-weather data acquisition, global coverage, and unique ocean mass measurements	Very coarse spatial resolution and unsuitable for regional studies	

70. Quarterly, G.P.; Ringer, E.; Passaro, M.; Andersen, O.B.; Dinardo, S.; Fleury, S.; Guillot, A.; Hendricks, S.; Kurekin, A.A.; Müller, F.L. Retrieving sea level and freeboard in the Arctic: A review of current radar altimetry methodologies and future perspectives. *Remote Sens.* 2019, 11, 1881 in relationship with the geometric location of the Earth's surface [73]. The cyclical effects of the Earth's and the moon's rotations are, respectively, the primary factors of the periodic rhythm and height of OT [74], and 24 h and 50 min is Assessing the impact of ensemble Ocean-Atmospheric processes on models' accuracy. *Geomat. Nat. Hazards Risk* 2021, 12, 653–674. When the water wave slowly rises to its crest (highest level), covering much of the shore, high tide occurs. Once the water wave falls to its trough (the lowest part of the wave), it is known as low tide [73][74].

72. Nieves, M.; Radin, C.; Camps-Valls, G. Predicting regional coastal sea-level changes with machine learning. *Sci. Rep.* 2021, 11, 7650. During the moon's revolution around the Earth, the direction of its gravitational attraction is aligned with that of the Sun. High spring OTs are created when the moon, Earth, and sun are in alignment. This alignment occurs every 14–15 days during full and new moons [74]. On the other hand, during the first and last quarters of the moon, neap OTs happen when the moon appears half-full [73][74]. Intertidal zones are

74. Roadmap, T. Welcome to Tides and Water Levels. Available online: https://oceanservice.noaa.gov/education/tutorial_tides/welcome.html (accessed on 5 September 2022).

While traditionally, in-situ measurements and numerical models have been used for OT studies, RS has been proposed to fill OT measurement gaps over the past four decades. RS technology has expanded the understanding of global OT [77][78][79] and facilitated continuous OT monitoring and predictions over wide-spread scales. RS systems can be used to study several aspects of OT, including tidal flats, tidal channels, tidal currents, Ocean Tidal Load (OTL), and tidal wetlands. In the following, a brief description of each type of OT is provided.

The Jeffreys undated all the tidal flats in the world. Phinns et al. [80] used RS data to map the global distribution of tidal flats and their characteristics. The global distribution of tidal flats is shown in Figure 4. Tidal flats are coastal land areas that are flooded by sea water during high tide and exposed to air during low tide. They are important coastal features that provide essential services, such as coastal storm protection, food production, and shoreline stabilization [80]. A recent study has discovered that tidal flats occupy approximately 77,000,000 km² of the planet (Figure 4) [81]. Murray et al. [81] also reported that about 70% of the global tidal flats occurred in three continents, namely, Asia (44% of total), North America (15.5% of total), and South America (11% of total), 49.2% of which were concentrated in eight countries, namely, Indonesia, China, Australia, the United States, Canada, India, Brazil, and Myanmar. Monitoring tidal flats using field observations is limited to estimating the ebb/flood characteristics, adequate surveys for large tidal flats, and the field access. However, RS in combination with in situ measurements facilitates monitoring tidal flats in a more cost and time-efficient approach. Tierney, C.C., Ranatha, L.H., Bohn, C.H. Shallow and deep water global ocean tides from altimetry and numerical modeling. *J. Geophys. Res. Ocean.* 2000, **105**, 11259–11277. In fact, RS data with a high temporal resolution are necessary for tidal flats studies because there are coastal areas that fall dry during each tidal cycle [82], and tidal flats are only exposed fully for a short period at low tides. A study of thematic mapping in the Korean tidal flats. *Ocean Coast. Manag.* 2014, **102**, 458–470.

81. Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The global distribution and trajectory of tidal flats. *Nature* 2019, **565**, 222–225.

82. Gade, M.; Alpers, W.; Melsheimer, C.; Tanck, G. Classification of sediments on exposed tidal flats in the German Bight using multi-frequency radar data. *Remote Sens. Environ.* 2008, **112**, 1603–1613.

83. Lee, J.K.; Lee, I.; Kim, J.O. Analysis on tidal channels based on UAV photogrammetry: Focused on the west coast, South Korea case analysis. *J. Coast. Res.* 2017, **199**–203.

84. Mason, D.C.; Scott, T.R.; Wang, H.-J. Extraction of tidal channel networks from airborne scanning laser altimetry. *ISPRS J. Photogramm. Remote Sens.* 2006, **61**, 67–83.

85. Letcher, T.M. Future Energy: Improved, Sustainable and Clean Options for Our Planet; Elsevier: The Netherlands, 2018.

86. Du, T.; Tseng, Y.H.; Yan, X.H. Impacts of tidal currents and Kuroshio intrusion on the generation of nonlinear internal waves in Luzon Strait. *J. Geophys. Res. Ocean.* 2008, **113**, C08015.

87. Ferreira, R.M.; Estefen, S.F.; Romeiser, R. Under what conditions sar along-track interferometry is suitable for assessment of tidal energy resource? *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.* 2016, **9**, 5011–5022.

A tidal channel is a type of stream or a waterway that occurs during the ebb tide and flood tide in the tidal flats [83].

88. Tsai, C.-H.; Doong, D.-J.; Chen, Y.-C.; Yen, C.-W.; Maa, M.J. Tidal stream characteristics on the Tidal channel networks are crucial aspects of the neighboring ocean and estuaries. In addition to the control of the coast of Cape Fuguei in northwestern Taiwan for a potential power generation site. *Int. J. Mar. tidal basin hydrodynamics*, tidal channels connect intertidal flats to the salt marshes, which play an important role in Energy 2016, **13**, 193–205.

89. Schubert, G. (Ed.) Treatise on Geophysics; 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015. System algorithms cannot be implemented for tidal channels. Thus, remote sensing techniques have been effectively utilized to obtain the spatial distribution of tidal channels [84].

90. Kelly, M.; Tuxen, K. Remote sensing support for tidal wetland vegetation research and The periodic movement of water created by the out-of-phase OT, the local weather patterns (radiational tides), and management. In *Remote Sensing and Geospatial Technologies for Coastal Ecosystem* ocean characteristics (internal tides) is defined as tidal currents [85]. Periodic tidal currents play an important role in

the Assessment and Management; Springer Berlin Heidelberg [85], Berlin, Germany, 2009; pp. 341–363.

91. Magolan, J.L.; Halls, J.N. A multi-decadal investigation of tidal creek wetland changes, water level parts of the strait [86]. Furthermore, tidal current power is renewable and predictable energy [87], mostly occurring at rise, and ghost forests. *Remote Sens.* **2020**, *12*, 1141.

92. Slatton, K.C.; Crawford, M.M.; Chang, J.-D. Modeling temporal variations in multipolarized radar scattering from intertidal coastal wetlands. *ISPRS J. Photogramm. Remote Sens.* **2008**, *63*, 559–577.

93. Corbane, C.; Najman, L.; Pecoul, E.; Demagistri, L.; Petit, M. A complete processing chain for ship detection using optical satellite imagery. *Int. J. Remote Sens.* **2010**, *31*, 5837–5854.

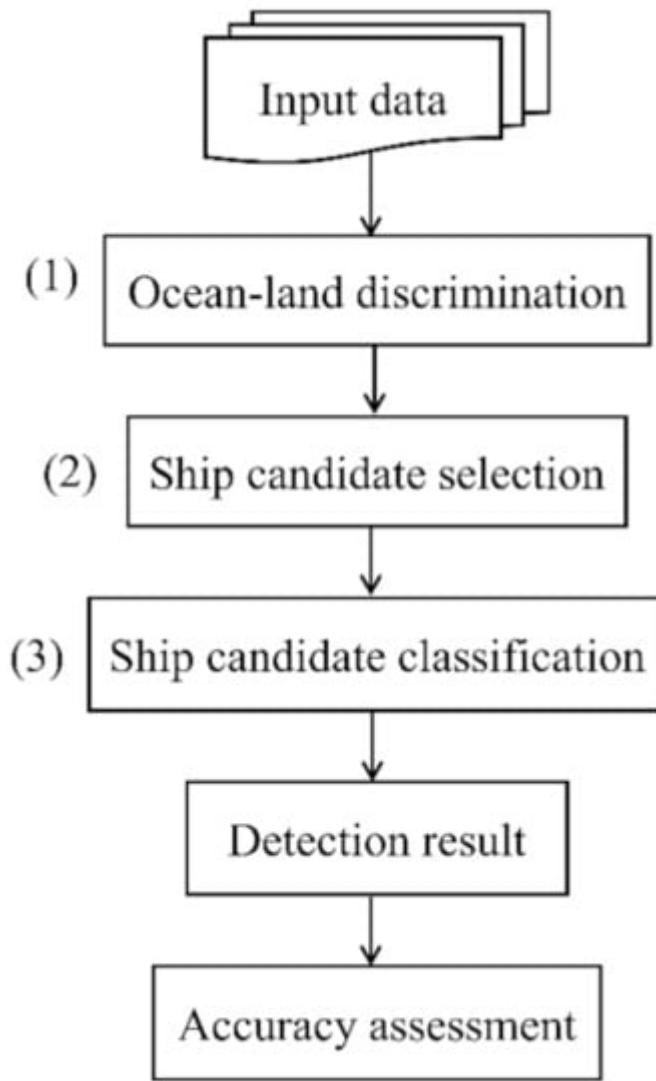
OTL displacements are the elastic response of the Earth to the redistribution of water mass from OT, which can 94. Zhu, G.; Zhou, H.; Wang, R.; Guo, J. A novel hierarchical method of ship detection [88]. One of the most cause deformation gradients of several millimeters to centimeters near coastal regions [89]. One of the most productive inland and coastal ecosystems is tidal wetlands. Tidal wetlands are important for trapping sediment and spaceborne optical image based on shape and texture features. *IEEE Trans. Geosci. Remote Sens.* **2010**, *48*, 3446–3456.

95. Bi, F.; Zhu, B.; Gao, L.; Bian, M. A visual search inspired computational model for ship detection in factors influencing tidal wetlands [90]. Tides increase rates of relative SL rise, resulting in brackish water and a shift to becoming nontidal wetlands in freshwater tidal areas. So far, different RS systems have been successfully 96. Park, J.-J.; Oh, S.; Park, K.-A.; Foucher, P.-Y.; Jang, J.-C.; Lee, M.; Kim, T.-S.; Kang, W.-S. The employed for OT studies. **Table 5** summarizes the advantages and limitations of the RS systems that have been frequently used for OT measurement.

J. Korean Earth Sci. Soc. **2017**, *38*, 535–545.

97. Yang, F.; Xu, Q.; Li, B.; Ji, Y. Ship detection from thermal remote sensing imagery through region-based deep forest. *IEEE Geosci. Remote Sens. Lett.* **2018**, *15*, 119–123.

RS System (Passive/Active)	RS System (Type)	Advantage	Disadvantage
Passive	Optical	Availability of open-access data, useful for all tidal applications, a wide range of spectral and spatial resolutions	Time and weather dependency, low accuracy in estimating water height changes
	GNSS-R	NRT data, continuous data, independent from weather, cost-efficient	Sensitive to sea surface reflections, dependency on complementary data, applicable only to tidal channels and OTL
Active	SAR	Accurate estimation of ocean surface topographic changes, independent from weather conditions and time, useful for all tidal applications	Complex processing steps
	Altimeter	Multilook processing, accurate topographic measurements	Only global surface geostrophic, low track density, limited applications, applicable only to tidal channels and tidal flats
10	LiDAR	Relatively higher spatial resolution, accurate estimation of proposal networks. <i>Adv. Neural Int. Process. Syst.</i> 2015 , <i>28</i> .	Comparatively costly, useful for the data acquisition at optimal tidal and region


10	RS System (Passive/Active)	RS System (Type)	Advantage	Disadvantage	ution
10			ocean surface topographic changes	weather conditions, insufficient coverage, applicable only to tidal channels, tidal flats, and tidal wetlands	orne automatic
			locating and tracking ships for the civil sector are maritime management, vessel traffic services, safety and rescue, fishery management, and illegal fishery surveillance. Moreover, the main applications in the military sector include naval warfare, battlefield environment assessment, and pirate activity surveillance [93][94][95]. RS has a leading role in SD and monitoring because of its several advantages, such as the availability of open-access multitemporal datasets and large area coverage.		

Although various RS datasets have been used for SD (e.g., hyperspectral [96], TIR [97], and UAV [98] imagery), optical, SAR, and HF radar are the most common RS systems for SD [93]. **Table 6** summarizes the main advantages and disadvantages of each of these systems for SD.

Table 6. Different RS systems for SD along with their advantages and disadvantages.

RS System (Passive/Active)	RS System (Type)	Advantage	Disadvantage
Passive	Optical	Relatively high resolution	Functional only during the daytime, affected by clouds and weather condition
	SAR	Operational in all weather conditions and all times	Speckle noise, difficult interpretation
Active	HF Radar	Operational in all weather conditions and all times	Lack of data availability due to the limited number of radars

SD methods using spaceborne RS (i.e., optical and SAR) datasets generally have three main steps (see **Figure 5**): (1) ocean–land segmentation, (2) ship candidate extraction, and (3) classification of ship candidates [99][100][101]. Since the objective of the corresponding studies is to detect ships in oceans, the first step is separating ocean and land regions. This is usually performed using GIS layers of coastlines. However, with the end-to-end DL SD methods, this step is not necessary anymore. Most of the SD research studies have focused on the second and third steps by developing better features for ship description and False Alarm Rate (FAR) reduction. For example, in the second step, a simple shape analysis is performed to remove obvious FAR and extract Regions of Interest (ROI) that may contain potential ship candidates. In the third step, the ship candidates are classified into ship and nonship classes.

Figure 5. A general ship detection method using spaceborne RS data.

In the following three subsections, the most commonly used approaches for SD using optical, SAR, and HF radar data are discussed. However, it should be noted that more advanced ML methods, such as DL, have been recently employed for SD with high accuracies. For instance, among many object detection DL methods, the Region-based CNN (RCNN) [102] and its modified versions (e.g., Fast-RCNN [103] and Faster-RCNN [104]) are mostly used for SD. RCNN-based methods involve two major steps: (1) a CNN algorithm extracts the shared feature maps, and the region proposal network algorithm generates candidate regions, including potential ship targets; and (2) the network classifies these proposals into specified classes. DL methods can extract semantic-level features that are robust to varying ship sizes and different ocean conditions, resulting in better performance than traditional methods with human-crafted features and descriptors. However, the main limitation of DL methods is the limited accessibility to sufficient reference sample data [105][106].