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Laccase belongs to the superfamily of multicopper oxidases and has been widely investigated in recent decades.

Due to its mild and efficient oxidation of substrates, laccase has been successfully applied in organic catalytic

synthesis, the degradation of harmful substances, and other green catalytic fields. Adding a mediator not only

effectively improves the reaction efficiency of laccase but also expands the scope of the substrate.
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1. Introduction

Laccase (EC 1.10.3.2) is a copper-containing polyphenol oxidase that belongs to the blue copper oxidase (MCO)

family . It was first discovered in the Japanese lacquer tree Rhus Vernicifera . Subsequently, laccases were

found in different plant species , microbes , and animals . There have been more investigations on

microbial laccases than on animal and plant laccases, for which there have been relatively few. Microbial laccases

are divided into fungal laccases and bacterial laccases. Bacterial laccase mainly plays a role in melanin production,

spore wall defense, morphological change, and copper ion detoxification . Fungal laccase is mainly related to

pigment generation, plant disease, and lignin degradation . Plant laccase is closely related to lignin

biosynthesis . At the same time, the primary function of animal laccase protein is to control the ossification of the

epidermis .

Laccase is a glycoprotein with a molecular mass ranging from 50 to 140 kDa. Their amino acid sequence can span

from 220 to 800 amino acids and may contain three cupredoxin-like domains. These domains bind copper centers

involved in intermolecular electron transfer reactions and constitute the catalytic core of laccases (Figure 1) .

The active copper center of laccase generally contains four copper ions: a type I copper ion (T1-Cu), a type II

copper ion (T2-Cu), and two type III copper ions (T3-Cu). T1-Cu is a mononuclear center that can gain electrons

from the substrate and then transfer them to the trinuclear cluster (TNC), and the oxidation of the substrate occurs

there. T2-Cu is a single-electron acceptor, whereas T3-Cu forms coupled ion pairs and is a double-electron

acceptor. T2-Cu and T3-Cu together form a trinuclear cluster (TNC). Oxygen accepts four electrons and four

protons to form water, which joins the bulk solvent . Laccases can perform the single-electron oxidation of the

substrate without using hydrogen peroxide while reducing molecular oxygen to water; therefore, they have a

surprisingly broad substrate spectrum and can oxidize simple diphenols, polyphenols, diamines, and aromatic

amines. The optimum temperature and pH of laccases depend on the enzyme source and substrate properties;

those ranges are, respectively, from 20 °C to 75 °C and 3 to 8 (Table 1).

[1][2] [3][4]

[5] [6][7] [8]

[9][10]

[11][12]

[13]

[14]

[15]

[16][17]



Effect of the Mediator System on Laccase Catalysis | Encyclopedia.pub

https://encyclopedia.pub/entry/43819 2/11

Figure 1. Crystal structure of the laccase (LccI) (PDB code: 1GYC) in Trametes versicolor. (A) The overall

structure of LccI; (B) structure of the schematic representation of the four copper sites in LccI.

Table 1. Enzymatic properties of laccase from different sources.

As an oxidase, the ability of laccase to oxidize the substrate is directly related to its redox potential (E0) . E0

is an important characteristic of the catalytic oxidation capacity of laccase, which is the energy required for laccase

to capture an electron from a reducing substrate. The E0 is critical to the reactivity of laccase and the overall

reaction characteristics. Laccase can directly oxidize substrates with low E0, whereas some mediators are needed

to assist laccase in oxidizing substrates with high E0. Adding a mediator not only effectively improves the reaction

efficiency of laccase but also expands the scope of the substrate. For instance, with the mediator’s help, laccase

can oxidize nonphenolic structures with high E0 and is used in pulp bleaching . Recently, laccase and the

laccase–mediator system (LMS) have received extensive attention in green catalysis, such as synthesizing

complex organic compounds, the selective modification of natural products, and the degradation of harmful

substances . For example, the C–N bond breakage of amines catalyzed by laccase is essential for

synthesizing amino acids and nucleosides . Existing research indicates that using Pleurotus ostreatus

laccase and its natural mediator (syringaldehyde) to catalyze C–C bond breakage results in the removal of up to

100% and 85% of BPA at concentrations of 0.44 and 0.88 mmol/L in wastewater within 1 h .

2. The Effect of the Mediator System on Laccase Catalysis

Source Molecular Mass Optimal pH Optimal Temperature (°C) Ref.

Fungal 46–80 kD 2.2–6 30–55

Bacteria 43–114 kD 4.0–8.0 40–75

Plant 59.2–140 kD 6.7 20

Animal 73–110 kD 6.5–8.0 -
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Currently, some problems still need to be solved urgently to directly apply laccase to industrial production. For

instance: (1) Numerous substrates cannot directly bind to laccase specifically. (2) With laccase, it is difficult to

oxidize nonphenolic compounds with high E0 (E0 > 1.3 V) due to its low E0 (E0 < 0.8 V). Thus, the development of

laccase in industries such as lignin degradation and bio-bleaching is limited . In order to reduce the oxidation

potential of substrates and improve the oxidation efficiency, some mediators can be used as an intermediate

substrate for laccase to form new intermediate states to transport electrons . These mediators are

compounds with low molecular mass and low E0, such as 2,2′-Azino-bis-(3-ethylbenzothiazoline-sulphonate)

(ABTS) and 2,2,6,6-Tetramethyl-1-piperidinylox (TEMPO), which can easily gain and lose electrons. They can form

highly active and stable intermediates under the action of laccase and act on the substrate to is oxidized. In the

LMS, laccase first oxidizes the mediator into a free radical. The oxidized mediator rapidly applies to compounds

above the E0 of laccase and to those polymers that cannot directly access the laccase active center 

(Figure 2).

Figure 2. Oxidation of substrates by LMS.

Laccase mediators are usually divided into artificial and natural mediators (Figure 3) . Due to their high

efficiency and inexpensive availability, artificial mediators are widely used in lignin degradation, polycyclic aromatic

hydrocarbon (PAH) oxidation, and dye decolorization. Common artificial mediators include ABTS, TEMPO, and 1-

hydroxy-benzotriazole (HBT) (Figure 3B) . Three mechanisms have been proposed for the function of

mediators in the LMS: (1) hydrogen atom transfer (HAT), (2) electron transfer (ET), and (3) the ionic mechanism

(IM). ABTS was the first mediator found to promote the laccase-catalyzed oxidation of nonphenolic lignin. The

action mechanism of ABTS belongs to the electron transfer mechanism (ET), which undergoes two stages (Figure

4): forming an ABTS+· cationic radical and slowly oxidizing to ABTS2+. ABTS2+ with higher reduction potential (but

not ABTS+·) performs a more critical function in the laccase–ABTS system, which mediates the oxidation of

nonphenolic lignin substrates . The HAT mechanism, which is generally the oxidation mechanism

mediated by the N-OH type mediator, uses a form of nitryl (>N-O·) to perform oxidation, such as the HBT system.

Meanwhile, the purpose of the ion mechanism (IM) is mainly to form an ammonium oxide ion (>N=O·) through the

nitryl group (>N-O·) to carry out the oxidation, such as the TEMPO system .
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Figure 3. The chemical structures of several artificial and natural redox mediators in laccase-catalyzed oxidation

reaction systems. (A) natural redox mediators; (B) artificial redox mediators.
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Figure 4. Oxidation of ABTS by Laccase.
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Artificial mediators have potential applications in the areas of lignin degradation and polycyclic aromatic

hydrocarbon (PAH) oxidation for dye decolorization, but some disadvantages limit their use. For instance: (1) poor

stability, (2) potential toxicity , and (3) difficulty in regeneration when the molar ratio of mediators to substrates is

as high as 40:1 . Compared to artificial mediators, natural mediators have more economic value because

they are readily obtained, environmentally friendly, and reproducible (Figure 3A) . Some fungal metabolites

and lignin derivatives could be used as natural mediators of laccase, including but not limited to vanillin, acetyl

vanillin, acetosyringone, syringaldehyde, 2,4,6-trimethyl phenol, and p-coumaric acid . Taking the laccase p-

coumaric acid system as an example, it can remove 95% anthracene (80% with HBT) and benzoin anthracene

within 24 h .

Besides indirectly assisting laccase-catalyzing substrates, mediators show synergism with each other, and the

degradation efficiency increases with the increase in mediator concentration . For example, the complex

mediator system composed of laccase, ABTS, and HBT can oxidize phenanthrene with only one intermediary

phase with a degradation rate that can be increased by 30–40% compared with a single-mediator system (such as

the ABTS system or HBT system) . Therefore, with intensive research on and development of the LMS, the

biocatalytic substrates of laccase can be further expanded.
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