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Privacy policies are the main method for informing Internet users of how their data are collected and shared. Automated

privacy policy analysis, including machine learning methods, has grown in popularity during the last decade. The main

goal is to grant users a better understanding of how their data are used and help them make informed decisions regarding

their privacy.
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1. Introduction

Natural language privacy policies serve as the primary means of disclosing data practices to consumers, providing them

with crucial information about what data are collected, analyzed, and how they will be kept private and secure. By reading

these policies, users can enhance their awareness of data privacy and better manage the risks associated with extensive

data collection. However, for privacy policies to be genuinely useful, they must be easily comprehensible to the majority of

users. Lengthy and vague policies fail to effectively inform the average user, rendering them ineffective in ensuring data

privacy awareness.

Privacy policies are often excessive in length, requiring a substantial amount of time to read through. Estimates show that

the average Internet user would spend around 400 h per year reading all encountered privacy terms . This time

investment may deter users from thoroughly reviewing policies, leading them to hurriedly click the “I agree” button without

fully understanding the implications.

Addressing the significance of readability and privacy regulations, such as General Data Protection Regulation (GDPR),

mandate that privacy policies should be concise, easy to understand, and written in plain language. Additionally, the

California Consumer Privacy Act (CCPA) emphasizes the need to present policies in a clear and straightforward manner,

avoiding technical or legal jargon.

To enhance clarity and conciseness, the GDPR guidelines recommend the use of active voice instead of passive voice in

writing . The active voice directs the reader’s attention to the performer of the action, reducing ambiguity and making the

text more straightforward.

Additionally, policies become less comprehensible due to ambiguity, which occurs when a statement lacks clarity and can

be interpreted in multiple ways. The use of imprecise language in a privacy policy hinders the clear communication of the

website’s actual data practices. The presence of language qualifiers like “may”, “might”, “some”, and “often” contributes to

ambiguity, as noted by the European Commission’s GDPR guidelines . Recent research suggests an increasing use of

terms such as “may include” and “may collect” in privacy policies, which may result in policies becoming more ambiguous

over time .

2. Automated Privacy Policy Analysis

2.1. Privacy Policy Datasets

Various privacy policy datasets have been made accessible to researchers (see Table 1), with the Usable Privacy Policy

Project  playing a significant role in this regard. Their OPP-115 corpus  contains annotated segments from 115

website privacy policies, enabling advanced machine learning research and automated analysis. Another dataset from the

same project is the OptOutChoice-2020 corpus , which includes privacy policy sentences with labeled opt-out choices

types. PolicyIE  offers a more recent dataset with annotated data practices, including intent classification and slot filling,

based on 31 web and mobile app privacy policies. Nokhbeh Zaeem and Barber  created a corpus of over 100,000

privacy policies, categorized into 15 website categories, utilizing the DMOZ directory. PrivaSeer  is a privacy policy
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dataset and search engine containing approximately 1.4 million website privacy policies. It was built using web crawls

from 2019 and 2020, utilizing URLs from “Common Crawl” and the “Free Company Dataset”. Finally, Amos et al. 

released the Princeton-Leuven Longitudinal Corpus of Privacy Policies, a large-scale longitudinal corpus spanning two

decades, consisting of one million privacy policy snapshots from around 130,000 websites, enabling the study of trends

and changes over time.

Table 1. Publicly available privacy policy datasets.

Dataset # Policies # Websites Timeframe Labeling

OPP-115 115 115 2015 Yes

OptOutChoice-2020 236 236 - Yes

PolicyIE 400 400 (websites + apps) 2019 Yes

DMOZ-based Corpus 117,502 - 2020 No

PrivaSeer 1,005,380 995,475 2019 No

Princeton-Leuven Corpus 910,546 108,499 1997–2019 No

2.2. Classification and Information Extraction

Classification and information extraction from privacy policies have been widely explored using machine learning

techniques. Kaur et al.  employed unsupervised methods such as Latent Dirichlet Allocation (LDA) and term frequency

to analyze keywords and content in 2000 privacy policies. Supervised learning approaches have also been utilized,

including classifiers trained on the OPP-115 dataset. Audich et al.  compared the performance of supervised and

unsupervised algorithms to label policy segments, while Kumar et al.  trained privacy-specific word embeddings for

improved results. Deep learning models like CNN, BERT, and XLNET have further enhanced their classification

performance . Bui et al.  tackled the extraction of personal data objects and actions using a BLSTM model with

contextual word embeddings. Alabduljabbar et al.  proposed a pipeline called TLDR for the automatic categorization

and highlighting of policy segments, enhancing user comprehension. Extracting opt-out choices from privacy policies has

also been studied . In the field of summarization, Keymanesh et al.  introduced a domain-guided approach for

privacy policy summarization, focusing on labeling privacy topics and extracting the riskiest content. Several studies have

worked on developing automated privacy policy question-answering assistants .

Furthermore, the PrivacyGLUE  benchmark was proposed to address the lack of comprehensive benchmarks

specifically designed for privacy policies. The benchmark includes the performance evaluations of transformer language

models and emphasizes the importance of in-domain pre-training for privacy policies.

2.3. Privacy Policy Applications for Enhancing Users’ Comprehension

Applications enhancing the comprehension of privacy policies have been developed to provide users with useful and

visually appealing presentations of policy information. PrivacyGuide  employs a two-step multi-class approach,

identifying relevant privacy aspects and predicting risk levels using a trained model on a labeled dataset. The user

interface utilizes colored icons to indicate risk levels. Polisis  combines a summarizing tool, policy comparison tool,

and chatbot. The query system employs neural network classifiers trained on the OPP-115 dataset and privacy-specific

language models. PrivacyCheck is a browser extension that extracts 10 privacy factors and displays their risk levels

through icons and text snippets . Opt-Out Easy is another browser extension that utilizes the OptOutChoice-

2020 dataset to identify and present opt-out choices to users during web browsing .

2.4. Regulatory Impact

User research has also focused on evaluating privacy policies for regulatory compliance, particularly in response to the

implementation of General Data Protection Regulation (GDPR) in Europe. The tool Claudette detects unfair clauses and

evaluates privacy policy compliance with GDPR . KnIGHT (“Know your rIGHTs”) utilizes semantic text matching to

map policy sentences to GDPR paragraphs . Cejas et al.  and Qamar et al.  leveraged NLP and supervised

machine learning to identify GDPR-relevant information in policies and assess their compliance. Similarly, Sánchez et al.

 used manual annotations and machine learning to tag policies based on GDPR goals, offering both aggregated scores

and fine-grained ratings for better understanding. Degeling et al.  and Linden et al.  examined the effects of GDPR

on privacy policies through longitudinal analysis, observing updates and changes in policy length and disclosures. Zaeem
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and Barber  compared pre- and post-GDPR policies using PrivacyCheck, highlighting deficiencies in transparency and

explicit data processing disclosures. Libert  developed an automated approach to audit third-party data sharing in

privacy policies.

2.5. Comprehensibility of Privacy Policies

Studies on privacy policy comprehensibility have examined deficiencies in readability, revealing that privacy policies are

difficult to read and demonstrating correlations between readability measures . Furthermore, researchers have

examined the changes in length and readability of privacy policies over time .

Other scholars have studied ambiguous content in privacy policies. Kaur et al.  and Srinath et al.  analyzed the use of

ambiguous words in a corpus of 2000 policies. Furthermore, Kotal et al.  studied the ambiguity in the OPP-115 dataset

and showed that ambiguity negatively affects the ability to automatically evaluate privacy policies. Srinath et al. 

reported on privacy policy length and the use of vague words in their PrivaSeer corpus of policies. Lebanoff and Liu 

investigated the detection of vague words and sentences using deep neural networks.

2.6. Mobile Applications

The research community has also examined privacy policies in the context of mobile applications, establishing several

corpora of mobile app privacy policies . Those policies are well-suited for compliance analysis, because they are

studied along with the app code and the traffic generated by the app .
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