
TCP-based Congestion Control Algorithms
Subjects: Telecommunications | Engineering, Electrical & Electronic | Computer Science, Information Systems

Contributor: Josip Lorincz, Zvonimir Klarin

In today’s data networks, the main protocol used to ensure reliable communications is the transmission control protocol

(TCP). The TCP performance is largely determined by the used congestion control (CC) algorithm, which main purpose is

to avoid the congestion of the network that can be caused by a large burst of data traffic. TCP CC algorithms have

evolved over the past three decades and a large number of CC algorithm variations have been developed to

accommodate various communication network environments. Considering the importance of CC in communication

networks, the fundamentals of the TCP as the main transport layer protocol and CC process have been explained in

detail. Also, an encyclopedic overview of the most popular single-flow and multi-flow TCP CC algorithms with

corresponding alternatives has been present. Future directions in the possible improvement of CC algorithms for

implementation in complex heterogeneous networks composed of wired and wireless elements are lastly discussed in this

encyclopedic work.

Keywords: TCP ; congestion control ; wireless ; wired ; network ; mobile ; algorithms ; communications ; Internet ; protocol

1. Introduction

At the transport layer of the Open System Interconnection (OSI) model, the transmission control protocol (TCP) is a major

protocol used in today’s communication over the Internet. The TCP is designed to provide a reliable end-to-end

connection over unreliable links. Besides affecting the physical and media access control (MAC) layers of the OSI model,

ensuring the high data rates in environments characterised with fluctuations in the quality of the wired links or wireless

channels deteriorate the performance of the transport layer of the network . Ensuring reliable end-to-end connections

over versatile wired and wireless networks which become complex and heterogeneous, presents a demanding challenge

in terms of its practical implementation. This challenge arose during the last decades as the subject of the researchers’

interest . One of the mechanisms that plays a critical role in TCP performance is the congestion control (CC)

mechanism.

One of the main purposes of the CC mechanism is to probe the network for available capacity by dynamically increasing

or decreasing the amount of data (also known as window size) that can be sent over a communication link. This approach

enables avoiding the congestion of the network that can be caused by a large burst of data during transmission . Node

or link congestion in wired networks and blockage and beam misalignment in wireless networks can seriously affect the

TCP CC mechanism. This further results in poor end-to-end transmission performance. Conventional TCP CC algorithms

are not able to differentiate between the potential causes of packet loss. They can occur due to a lack of wired link

capacity or poor wireless channel quality .

[1]

[2]

[3]

[4]

Figure 1. Structure of the TCP segment.

To achieve the specified performance and to accommodate the requirements of different communication systems, in the

past, significant efforts have been invested by industry and academic researchers to reduce or eliminate the

aforementioned shortcomings. Still, with every new generation or type of network, new challenges in terms of TCP CC

arise. Integration of new types or generations of networks with the existing in terms of data CC, requests for new attempts

dedicated to the optimization of CC mechanism. This is mostly done through the development of new TCP-based CC

algorithms. In this topic review, an overview of the most popular single-flow and multi-flow TCP algorithms used for CC

has been presented.

The rest of the paper is organized as follows. An overview of the TCP is given in Section 2. The TCP CC mechanism is

explained in Section 3. A review of the popular single-flow and multi-flow CC algorithms is presented in Section 4. In

Section 5, research challenges and future directions in possible improvements of traditional CC algorithms for

implementation in complex heterogeneous networks are discussed. Some concluding remarks are given in Section 6.

2. Overview of Transmission Control Protocol

The TCP is a connection-oriented, reliable end-to-end protocol that guarantees the ordered delivery of byte streams in a

full-duplex inter-process communication , . The TCP is designed to complement the Internet Protocol (IP). This is a

connectionless protocol and does not guarantee reliable data delivery. Initially, TCP was developed as a protocol to

support military computer communication systems. Nowadays, TCP is de facto the standard for reliable end-to-end

communication over the Internet. TCP and IP are the two main protocols on which the entire Internet communication

resides and together with their supporting protocols, they form the Internet protocol suite known as TCP/IP.

The TCP provides reliable communication services in the transport layer of the Open System Interconnection (OSI)

reference model. The protocol interfaces with the upper layer application processes and the lower layer IP . The protocol

data unit (PDU) of the transport layer using TCP is called a segment. The TCP PDU contains protocol-specific fields

known as the TCP header and payload data (Figure 1). The maximum size of the TCP payload data is characterised as

the maximum segment size (MSS). The fields of the TCP header specified in the TCP header format are : source port,

destination port, sequence number, acknowledgment number, data offset, reserved, control bits, window, checksum,

urgent pointer, options, and padding (Figure 1). The TCP is responsible for establishing and terminating the connection,

for the reliable communication between hosts, for the flow control and for the CC over unreliable networks.

Figure 2. TCP three-way handshake process.

2.1. Establishing and Terminating a Connection

The process of establishing a TCP connection involves a three-way handshake procedure. A three-way handshake is a

procedure where the initial connection parameters are agreed to exchange in three messages or segments between the

sender and the receiver device (Figure 2). The first segment of the three-way handshake process is the SYN segment

where device A sends the TCP segment to device B when they want to establish a reliable connection. In this segment,

the TCP segment of device A indicates the initial sequence number that will be used for communication and the SYN

control bit in the TCP header is set to 1 (Figure 2). The sequence number is a 32-bit random number maintained by both

[5] [6]

[6]

[6]

sides of the TCP session to ensure that every byte of sent data can be acknowledged. This exchange of a sequence of

numbers ensures the ordered delivery of the segments. After receiving the SYN segment, device B responds with the

TCP segment by sending an acknowledgment (ACK) for the received SYN segment together with its initial sequence

number as the second segment of the process (Figure 2). In this segment, the ACK control bit in the TCP header is set to

1, indicating that the acknowledgment field is valid. Finally, device A responds with the third TCP segment that

acknowledges the SYN segment received from device B (Figure 2). Each side of the process acknowledges the sequence

numbers with an ACK value that are one larger than the sequence number received, consequently acknowledging all

earlier sequence numbers and identifying the next expected sequence number .

After completing the initial three-way handshake process, a full-duplex reliable communication is established and both

ends can proceed with the application’s process of data sending (Figure 2). Both ends of communication use sequence

numbers in combination with acknowledgments to ensure that the ordered data delivery is completed. There are several

variables that TCP maintains with respect of the send and received sequence numbers. These variables, among all of the

other segment variables, are essential for maintaining a TCP connection and they are stored in a record called a

transmission control block (TCB) .

TCP connection termination is a simple operation that allows the user who closes the connection to receive data until the

other side also closes the connection . The normal close sequence starts by sending a connection termination request

as a FIN segment with a FIN control bit (flag) set to 1. When the other side involved in communication receives the FIN

segment, it acknowledges its reception by sending an ACK segment followed by a FIN segment of its own. This segment

indicates that the other side involved in the communication is ready to close the TCP connection. The initial side then

receives the FIN segment and sends the ACK for the segment, allowing both ends to close their connection.

2.2. Flow Control

TCP uses a flow control mechanism to determine how much data the receiver is able to accept. The receiver uses a

window field in the TCP header which represents the available buffer size of the receiver. This is in order to inform the

sender about the maximum number of bytes that it is allowed to transmit . The buffer size of the receiver depends on the

speed with which the receiving application reads the data. The data stays on the receiving buffer until the receiving

application reads the data. If the buffer memory of the receiver is full, the receiver advertises a window size of zero which

informs the sender to stop sending more data. After the receiver retrieves the data from the buffer, it can advertise the

new window size, allowing the sender to resume sending the data. The described mechanism is the generally accepted

mechanism for flow control in IP networks.

3. TCP Congestion Control

3.1. Network Congestion and TCP CC Mechanism

Network congestion is the result of a network node being overwhelmed with more data than it can process. Buffers are

added to the communication nodes to prevent packet loss caused by the burst of packets. This consequently increases

the delay of each packet passing through the buffer, which results in the degradation of the network performance . On

the other hand, network nodes with large buffers can cause an excess buffering of the packets. This is known as a

bufferbloat problem . This consequently leads to long queuing delays and overall network throughput degradation. The

maximum bandwidth of the network link is referred to as a bottleneck bandwidth and it is determined by the bandwidth of

the fully saturated network link. In a scenario where the TCP data rate is less than the bottleneck bandwidth, no

congestion occurs and the delivery rate corresponds to the sending rate [9]. As the sending rate exceeds the bottleneck

bandwidth, the buffers start to fill to the point where the buffers are full, causing the network nodes to start dropping

packets. The optimal operation point of TCP is the point where the sending rate is equal to the bottleneck bandwidth. The

TCP CC is a mechanism that aims to prevent network congestion and to ensure efficient network utilisation while working

near to the optimal operation point.

The TCP CC is one of the main parts of the TCP protocol. Over the years, it has experienced numerous improvements

through the application of different algorithms. The first TCP specification considered only flow control as a mechanism to

prevent the buffer overflowing on the receiver end, while neglecting the congestion of the network itself . The general

idea of TCP CC is to prevent the sender from overflowing the network by determining the available capacity. Congestion

avoidance and control were first introduced in 1988 after a series of “congestion collapses” occurred on the Internet.

The standard TCP CC mechanism is based on the additive increase multiplicative decrease (AIMD) algorithm, which

[7]

[6]

[6]

[8]

[9]

[10]

[6]

[11]

incorporates four phases: slow start, congestion avoidance, fast retransmit and fast recovery . An initial version of CC

only requires the implementation of a slow start and the congestion avoidance phase. The fast retransmit and fast

recovery phases were introduced later.

3.1.1. The Slow Start and Congestion Avoidance TCP Mechanism

The interdependence between the congestion window (cwnd) size and the transmission round-trip-time (RTT) of the TCP

segment for the TCP version based on a slow start with congestion avoidance has been presented in Figure 3a. In this

approach, the slow start and congestion avoidance phases are implemented using a stated cwnd variable that controls

the amount of data that can be sent before receiving an ACK (Figure 3a). The cwnd size is a sender-specific variable that

is maintained for each TCP session. The bandwidth-delay product (BDP), which determines the maximum amount of

incoming data over a network link is considered to be the ideal value of the cwnd size.

(a) (b)

Figure 3. Standard working principles of the TCP CC mechanism related to the interdependence between cwnd and RTT

for: (a) the TCP slow start and congestion avoidance mechanism; (b) the TCP fast retransmit and fast recovery

mechanism.

The network congestion is evaluated based on the received ACK packets of transmitted data. The slow start phase is the

initial phase in the beginning of transmission (Figure 3a). In this phase, the TCP quickly probes the available capacity

while avoiding the network congestion that can occur in the beginning of the transmission. After every successful

transmission of data and the reception of an appropriate ACK for said data, cwnd is increased and the sender can send

more data (Figure 3a). After the three-way handshake process, the initial window (iw) is determined and can be large as

10 maximum segment size (MSS) . In the slow start phase, the cwnd is increased by one MSS for each ACK received,

doubling its size for every RTT. The cwnd will continue increasing the rate until either the ssthresh (slow-start threshold) is

reached (Figure 3a), packet loss occurs or cwnd exceeds the rwnd (receiver window) size.

After cwnd exceeds the ssthresh size, the TCP CC mechanism enters the congestion avoidance phase (Figure 3a). The

purpose of the congestion avoidance phase is to slowly probe the network for more available capacity, by increasing the

cwnd less aggressively than in the slow start phase. The connection stays in the congestion avoidance phase until

congestion is detected. If congestion is detected during the congestion avoidance phase using the retransmission time-out

(RTO) expiration parameter, the TCP connection enters the slow start phase where the ssthresh is set to half of the

current cwnd size and the cwnd is decreased to one MSS (Figure 3a). The process of adjusting the congestion window

(cwnd) continues according to the described mechanism.

3.1.2. The Fast Retransmit and Fast Recovery TCP Mechanism

Waiting for the RTO to expire leads to a long period of connection inactivity. Because of that, a new mechanism called fast

retransmit with fast recovery was introduced as a part of the TCP CC (Figure 3b). The interdependence between the

congestion window (cwnd) size and the transmission RTT of the TCP segment for the TCP version based on a fast

retransmit with a fast recovery mechanism has been presented in Figure 3b. The general idea of a fast retransmit with a

fast recovery is not to replace the RTO parameter, but to work in parallel, allowing the sender to retransmit the lost

segment even if the timeout has not expired. In a TCP communication, when a segment arrives out of order, the receiver

resends the ACK that was last sent, causing the sender to receive duplicate ACKs. This signals to the sender that the

[3]

[12]

[12]

segment is either lost or delayed. This causes a reordering of the segments. In the case of segment reordering, it is

assumed that only one or two duplicate ACKs will be sent. The case when three ACKs are received by the sender before

the RTO has expired indicates that the segment is lost.

Figure 4. Main categories and types of the TCP CC algorithms.

This triggers a fast retransmit and a fast recovery mechanism (Figure 3b). In the standard implementation of the fast

retransmit with a fast recovery phase, the sender, instead of going into the slow-start phase, decreases the ssthresh by

one-half of the current cwnd (but by no less than two segments). Additionally, the sender retransmits the missing segment

and sets the cwnd to a value equal to ssthresh plus 3 times the segment size (Figure 3b). Each time, the sender

receives an additional duplicate ACK after the third cwnd is incremented by MSS. When the ACK that acknowledges the

new data arrives, cwnd is set to the new value of ssthresh (which is set at the moment of the initial triggering of the

mechanism). It then enters the congestion avoidance phase, as shown in Figure 3b .

The aforementioned TCP CC mechanism is the standard implementation of the mechanism. It can vary depending on the

CC algorithm used. There are numerous CC algorithms that have been developed and proposed as CC emerged as one

of the most studied areas of internet research during the last few decades . TCP CC, although not part of the original

TCP implementation, has become an essential element of TCP as the entire TCP performance depends on the CC

algorithm.

4. TCP CC Algorithms

CC algorithms are being developed with a focus on optimizing different metrics and making trade-offs between the various

metrics in order to accommodate the different working environments and use cases. The main metrics that the Transport

Modelling Research Group (TMRG) of the Internet Research Task Force proposed for evaluating CC algorithms were :

throughput, delay, packet loss rates, fairness, convergence times and robustness. Depending on the desired working

environment, TCP CC algorithms are usually designed to make trade-offs between these metrics. There are three main

categories of TCP CC algorithms as shown in Figure 4: (1) loss-based algorithms that use packet loss as an indicator of

congestion, (2) delay-based algorithms that predict packet loss based on RTT measurements and (3) hybrid algorithms in

which, the loss-based and delay-based methods are combined. Table 1 presents the comparison of the different CC

algorithms according to their classification and year of introduction.

4.1. Loss-Based TCP CC Algorithms

A Tahoe TCP was the first CC algorithm that implemented a fast retransmit phase followed by the Reno TCP [16]

which included a fast recovery procedure (Table 1). The Tahoe TCP and Reno TCP are loss-based algorithms, and both

consider RTO and duplicate ACKs as an indication of segment loss due to network congestion. The main difference

between the two CC algorithms is in how they respond after receiving three duplicate ACKs and how they perform the fast

retransmitting of the segments. After the fast retransmit phase, the Tahoe TCP switches to the slow start phase, whereas

in contrast, the Reno TCP avoids the slow start phase by entering the fast recovery phase. In high-traffic environments

where multiple segment losses occur in a single congestion window, the Reno TCP has shown a performance decrease

as it can only detect single-segment losses .

[13]

[13]

[14]

[15]

[11]

[17]

Table 1. Overview of the most relevant single-flow TCP CC algorithms.

CC
Algorithm

Introduction
Year

Type Features

Tahoe 1988
Loss-

based
Slow start, congestion avoidance and a fast retransmit mechanism.

Reno 1990
Loss-

based
Introduced fast recovery mechanism.

NewReno 1999
Loss-

based
Fast recovery modification to allow multiple retransmissions.

SACK 1996
Loss-

based
Selective ACK option.

Westwood 2001
Loss-

based

Introduced a faster recovery mechanism that controls the sending rate

according to the available bandwidth estimation.

HighSpeed 2003
Loss-

based

Introduced a modified TCP response function to allow for a faster cwnd
increase and a faster recovery time in situations with a high cwnd size.

Scalable

TCP
2003

Loss-

based

After each received ACK during the RTT, algorithm increases the cwnd
size in proportion with the defined constants. After the packet loss

decreases cwnd by a smaller factor, the standard CC is exploited.

BIC 2004
Loss-

based

Uses the binary search increase and additive increase techniques to

determine the cwnd size.

CUBIC 2008
Loss-

based

Uses the cubic function for cwnd control characterised by a steady state

and a maximal probing behaviour.

Vegas 1994
Delay-

based

Modification of TCP Reno that predicts network congestion before an

actual loss of segments occurs. Uses a fine-grained RTT estimation and

has a very efficient segment retransmission schedule.

Vegas+ 2000
Delay-

based

Modification of TCP Vegas that introduced an aggressive mode to

overcome fairness issues when competing with TCP Reno.

New Vegas 2005
Delay-

based

Implemented three server-side modifications of TCP Vegas to overcome

performance issues in a high latency environment.

Vegas-A 2005
Delay-

based

Implemented modified congestion avoidance mechanism to address

fairness, rerouting and bias against high bandwidth connections issues of

TCP Vegas in wired and satellite networks.

Vegas-V 2012
Delay-

based

Modification of TCP Vegas-A that addresses fairness and aggression

issues when competing with TCP Vegas, TCP Vegas-A and TCP Reno

flows.

[11]

[16]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

FAST 2004
Delay-

based

Designed for high-speed long-latency networks. Adjusts the cwnd
according to the feedback information of the average RTT and average

queuing delay. Uses scaling parameters to effectively utilise the network

capacity.

Compound 2006 Hybrid

Based on the loss-based slow start phase. During the congestion

avoidance phase, it uses a combination of two components, a standard

loss-based and a new scalable delay-based component.

YeAH 2007 Hybrid

Performs a dynamic exchange between a slow mode during the

congestion avoidance phase and a fast mode during the fast recovery

phase.

BBRv1 2016 Hybrid
Builds an explicit model of the network using the estimated RTT and the

estimated available bottleneck bandwidth in order to prevent congestion.

BBRv2 2018 Hybrid
Uses ECN signals, improved fairness with CUBIC and lower packet loss

rates for the optimisation of the TCP CC performance.

TCP NewReno is an improved version of the TCP Reno algorithm. In order to overcome the performance issues of the

TCP Reno, the TCP NewReno introduces a slight modification of the TCP Reno’s fast recovery mechanism (Table 1) .

After receiving multiple duplicate packets, like its predecessor, the TCP NewReno enters the fast retransmit phase.

However, the TCP NewReno does not exit the fast recovery phase until all of the outstanding data (send without received

ACK) at the time of entering the fast recovery phase is acknowledged, thus preventing multiple cwnd reductions.

TCP selective acknowledgments (SACKs) have been introduced to overcome the limitations of the algorithms that use

cumulative ACKs (Table 1). This approach allows for the retransmission of more than one segment per RTT. In an

established TCP connection, the receiver uses the selective ACKs (SACKs) option to inform the sender about all

successfully received segments, thus allowing the sender to retransmit only the missing segments in one RTT .

TCP Westwood is a CC algorithm that uses a server-side modification of the TCP Reno cwnd control mechanism (Table

1) . TCP Westwood improves the performance of TCP Reno, especially in lossy wireless networks due to its

robustness against sporadic wireless network errors. It uses a mechanism called faster recovery where instead of halving

cwnd after three duplicate ACKs, the mechanism adjusts the cwnd and ssthresh parameters based on the end-to-end

estimation of the available bandwidth. The bandwidth of the connection is estimated through the regular monitoring of the

ACKs returning rate. After the congestion event, the size of the cwnd and ssthresh parameters is set according to the

bandwidth estimate, thus ensuring a faster recovery as opposed to the TCP Reno response .

HighSpeed TCP is a modification of the classical TCP CC mechanism that aims to address the limitations of

connections with large congestion windows (Table 1) . In the situation of a small cwnd, the operation of the HighSpeed

TCP is the same as in the standard CC. On the other hand, when the current cwnd is greater than the specified

parameter, the HighSpeed TCP uses a modified TCP response function that allows for a faster cwnd increase rate and a

faster recovery time after packet loss. A variation of the HighSpeed TCP known as the Scalable TCP is optimised for

high-speed wide area networks. It is based on a simple modification of the traditional CC mechanism . The main goal of

the Scalable TCP algorithm is to update the cwnd in a scalable fashion. This means that the recovery times are

proportional only to the RTT of the connection, which makes the algorithm more robust in high BDP networks.

A binary increase congestion control (BIC) TCP algorithm has been developed to address unfairness issues and to

provide bandwidth scalability in high-speed networks with large delays (Table 1) . The BIC TCP algorithm uses a binary

search increase and additive increase as the two techniques used to determine the cwnd size. Binary search increase is a

search technique involving aggressive initial bandwidth probing in a situation where there is a large difference between

the current cwnd size and the target cwnd size. The mechanism becomes less aggressive when the current cwnd size

gets closer to the target cwnd size. In the case of network congestion, the BIC TCP reduces cwnd from performing

multiplicative decreases. After a significant cwnd decrease, the BIC algorithm performs an additive increase scheme by

increasing cwnd linearly. The increase then becomes logarithmic . By combining the binary search increase with the

additive increase technique, the BIC algorithm ensures RTT fairness and faster convergence times.

[30]

[31]

[32]

[33]

[34]

[18]

[19]

[20]

[20]

[3]

[21]

[22]

[3]

[23]

[23]

The authors of proposed a high-speed TCP variant called CUBIC to overcome the fairness and complexity issues of

the previous CC algorithms (such as the TCP BIC). TCP CUBIC has become the dominant CC algorithm on the Internet

 and it is currently the default algorithm distributed by Linux (Table 1).

Figure 5. TCP CUBIC window growth function after the packet loss event.

The performance of the TCP CUBIC algorithm is visualised in Figure 5. To adjust the cwnd size, the TCP CUBIC uses a

cubic function that is characterised by the aggressive growth of the window size following the event when a packet loss is

detected. When the cwnd size approaches the point of the last congestion event (marked as in Figure 5), it slows its

growth to almost zero. After reaching the point, the algorithm slowly probes the network by increasing the cwnd size at a

slow rate. As it moves away from the , it rapidly accelerates its growth rate (Figure 5). Using a cubic function for

calculating the cwnd growth rate ensures fairness among the concurrent flows and good performance properties .

4.2. Delay-Based TCP CC Algorithms

All aforementioned loss-based CC algorithms use segment loss as a congestion indicator and they are based on utilising

a reactive congestion adaptation method. These algorithms are opposed to proactive delay-based CC algorithms (Figure

4) . A typical representative of loss-based CC algorithms is TCP Vegas (Figure 4). This was introduced as a delay-

based modification of the TCP Reno algorithm (Table 1). It predicts network congestion before actual segment loss

occurs. TCP Vegas uses a fine-grained RTT estimation that increases the accuracy of the computed timeout period, which

leads to a very efficient segment retransmission schedule (Table 1) . The TCP Vegas uses a modified retransmission

mechanism based on calculating the RTT estimation used for detecting segment loss before waiting for the reception of

the three duplicate ACKs (Table 1). This approach increases the algorithm recovery time. It also uses a modified version

of the slow start and congestion avoidance phases, which are thoroughly explained in Ref. . The TCP Vegas delay-

based approach can improve the overall TCP flow throughput by keeping the sending rate stable. However, due to the

slow cwnd growth, this approach can suffer from performance issues in high-speed networks. In networks with concurrent

loss-based flows, the TCP Vegas algorithm shows a decrease in performance due to the unfair resource allocation .

In the literature, several modifications of the TCP Vegas algorithm have been proposed. They are dedicated to addressing

the limitations of bottlenecks during link sharing when many TCP flows are present, and to alleviate the performance

issues in the case of links with high latency. A modified version of the TCP Vegas, called the TCP Vegas+ has been

introduced to overcome fairness issues between the TCP Reno and the TCP Vegas (Figure 4) . The algorithm

introduced an aggressive mode to maintain fair throughput when competing with TCP Reno flows. To address

performance issues of TCP Vegas over high latency links, a TCP New Vegas (Figure 4) has also been introduced.

Compared with TCP Vegas, TCP New Vegas implements three sender-side modifications of TCP Vegas . Furthermore,

another modification of TCP Vegas has been developed, called TCP Vegas-A (Figure 4). The algorithm uses the modified

congestion avoidance mechanism of TCP Vegas to address issues such as fairness against TCP New Reno flows,

rerouting issues, bias against high bandwidth connections and fairness issues between old and new connections in wired

and satellite networks . The authors in Ref. proposed a modified version of TCP Vegas-A, called TCP Vegas-V

(Figure 4). This CC algorithm improves performance regarding fairness and aggression features in the network

environment containing competing TCP Vegas, TCP Vegas-A and TCP Reno flows.

Another representative of delay-based CC algorithms is the FAST TCP algorithm that is designed for high-speed long-

latency networks (Table 1) . Based on the feedback information of the average RTT and average queuing delay, the

FAST TCP periodically updates cwnd in order to control the packet transmission. This feedback information is provided by

a latency estimation of each packet sent. Fairness and the number of buffered packets in the network are both controlled

by a scaling parameter. FAST TCP adjusts its cwnd size constantly according to the number of buffered packets. If the

number of buffered packets is far from the defined scaling parameter, the FAST TCP algorithm increases or decreases the

[24]

[35]

[14]

[14]

[25]

[25]

[14]

[26]

[27]

[28] [29]

[30]

cwnd size, effectively utilising the network capacity. On the other hand, when the number of buffered packets reaches the

target scaling parameter, the FAST TCP algorithm adjusts its cwnd by a small amount, thus ensuring the networks’

stability .

4.3. Hybrid TCP CC Algorithms

Hybrid TCP CC algorithms are a combination of loss-based and delay-based algorithms (Figure 4). In a congested

network situation or a network with high link utilisation having short bottleneck queues, hybrid algorithms tend to use a

delay-based CC approach. On the other hand, in a high-speed network with a low link utilisation, hybrid algorithms tend to

use a more aggressive CC approach that is characteristic of loss-based algorithms . Some of the well-known

representatives of hybrid CC algorithms are Compound TCP, Yet Another Highspeed (YeAH) TCP, and the TCP Bottleneck

Bandwidth and Round-trip Propagation Time (BBR) algorithm (Figure 4).

The Compound TCP algorithm is representative of a hybrid-based CC algorithm developed for high-speed and long-

distance networks. It was the default TCP algorithm in Microsoft Windows operating systems (Table 1) . Compound

TCP is designed to ensure high network utilisation, RTT and TCP fairness using a combination of loss-based and delay-

based approaches. In the slow start phase, Compound TCP has the same aggressive behaviour characteristic as

standard loss-based CC algorithms. During the congestion avoidance phase, it uses a combination of a standard loss-

based component and a new scalable delay-based component. The delay-based component is based on the TCP Vegas

algorithm, and it is controlled by a new state variable called dwnd (delay window). By encompassing the delay-based

component, Compound TCP provides faster network utilisation and a reduction of the sending rate according to the

bottleneck queue. This ensures better TCP fairness and the reduction of the sending rate in a packet loss event.

YeAH TCP is a hybrid variant of the high-speed TCP CC algorithm which uses two operation modes known as fast and

slow modes respectively (Figure 4) . During the fast recovery phase, the fast mode is initiated and the cwnd is

incremented aggressively as in the Scalable TCP algorithm (Table 1). In the congestion avoidance phase, the slow mode

is triggered by adjusting the cwnd size in the TCP Reno fashion. YeAH TCP uses the number of packets in the bottleneck

queue determined through RTT measurements. This packet number is used as a parameter to determine the state of the

algorithm. The main benefits of YeAH TCP are its high efficiency in situations where there are small link buffers typical of

high BDP networks. An important benefit of the YeAH TCP algorithm compared to loss-based algorithms is its improved

fairness.

The TCP BBR algorithm was developed by Google to overcome the problems faced by loss-based CC algorithms such as

throughput issues in a small buffer scenario and the bufferbloat problem in a network with large bottleneck buffers (Table

1) . It is a cutting-edge CC algorithm that creates an explicit CC model based on the recent measurements of the RTT

and the delivery rate of the network. Using an explicit CC data model, the algorithm adjusts the sending rate accordingly.

According to the periodic estimation of the available bandwidth and minimal RTT, the BBR algorithm prevents congestion

by ensuring low delay and high throughput operations. The sending rate is determined through the pacing gain process,

which is the main mechanism that the BBR uses to control the sending behaviour. This is done by maximising the rate at

which the BBR schedules packets. When the bottleneck bandwidth (BtlBw) has been estimated, the BBR deliberately

reduces the pacing gain to drain the queues in order to estimate the round trip propagation time (RTprop). Periodical

measurements of BDP calculated as the multiplication of the BtlBw and RTprop parameters ensure performance within

the Kleinrock optimal operating point , where data delivery rate is maximised and delay is minimised . However, the

initial version of the BBR has drawbacks which are mainly reflected in unfairness when competing with loss-based CC,

including a large number of packet losses and increased queuing delays . For that reason, an improved version known

as a BBRv2 has been introduced to alleviate these problems . Google has deployed TCP BBR across all of its

services, which has resulted in a higher throughput, reduced latency and better overall connection quality. Even though

TCP BBR is a relatively new CC algorithm, showed that after TCP CUBIC, it is the second most dominant CC

algorithm used on the Internet. It is reasonable to predict that TCP BBR will surpass TCP CUBIC in the near future.

4.4. TCP Fairness

In a situation of multiple concurrent TCP flows competing for the same bandwidth on the network link, some TCP CC

algorithms may receive more of a bandwidth share than other TCP flows. The challenge of satisfying bandwidth allocation

fairness is a serious problem in TCP CC. Hence, one of the main goals that CC algorithms need to accomplish is to

ensure fairness among flows that are competing for the same bottleneck bandwidth . Due to the competition among

different TCP flows, fair bandwidth allocation among TCP flows can severely degrade the performance of the CC

algorithms characterised by a less aggressive approach in the competition for bandwidth.

[36]

[9]

[31]

[32]

[33]

[37] [38]

[39]

[34]

[35]

[40]

Loss-based CC algorithms (e.g., TCP Reno) have an aggressive nature as packet loss is the only indicator of congestion.

This nature is mainly reflected in the continuous increase of cwnd until packet loss occurs. On the other hand, delay-

based algorithms (e.g., TCP Vegas) use RTT estimation to predict network congestion before an actual loss has occurred,

reducing the sending rate accordingly. In a network with many competing flows that are loss-based, delay-based flows

cannot get their fair throughput share as shown in Ref. . This is because flows with an aggressive loss-based approach

will obtain a larger amount of bandwidth than their fair share. Likewise, the fairness issue has been detected between the

most dominant CC algorithms on the Internet, and the CUBIC and BBR algorithms are no exception. It has been shown

that TCP BBR favours small buffers and gets a significantly higher share when competing with CUBIC. In contrast, when

using large buffers, BBR cannot compete with CUBIC because it occupies most of the bottleneck bandwidth as shown in

Ref. . When deploying CC algorithms in dynamic environments, such as the mmWave 5G network where a large

number of lines of line-of-sight (LOS) and non-line-of-sight (NLOS) transitions are expected, fairness issues should be

seriously considered. The NLOS state of the TCP flow causes an increase in RTT, which consequently results in

bandwidth unfairness among the flows .

4.5. TCP Optimisation Techniques

The purpose of TCP CC mechanisms is to address congestion on the network and to fully utilise the network resources.

Besides CC, several TCP optimisation techniques have been developed to enhance the operations of CC. To solve the

excessive buffering of packets on the network and thus preventing bufferbloat, active queue management (AQM)

techniques are proposed as opposed to a basic drop-tail queuing mechanism. AQM is a technique based on proactively

discarding packets from the buffer before the queue is full, thus reducing the risk of a queuing delay, preventing the

bufferbloat problem and proactively reducing network congestion . AQM schemes are deployed on the network device

buffers (e.g., routers, BSs, etc.), rather than as part of a TCP implementation. The benefit of using the AQM is to maintain

a small queue size to prevent overflowing the buffers with a large burst of packets. Furthermore, keeping the queue size

small reduces the queuing delay and minimises the overall end-to-end delay of the network. Finally, the AQM avoids the

impact of global TCP synchronisation and this contributes to the increased throughput and better utilisation of the network

.

Random early detection (RED) is an example of a basic AQM algorithm that addresses global synchronization problem,

minimise network congestion and limits network delay . Due to the configuration difficulties and performance issues

regarding bursty traffic of RED, a new technique called controlled delay (CoDel) has been developed. The CoDel is an

AQM technique that treats differently low delay queues and queues that continuously buffer packets causing the

increased delay. CoDel operates by regularly monitoring the minimum queuing delay in specific intervals and by

discarding packets when the minimum queue delay is exceeded. By using queue delay instead of buffer queue occupancy

as a queue management metric, CoDel improves network utilization, which further contributes to achieving high

throughput and better queue management .

Another TCP optimisation method that is used in combination with CC algorithms is the explicit congestion notification

(ECN) technique. The ECN is a congestion detection technique based on the setting of the codepoint (mark) in the ECN

field of the IP packet header . Based on this codepoint mark annotation, the ECN-capable device can signal on the

transport layer regarding the incipient congestion before actual congestion occurs. This allows the CC algorithms to adjust

their cwnd size accordingly. ECN is generally used in combination with AQM techniques, where ECN marks the IP packet

header based on the information obtained from the AQM scheme. Enabling the ECN technique can result in packet loss

reduction, queuing delay reduction, and improved throughput in the connection . Instead of dropping packets, an AQM

technique may interact with ECN to mark packets and therefore indicate congestion prior to the actual packet loss

occurs .

Since regular ECN informs the sender only once per RTT about incipient congestion, a more accurate ECN feedback

scheme (AccECN) has been proposed. It is based on allowing more than one feedback signal to be transmitted per RTT

. Although AccECN was proposed in 2011, it is still an Internet-draft working document expected to be standardised.

4.6. Multistream TCP Variants and Alternatives

Although TCP is the dominant transport protocol used today, there are emerging variants and alternatives that can

improve overall network performance (Figure 4). The two most relevant protocols are multipath TCP (MP-TCP) and Quick

UDP Internet Connection (QUIC). These protocols have been widely used and recently standardized by an Internet

Engineering Task Force (IETF). MP-TCP has been introduced as a TCP variant for multipath data communication and

QUIC is a UDP-based TCP alternative initially developed for hypertext transfer protocol (HTTP) traffic (Figure 4).

4.6.1. Multipath TCP

[41]

[39]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[48]

[49]

[50]

Standardized by an IETF in 2020, multipath TCP (MP-TCP) is an extension to the TCP that handles multiple paths

simultaneously for a single data stream [51]. Multipath connection is envisioned to utilize the presence of multiple network

interface cards (NICs) commonly found in today’s devices (e.g., smartphones). Hence, MP-TCP can use multiple network

interfaces (e.g., 4G, 5G, Wi-Fi, Ethernet, etc.) to create multiple subflows that use multiple paths for a single connection.

Using a multipath approach for end-to-end communication can improve utilization of network resources, enhance

throughput, and ensure more robust and resilient communication .

Figure 6. Comparison between TCP with TLS, QUIC and MP-TCP protocol stacks.

In Figure 6, a comparison between the TCP protocol stack and the MP-TCP protocol stack has been presented. It can be

seen that MP-TCP divides a single TCP connection into multiple different TCP flows. This dividing requires a CC algorithm

that can control the transmission rate for each subflow. To control the data transmission rate for each subflow, MP-TCP

CC must satisfy three design goals related to ensuring fair bottleneck bandwidth usage and robustness of the connection

. First, multiple subflows of a single multipath connection should perform at least as well as a single path connection

would on the best path available. Second, multipath connection should not use more capacity than a single path TCP

connection. Finally, an MP-TCP should balance congestion in such a way as to move data towards paths that are less

congested.

Depending on the cwnd control method for each subflow, CC mechanisms used with MP-TCP are characterized as

uncoupled or coupled. The uncoupled CC mechanism handles each subflow independently allowing each subflow to have

its own instance of TCP CC algorithm. On the other hand, the coupled CC mechanism manages cwnd in a coupled

manner, by considering the characteristics of all other subflows. The initial coupled CC algorithm (Figure 4), called the

linked increases algorithm (LIA) defined in Ref. , suffers from performance issues. As demonstrated in Ref. , LIA

transmits a large amount of data over paths that are congested and can have aggressive behavior with respect to a

legacy single-path TCP. To address these issues (Figure 4), the authors in Ref. have proposed the opportunistic linked

increases algorithm (OLIA). Additionally, authors in Ref. (Figure 4), proposed a balanced linked adaptation algorithm

(BALIA). The performance of BALIA is based on balancing responsiveness, TCP friendliness and cwnd oscillations.

However, these algorithms are based on the legacy TCP Reno CC algorithm and follow the AIMD scheme, and as such,

they cannot satisfy previously presented three design goals for operation in a 5G mmWave environment Since the

aforementioned coupled CC algorithms are primarily focused on the increase of the cwnd, while neglecting the cwnd
decreasing mechanism (Figure 4), authors in Ref. proposed a loss-based MP-TCP CC algorithm called Dynamic-

LIA (D-LIA). Instead of halving the cwnd after packet lost occurrence, the D-LIA decreases the cwnd by a dynamically

determined factor that depends on the interval between each packet loss . Using this approach, cwnd can reach its

optimal size much faster than the regular the TCP AIMD mechanism and thus reduce overall network latency and better

utilize network resources. Although the D-LIA achieves better overall performance in terms of throughput and fairness, the

authors have detected a downside related to increased packet retransmissions .

4.6.2. QUIC Protocol

The quick UDP Internet connections (QUIC) protocol is initially developed by Google as an alternative to TCP (Figure 4). It

uses user datagram protocol (UDP) at the transport layer (Figure 6).

[51]

[52]

[52] [53]

[53]

[54]

[55]

[56] [57]

[57]

[57]

(a) (b)

Figure 7. Comparison of connection establishment and message exchange for: (a) TCP with TLS, (b) QUIC protocol.

Although standardized in May 2021 by IETF, initial implementation and deployment started in 2012 and QUIC today

represents the authenticated and encrypted by default Internet transport protocol with the tendency of eventually replacing

TCP and Transport Layer Security (TLS) protocols on the web (Figure 6). QUIC is designed to overcome CC issues of

transport and application layer for web-based applications. An upcoming third version of the hypertext transfer protocol

(HTTP/3) is designed with QUIC as a built-in transport layer protocol and all major web browsers are starting to

support it.

According to Figure 6, QUIC includes the TLS layer with its own framing. This ensures permanent authentication and

encryption of the connection and makes the initial connection establishment faster. The handshake messages exchange

for TCP with TLS and QUIC have been presented in Figure 7. It can be seen that the QUIC handshake only requires one

round-trip between client and server to complete, while joint TCP with TLS handshakes requires two round-trips.

The main advantages of QUIC over TCP include: 0-RTT connection establishment which significantly reduces latency,

improves CC with loss detection and minimize head-of-line-blocking delay by supporting the multiplexed operation.

Furthermore, QUIC has introduced a pluggable CC interface that provides more flexibility over TCP. Namely, QUIC uses

generic CC signaling that can support different CC algorithms, thus allowing flexible algorithm selection . Additionally,

QUIC uses monotonically increasing packet numbers to ensure proper packet order. This ensures avoiding retransmission

ambiguities and simplified loss detection. It also includes information about the delay between the receipt of a packet and

the acknowledgment (ACK) sent for that packet, thus allowing for a more precise RTT estimation. To reduce the packet

losses caused by packet bursts, QUIC uses a packet pacing mechanism that evenly spaces packet transmissions over

time. It has been shown in Refs. , that a packet pacing mechanism minimizes the probability of packet losses and

supports data stream multiplexing. This eliminates head-of-line-blocking problems what can be especially beneficial over

lossy wireless environments (e.g., 4G, 5G networks).

Motivated by the development of the MP-TCP protocol, authors in Ref. have proposed a multipath QUIC (MP-QUIC)

protocol (Figure 4). The main capability of MP-QUIC is the possibility to pool resources for a connection that uses multiple

paths and to improve resistance to connection failures. This is especially important for today’s multi-homed devices (e.g.,

smartphones) that need to be able to make an uninterrupted switch between different network interfaces. Multipath

extension for QUIC (MP-QUIC) was introduced in 2017 and is described in detail in the IETF Internet draft document,

which is currently in the process of standardization .

5. Research Challenges and Future Directions

It has been shown that there is no unique TCP CC algorithm that can satisfy all use cases and applications, especially in

highly variable network environments (such as 5G and future generations of cellular networks or Internet of Everything

(IoE) applications). Developing an efficient transport layer CC algorithms that are able to effectively utilise the bandwidth

and overcome the issues such as blockages, misalignment and handover in wireless networks and link or node

[58]

[59]

[60]

[61] [62]

[63]

[64]

[65]

congestions (bottlenecks) in wired networks represents a great challenge. This is because the level of the sstresh (in Fig.

3a) is not constant and varies with the total network load. Hence, the CC problem is dominantly an optimization problem in

which each traffic source must continuously adapt its data traffic transmission based on backward information received

from the network.

Future solutions to optimal CC in complex heterogeneous networks composed of wireless, wired and a combination of

wireless and wired parts will be in the development of an optimal solution for a particular situation. For example, in

emerging usage scenarios where one device requires a high bandwidth priority and the other requires ultra-low latencies,

the use of different TCP CC algorithms is expected. Still, many questions must be answered in the development of new

CC algorithms such as: what is an optimal incremental or decremental policy of transmission rate for a specific

application, should the CC be deployed on a hop-by-hop or end-to-end basis, by what means the network can signalize to

the communicating points about congestion and what shud be prioritized, the low end-to-end latency or high link

utilization?

Another issue related to CC algorithms is dedicated to ensuring fairness between connections sharing the same link and

in defining a quantification of fairness. Scenarios in which multiple different TCP flows are controlled using different CC

algorithms and compete for their fair share of the link capacity can pose a serious challenge in terms of practical

realisation. More specifically, the problem of fairness for different TCP flows has not yet been successfully solved. Some

approaches propose solving the fairness issues for critical applications (such as autonomous driving or telesurgery) where

ultra-high reliability and ultra-low latency are expected, through the usage of only one TCP CC algorithm in an isolated

environment.

Another challenge is to find a solution that will utilise the full wired link capacity or wireless channel bandwidth and

minimise latency at the same time. Queuing delays as a consequence of large bottlenecks at the buffer level must be

addressed as their impact can seriously deteriorate network performance. One of the promising solutions is the cross-

layer approach where the transport layer of the OSI model can use the information obtained from the different layers to

adjust the congestion window (cwnd) size accordingly.

Regardless of the method used for congestion detection, the main challenges to TCP CC that must be addressed in future

networks are

Latency vs. throughput trade-off challenge: There are various solutions to achieve low latencies. However, many of

them are at the expense of bandwidth. It will be a challenge to find a solution that will achieve the best compromise for

the growing number of different communication use cases and practical scenarios.

Challenge of queuing delay and bufferbloat problem: The problem of excess packet buffering creating long queuing

delays known as bufferbloat, was detected in many research studies. Nevertheless, it is a research area that still needs

to be further explored.

Optimization of energy consumption challenge: It must be considered in the development of CC algorithms. This is

especially important for the wireless sensor networks and mobile devices, which operational activity depends on the

duration of the battery power supply.

The continuous and large increase of Internet Protocol data traffic challenge: For example, this is especially reflected in

the emergence of new multimedia applications. Also, the advent of new types of sensor networks like Body Area

Sensor Networks (BASN), Underwater Sensor Networks (UWSNs) or Wireless Multimedia Sensor Networks (WMSNs),

impose new challenges in the development of adequate CC algorithms.

Although CUBIC is the dominant CC algorithm for the broad Internet traffic today, the BBR algorithm increased its share in

terms of the practical implementation and it can be expected to become the dominant algorithm in the future. As the BBR

algorithm is slowly replacing the CUBIC algorithm, further research regarding their mutual interaction is needed to ensure

the stability of the Internet. Despite the fact that BBR achieves good performance in terms of maximising the throughput

and minimising latency, in highly variable network environments with a massive number of connected devices, achieving

an optimal network performance will be challenging.

Academic and industry researchers are constantly making efforts to improve traditional rule-based algorithms, that use

predefined heuristics to address new requirements. On the other hand, machine learning (ML) TCP CC is in its early

stages and it remains to be seen whether the future will be consistent with the traditional CC paradigm or if the future of

TCP CC lies in intelligent ML algorithms. The deployment of the ML in TCP CC is still in its infancy and it is too early to

expect any significant application at a higher level. However, with the advent of sixth-generation (6G) networks, ML will

need to be considered as the dominant direction in the field of network CC. There are possible directions in the

implementation of the ML for CC. The first one is based on the development of entirely new ML-based algorithms that will

completely replace the existing ones. The second is based on the integration of some of the ML properties into the

existing algorithms and maintaining its backward compatibility with rule-based algorithms. The future will show which of

these directions will dominate.

6. Conclusions

The implementation of new services, network generations and network types in wired and wireless networks, brings new

challenges in the realisation of data traffic CC. In this encyclopedic work, the TCP and the basics of the CC mechanism

have been presented. Also, a thorough survey of the most popular TCP algorithms used for CC is performed. An overview

of surveyed TCP algorithms includes single-flow CC algorithms, multi-flow CC algorithms and alternative algorithms that

have been envisioned as the future replacement for TCP.

Due to the challenges and limitations that conventional CC algorithms have, it is reasonable to expect further

advancements of the TCP CC algorithms in the years to come. A discussion related to the main research challenges that

must be addressed for the efficient implementation of CC algorithms in the upcoming networks has been presented. Also,

the potential future directions related to the development and implementation of ML-based algorithms as the most

promising candidates for the implementation of CC in complex future networks are elaborated.

Abbreviations

The following abbreviations are used:

4G 4th Generation Mobile Network

5G 5th Generation Mobile Network

6G 6th Generation Mobile Network

AccECN Accurate Explicit Congestion Notification

ACK Acknowledgment

BALIA Balanced Linked Adaptation Algorithm

BBR Bottleneck Bandwidth and Round-Trip Propagation Time

BDP Bandwidth-Delay Product

BIC Binary Increase Congestion Control

BS Base Station

BtlBw Bottleneck Bandwidth

CC Congestion Control

CoDel Controlled Delay

CTL Control field

cwnd Congestion Window

D-LIA Dynamic Linked Increases Algorithm

ECN Explicit Congestion Notification

eMBB Enhanced Mobile Broadband

IETF Internet Engineering Task Force

IoE Internet of Everything

IP Internet Protocol

IW Initial Window

LIA Linked Increases Algorithm

LOS Line-of-Sight

MAC Media Access Control

ML Machine Learning

mmWave Millimeter-Wave

MP-TCP Multipath TCP

MP-QUIC Multipath QUIC

ms millisecond

MSS Maximum Segment Size

NIC Network Interface Card

NLOS Non-Line-of-Sight

OLIA Opportunistic Linked Increases Algorithm

OSI Open System Interconnection

PUH Push field

QUIC Quick User Datagram Protocol Internet Connection

RST Reset field

RTO Retransmission Time-Out

RtProp Round Trip Propagation Time

RTT Round-Trip-Time

rwnd Receiver Window

SACK Selective Acknowledgment

SEQ Sequence field

ssthresh Slow-Start Threshold

SYN Synchronize (field)

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

URG Urgent field

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network

YEAH Yet Another Highspeed Transmission Control Protocol

References

1. Mateo, P.J.; Fiandrino, C.; Widmer, J. Analysis of TCP Performance in 5G mm-Wave Mobile Networks. In Proceedings
of the ICC 2019–2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; p
p. 1–7.

2. Zhang, M.; Polese, M.; Mezzavilla, M.; Zhu, J.; Rangan, S.; Panwar, S.; Zorzi, A.M. Will TCP Work in mmWave 5G Cell
ular Networks? IEEE Commun. Mag. 2019, 57, 65–71.

3. Allman, M.; Paxson, V.; Blanton, E. TCP Congestion Control. RFC 5681. September 2009. Available online: https://tool
s.ietf.org/html/rfc5681 (accessed on 31 April 2021).

4. Poorzare, R.; Aug, A.C. Challenges on the Way of Implementing TCP Over 5G Network. IEEE Access 2020, 8, 176393
–176415.

5. Cerf, V.G.; Kahn, R.E. A Protocol for Packet Network Intercommunication. IEEE Trans. Commun. 1974, 22, 637–648.

6. Postel, J. Transmission Control Protocol. RFC 793. September 1981. Available online: https://tools.ietf.org/html/rfc793
(ac-cessed on 31 April 2021).

7. Peterson, L.L.; Davie, B.S. Computer Networks: A Systems Approach; Elsevier, 2012. Available online: https://book.syst
emsapproach.org (accessed on 31 April 2021).

8. Clark, D.D. Window and Acknowledgement Strategy in TCP. RFC 813. July 1982. Available online: https://tools.ietf.org/
html/rfc813 (accessed on 31 April 2021).

9. Turkovic, B.; Kuipers, F.A.; Uhlig, S. Fifty Shades of Congestion Control: A Performance and Interactions Evaluation. ar
Xiv 2019, arXiv:1903.03852.

10. Gettys, J.; Nichols, K. Bufferbloat: Dark Buffers in the Internet: Networks without effective AQM may again be vulnerabl
e to congestion collapse. Queue 2011, 9, 40–54.

11. Jacobson, V. Congestion Avoidance and Control. Comput. Commun. Rev. 1988, 18, 314–329.

12. Chu, J.; Dukkipati, N.; Cheng, Y.; Mathis, M. Increasing TCP’s Initial Window. RFC 6928. April 2013. Available online: ht
tps://tools.ietf.org/html/rfc6928 (accessed on 31 April 2021).

13. Stevens, W. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms. RFC 2001. Janu
ary 1997. Available online: https://tools.ietf.org/html/rfc2001 (accessed on 31 April 2021).

14. Afanasyev, A.; Tilley, N.; Reiher, P.; Kleinrock, L. Host-to-Host Congestion Control for TCP. IEEE Commun. Surv. Tutor.
2010, 12, 304–342.

15. Floyd, S. Metrics for the Evaluation of Congestion Control Mechanisms. RFC 5166. March 2008. Available online: http
s://tools.ietf.org/html/rfc5166 (accessed on 31 April 2021).

16. Jacobson, V. Modified TCP Congestion Avoidance Algorithm; Technical Report. 1990. Available online: ftp://ftp.ee.lbl.go
v/email/vanj.90apr30.txt (accessed on 31 April 2021).

17. Mascolo, S.; Casetti, C.; Gerla, M.; Sanadidi, M.Y.; Wang, R. TCP westwood: Bandwidth estimation for enhanced trans
port over wireless links. In Proceedings of the 7th Annual International Conference on Mobile Computing and Networki
ng (MobiCom’01), Rome Italy, 16–21 July 2001; pp. 287–297.

18. Mathis, M.; Mahdavi, J.; Floyd, S.; Romanow, A. TCP Selective Acknowledgment Options. RFC 2018. October 1996. Av
aila-ble online: https://tools.ietf.org/html/rfc2018 (accessed on 31 April 2021).

19. Floyd, S. HighSpeed TCP for Large Congestion Windows. RFC 3649. December 2003. Available online: https://tools.iet
f.org/html/rfc3649 (accessed on 31 April 2021).

20. Kelly, T. Scalable TCP: Improving Performance in Highspeed Wide Area Networks. ACM SIGCOMM Comput. Commun.
Rev. 2003, 32, 83–91.

21. Xu, L.; Harfoush, K.; Rhee, I. Binary increase congestion control (BIC) for fast long-distance networks. In Proceedings
of the IEEE INFOCOM, Hong Kong, China, 7–11 March 2004.

22. Ha, S.; Rhee, I.; Xu, L. CUBIC: A New TCP-Friendly High-Speed TCP Variant. ACM SIGOPS Oper. Syst. Rev. 2008, 4
2, 64–74.

23. Brakmo, L.S.; O’Malley, S.W.; Peterson, L.L. TCP Vegas: New techniques for congestion detection and avoidance. AC
M SIGCOMM Comput. Commun. Rev. 1994, 24, 24–35.

24. Hasegawa, G.; Kurata, K.; Murata, A. Analysis and Improvement of Fairness between TCP Reno and Vegas for Deploy
ment of TCP Vegas to the Internet. In Proceedings of the 2000 International Conference on Network Protocols, Osaka,
Japan, 14–17 November 2000; pp. 177–186.

25. Sing, J.; Soh, B. TCP New Vegas: Improving the Performance of TCP Vegas over High Latency Links. In Proceedings
of the Fourth IEEE International Symposium on Network Computing and Applications, Cambridge, MA, USA, 27–29 Jul
y 2005; pp. 73–82.

26. Srijith, K.; Jacob, L.; Ananda, A. TCP Vegas-A: Improving the Performance of TCP Vegas. Comput. Commun. 2005, 28,
429–440.

27. Zhou, W.; Xing, W.; Wang, Y.; Zhang, J. TCP Vegas-V: Improving the performance of TCP Vegas. In Proceedings of the
International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), Xiamen, China, 3–5 March 2012;
pp. 2034–2039.

28. DWei, X.; Jin, C.; Low, S.H.; Hegde, S. FAST TCP: Motivation, Architecture, Algorithms, Performance. IEEE/ACM Tran
s. Netw. 2006, 14, 1246–1259.

29. Tan, K.; Song, J.; Zhang, Q.; Sridharan, M. A Compound TCP Approach for High-speed and Long Distance Networks. I
n Proceedings of the IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications, Barc
elona, Spain, 23–29 April 2006; pp. 1–12.

30. Baiocchi, A.; Castellani, A.P.; Vacirca, F. Yeah-tcp: Yet another highspeed TCP. In Proceedings of the 5th International
Workshop on Protocols for Fast Long-Distance Networks (PFLDnet), Los Angeles, CA, USA, 7–9 February 2007.

31. Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR: Congestion-based congestion control. Commu
n. ACM 2017, 60, 58–66.

32. Cardwell, N.; Cheng, Y.; Yeganeh, S.H.; Swett, I.; Vasiliev, V.; Jha, P.; Seung, Y.; Mathis, M.; Jacobson, V. Bbrv2: A mod
-el-based congestion control. In Proceedings of the IETF 102th Meeting, Montreal, QC, Canada, 14–20 July 2018; pp.
1–36.

33. Henderson, T.; Floyd, S.; Gurtov, A.; Nishida, Y. The NewReno Modification to TCP’s Fast Recovery Algorithm. RFC 65
82. April 2012. Available online: https://tools.ietf.org/html/rfc6582 (accessed on 31 April 2021).

34. Mishra, A.; Sun, X.; Jain, A.; Pande, S.; Joshi, R.; Leong, B. The Great Internet TCP Congestion Control Census. Proc.
ACM Meas. Anal. Comput. Syst. 2019, 3, 1–24.

35. Mishra, A.; Sun, X.; Jain, A.; Pande, S.; Joshi, R.; Leong, B. The Great Internet TCP Congestion Control Census. Proc.
ACM Meas. Anal. Comput. Syst. 2019, 3, 1–24.

36. Jin, C.; Wei, D.; Low, S.H.; Bunn, J.; Choe, H.D.; Doylle, J.C.; Newman, H.; Ravot, S.; Singh, S.; Paganini, F.; et al. FA
ST TCP: From theory to experiments. IEEE Netw. 2005, 19, 4–11.

37. Kleinrock, L. Power and Deterministic Rules of Thumb for Probabilistic Problems in Computer Communications. In Pro-
ceedings of the International Conference on Communications (ICC ‘79), Berlin, Germany, 17–20 September 1979; Volu
me 3, pp. 43.1.1–43.1.10.

38. Scholz, D.; Jaeger, B.; Schwaighofer, L.; Raumer, D.; Geyer, F.; Carle, G. Towards a Deeper Understanding of TCP BB
R Con-gestion Control. Available online: https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/IFIP-Networking
-2018-TCP-BBR.pdf (accessed on 31 April 2021).

39. Hock, M.; Bless, R.; Zitterbart, M. Experimental Evaluation of BBR Congestion Control. In Proceedings of the IEEE 25t
h International Conference on Network Protocols (ICNP), Toronto, ON, Canada, 10–13 October 2017.

40. Floyd, S. Congestion Control Principles. RFC 2914. September 2000. Available online: https://datatracker.ietf.org/doc/h
tml/rfc2914 (accessed on 31 April 2021).

41. Mo, J.; La, R.J.; Anantharam, V.; Walrand, J. Analysis and comparison of TCP Reno and Vegas. In Proceedings of the I
EEE INFOCOM’99, Conference on Computer Communications, Eighteenth Annual Joint Conference of the IEEE Comp
uter and Communications Societies, New York, NY, USA, 21–25 March 1999.

42. Pieska, M.; Kassler, A.J.; Lundqvist, H.; Cai, T. Improving TCP Fairness over Latency Controlled 5G mmWave Commu
nica-tion Links. WSA 2018. In Proceedings of the 22nd International ITG Workshop on Smart Antennas, Bochum, Deut
schland, 14–16 March 2021.

43. Gong, Y.; Rossi, D.; Testa, C.; Valenti, S.; Täht, M.D. Fighting the bufferbloat: On the coexistence of AQM and low priori
ty congestion control. In Proceedings of the 2013 IEEE Conference on Computer Communications Workshops (INFOC
OM WKSHPS), Turin, Italy, 14–19 April 2013

44. Gomez, C.A.; Wang, X.; Shami, A. Intelligent Active Queue Management Using Explicit Congestion Notification. In Pro-
ceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 28–30 October 20
19.

45. Floyd, S.; Jacobson, V. Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 1993, 1,
397–413.

46. Nichols, K.; Jacobson, V.; McGregor, A.; Iyengar, J. Controlled Delay Active Queue Management. RFC 8289. January 2
018. Available online: https://tools.ietf.org/html/rfc8289 (accessed on 31 April 2021).

47. Al-Saadi, R.; Armitage, G.; But, J.; Branch, P. A Survey of Delay-Based and Hybrid TCP Congestion Control Algorithms.
IEEE Commun. Surv. Tutor. 2019, 21, 3609–3638.

48. Fairhurst, G.; Welzl, M. The Benefits of Using Explicit Congestion Notification (ECN). RFC 8087. March 2017. Available
online: https://tools.ietf.org/html/rfc8087 (accessed on 31 April 2021).

49. Baker, F.; Fairhurst, G. IETF Recommendations Regarding Active Queue Management. RFC 7567. July 2015. Availabl
e online: https://datatracker.ietf.org/doc/html/rfc7567#section-2.2 (accessed on 31 April 2021).

50. Briscoe, B.; Kuehlewind, M.; Scheffenegger, R. More Accurate ECN Feedback in TCP. IETF, Internet-Draft. February 20
21. Available online: https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn (accessed on 31 April 2021).

51. Ford, A.; Raiciu, C.; Handley, M.; Bonaventure, O.; Paasch, C. TCP Extensions for Multipath Operation with Multiple Ad
-dresses. RFC 8684. March 2020. Available online: https://datatracker.ietf.org/doc/html/rfc8684 (accessed on 31 April 2
021).

52. Raiciu, C.; Handly, M.; Wischik, D. Coupled Congestion Control for Multipath Transport Protocols. RFC 6356. October
2011. Available online: https://datatracker.ietf.org/doc/html/rfc6356#section-3 (accessed on 31 April 2021).

53. Khalili, R.; Gast, N.; Popovic, M.; Boudec, J.L. MPTCP Is Not Pareto-Optimal: Performance Issues and a Possible Solu
tion. IEEE/ACM Trans. Netw. 2013, 21, 1651–1665.

54. Peng, Q.; Walid, A.; Hwang, J.; Low, S.H. Multipath TCP: Analysis, Design, and Implementation. IEEE/ACM Trans. Net
w. 2016, 24, 596–609.

55. Polese, M.; Jana, R.; Zorzi, M. TCP in 5G mmWave networks: Link level retransmissions and MP-TCP. In Proceedings
of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Atlanta, GA, USA, 1
May 2017.

56. Fu, F.; Zhou, X.; Dreibholz, T.; Wang, K.; Zhou, F.; Gan, Q. Performance comparison of congestion control strategies fo
r multi-path TCP in the NORNET testbed. In Proceedings of the 2015 IEEE/CIC International Conference on Communic
ations in China (ICCC), Shenzhen, China, 2–4 November 2015.

57. Lubna, T.; Mahmud, I.; Cho, Y.-Z. D-LIA: Dynamic congestion control algorithm for MPTCP. ICT Express 2020, 6, 263–
268.

58. Iyengar, J.; Thomson, M. QUIC: A UDP-Based Multiplexed and Secure Transport. RFC 9000. May 2021. Available onlin
e: https://datatracker.ietf.org/doc/html/rfc9000 (accessed on 31 April 2021).

59. Bishop, M. Hypertext Transfer Protocol Version 3 (HTTP/3). IETF, Internet-Draft. February 2021. Available online: http
s://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34 (accessed on 31 April 2021).

60. Iyengar, J.; Swett, I. QUIC Loss Detection and Congestion Control. RFC 9002. May 2021. Available online: https://datat
racker.ietf.org/doc/html/rfc9002 (accessed on 31 April 2021).

61. Cook, S.; Mathieu, B.; Truong, P.; Hamchaoui, I. QUIC: Better for what and for whom? In Proceedings of the 2017 IEEE
In-ternational Conference on Communications (ICC), Paris, France, 21–25 May 2017.

62. Yu, Y.; Xu, M.; Yang, Y. When QUIC meets TCP: An experimental study. In Proceedings of the 2017 IEEE 36th Internati
onal Performance Computing and Communications Conference (IPCCC), San Diego, CA, USA, 10–12 December 201
7.

63. Coninck, Q.D.; Bonaventure, O. Multipath QUIC: Design and Evaluation. In Proceedings of the 13th International Confe
r-ence on Emerging Networking EXperiments and Technologies (CoNEXT ‘17), Incheon, Korea, 12–15 December 201
7.

64. Coninck, Q.D.; Bonaventure, O. Multipath Extensions for QUIC (MP-QUIC). IETF Internet-Draft. May 2021. Available o
nline: https://datatracker.ietf.org/doc/draft-deconinck-quic-multipath/07/ (accessed on 31 April 2021).

65. Lorincz, J.; Klarin, Z.; Ožegović, J. A Comprehensive Overview of TCP Congestion Control in 5G Networks: Research
Challenges and Future Perspectives. Sensors 2021, 21, 4510, 1-41.

Retrieved from https://encyclopedia.pub/entry/history/show/28871

