

Extracellular Vesicles and Immunomodulation in Mosquitoes and Ticks

Subjects: **Virology**

Contributor: , Charluz Arocho , Adela Oliva Chávez

Extracellular vesicles are small blebs that are secreted by cells, which are lipid-rich and contain proteomic and genomic material (including small RNAs, mRNA, and plasmid DNA). These materials are delivered into recipient cells leading to a phenotypic change. Recent studies have demonstrated the secretion of extracellular vesicles by mosquito and tick cells, as well as tick salivary glands. Further, these studies suggest vesicles play a role in the transmission of vector-borne pathogens, including viruses and bacteria, and are involved in the manipulation of wound healing and immune responses. Both of these processes are key in the host response to hematophagous arthropods' feeding. The role of mosquito and tick EVs in the modulation of immune responses and pathogen transmission is discussed in this entry.

hematophagy

immune modulation

pathogen transmission

extracellular vesicles

arthropods

Arthropods are important vectors of pathogens that can affect humans, wildlife, and domestic animals ^[1]. The World Health Organization (WHO) has estimated that diseases caused by vector-borne pathogens result in more than 700,000 human deaths yearly ^[2]. In the US, damages to livestock production due to arthropod feeding account for approximately USD 100 billion in losses annually ^[3]. Mosquitoes and ticks are particularly impactful from a public and animal health perspective and are the focus of this entry.

Mosquitoes can transmit flaviviruses, protozoans, bacteria, and nematodes. With over 3000 different species, mosquitoes are a worldwide public health concern ^{[4][5][6]}. An anthropophilic adult female mosquito will need multiple bloodmeals to enhance their fitness, obtain the energy to search for a mate, and to initiate vitellogenesis ^{[4][7][8][9]}. Hard ticks, on the other hand, are obligatory blood feeders that can feed on a host for days to weeks at a time ^{[10][11]}. Ticks are considered second to mosquitoes in their public health relevance. It is estimated that tick bites are responsible for the transmission of over 100,000 cases of tick-borne diseases in humans throughout the world ^{[12][13]}. A recent study showed that 140,281 insured patients were diagnosed with Lyme disease in the US alone from 2010 to 2018, with incidences as high as 87.9/100,000 enrollees ^[14] and the Center for Disease Control and Prevention (CDC) now estimates that 476,000 Americans are affected by this disease ^[15]. Given that most of the work on vector-derived extracellular vesicles (EVs) has been carried out in these two vector species, the authors will limit this entry to what is known about mosquito- and tick-derived EVs.

Due to their need for a bloodmeal, either for survival or reproduction, arthropods have evolved intricate mechanisms that allow them to counteract immune and inflammatory responses by their host. For example, during

feeding, arthropods can release EVs via their saliva [16][17]. EVs are double-layer vesicles that are secreted by all cells and are essential for cell-to-cell communication [18][19][20][21][22]. Physiological changes in the cell can lead to an increase in vesicle secretion or cause changes in the cargo packed within the extracellular vesicles secreted by these cells. For example, pathogen-infected cells secrete EVs that carry infectious cargo, such as viral RNA. These vesicles can enhance pathogen transmission and replication [23][24][25]. EVs originating from infected vector cells can serve as the source of infection for host cells *in vitro* [24][26][27][28]. In other cases, EVs produced by virus-infected cells can inhibit pathogen transmission [29][30]. Nevertheless, the relevance of these phenomena during *in vivo* pathogen transmission is undetermined. This entry focuses on the function of EVs during arthropod feeding and their potential contribution in pathogen transmission.

References

1. Sutherst, R.W. Arthropods as disease vectors in a changing environment. *Ciba Found. Symp.* 1993, 175, 124–141.
2. World Health Organization. Vector-Borne Diseases. Available online: <https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases> (accessed on 25 January 2022).
3. United States Department of Agriculture. Mitigating Impacts of Vector-Borne Diseases. Available online: <https://www.ars.usda.gov/research/annual-report-on-science-accomplishments/fy-2019/mitigating-impacts-of-vector-borne-diseases/> (accessed on 25 January 2022).
4. Crans, W.J. A classification system for mosquito life cycles: Life cycle types for mosquitoes of the northeastern United States. *J. Vector Ecol.* 2004, 29, 1–10.
5. Jackman, J.A.; Olson, J.K. Mosquitoes and the Diseases they Transmit. Available online: <https://texashelp.tamu.edu/wp-content/uploads/2016/02/B6119-mosquitoes-and-the-diseases-they-transmit.pdf> (accessed on 25 January 2022).
6. Roberts, L. Mosquitoes and disease. *Science* 2002, 298, 82–83.
7. Foster, W.A. Mosquito sugar feeding and reproductive energetics. *Annu. Rev. Entomol.* 1995, 40, 443–474.
8. Scott, T.W.; Takken, W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. *Trends Parasitol.* 2012, 28, 114–121.
9. Waage, J.K.; Nondo, J. Host behaviour and mosquito feeding success: An experimental study. *Trans. R. Soc. Trop. Med. Hyg.* 1982, 76, 119–122.
10. Anderson, J.F.; Magnarelli, L.A. Biology of ticks. *Infect. Dis. Clin. N. Am.* 2008, 22, 195–215.
11. Mans, B.J.; Neitz, A.W. Adaptation of ticks to a blood-feeding environment: Evolution from a functional perspective. *Insect Biochem. Mol. Biol.* 2004, 34, 1–17.

12. De la Fuente, J.; Estrada-Pena, A.; Venzal, J.M.; Kocan, K.M.; Sonenshine, D.E. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. *Front. Biosci.* **2008**, *13*, 6938–6946.

13. Estrada-Peña, A.; Jongejan, F. Ticks feeding on humans: A review of records on human-biting Ixodoidea with special reference to pathogen transmission. *Exp. Appl. Acarol.* **1999**, *23*, 685–715.

14. Schwartz, A.M.; Kugeler, K.J.; Nelson, C.A.; Marx, G.E.; Hinckley, A.F. Use of Commercial Claims Data for Evaluating Trends in Lyme Disease Diagnoses, United States, 2010–2018. *Emerg. Infect. Dis.* **2021**, *27*, 499–507.

15. Center for Disease Control. How Many People Get Lyme Disease? Available online: <https://www.cdc.gov/lyme/stats/humancases.html> (accessed on 6 March 2022).

16. Oliva Chávez, A.S.; Wang, X.; Marnin, L.; Archer, N.K.; Hammond, H.L.; Carroll, E.E.M.; Shaw, D.K.; Tully, B.G.; Buskirk, A.D.; Ford, S.L.; et al. Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection. *Nat. Commun.* **2021**, *12*, 3696.

17. Zhou, W.; Tahir, F.; Wang, J.C.; Woodson, M.; Sherman, M.B.; Karim, S.; Neelakanta, G.; Sultana, H. Discovery of Exosomes From Tick Saliva and Salivary Glands Reveals Therapeutic Roles for CXCL12 and IL-8 in Wound Healing at the Tick-Human Skin Interface. *Front. Cell Dev. Biol.* **2020**, *8*, 554.

18. Janas, T.; Janas, M.M.; Sapoń, K.; Janas, T. Mechanisms of RNA loading into exosomes. *FEBS Lett.* **2015**, *589*, 1391–1398.

19. Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. *Nat. Cell Biol.* **2019**, *21*, 9–17.

20. Pegtel, D.M.; Gould, S.J. Exosomes. *Annu. Rev. Biochem.* **2019**, *88*, 487–514.

21. Van Niel, G.; D'Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. *Nat. Rev. Mol. Cell Biol.* **2018**, *19*, 213–228.

22. Yu, X.; Odenthal, M.; Fries, J.W. Exosomes as miRNA Carriers: Formation-Function-Future. *Int. J. Mol. Sci.* **2016**, *17*, 2028.

23. Anderson, M.R.; Kashanchi, F.; Jacobson, S. Exosomes in Viral Disease. *Neurotherapeutics* **2016**, *13*, 535–546.

24. Giosetti, A.; Edelmann, M.J.; Kima, P.E. Intravacuolar Pathogens Hijack Host Extracellular Vesicle Biogenesis to Secrete Virulence Factors. *Front. Immunol.* **2021**, *12*, 662944.

25. Pegtel, D.M.; Cosmopoulos, K.; Thorley-Lawson, D.A.; van Eijndhoven, M.A.; Hopmans, E.S.; Lindenberg, J.L.; de Gruyjl, T.D.; Würdinger, T.; Middeldorp, J.M. Functional delivery of viral miRNAs via exosomes. *Proc. Natl. Acad. Sci. USA* **2010**, *107*, 6328–6333.

26. Reyes-Ruiz, J.M.; Osuna-Ramos, J.F.; De Jesús-González, L.A.; Hurtado-Monzón, A.M.; Farfan-Morales, C.N.; Cervantes-Salazar, M.; Bolaños, J.; Cigarroa-Mayorga, O.E.; Martín-Martínez, E.S.; Medina, F.; et al. Isolation and characterization of exosomes released from mosquito cells infected with dengue virus. *Virus Res.* 2019, 266, 1–14.

27. Reyes-Ruiz, J.M.; Osuna-Ramos, J.F.; De Jesús-González, L.A.; Palacios-Rápalo, S.N.; Cordero-Rivera, C.D.; Farfan-Morales, C.N.; Hurtado-Monzón, A.M.; Gallardo-Flores, C.E.; Alcaraz-Estrada, S.L.; Salas-Benito, J.S.; et al. The Regulation of Flavivirus Infection by Hijacking Exosome-Mediated Cell-Cell Communication: New Insights on Virus-Host Interactions. *Viruses* 2020, 12, 765.

28. Zhou, W.; Woodson, M.; Neupane, B.; Bai, F.; Sherman, M.B.; Choi, K.H.; Neelakanta, G.; Sultana, H. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. *PLoS Pathog.* 2018, 14, e1006764.

29. Alenquer, M.; Amorim, M.J. Exosome Biogenesis, Regulation, and Function in Viral Infection. *Viruses* 2015, 7, 5066–5083.

30. Freitas, M.N.; Marten, A.D.; Moore, G.A.; Tree, M.O.; McBrayer, S.P.; Conway, M.J. Extracellular vesicles restrict dengue virus fusion in *Aedes aegypti* cells. *Virology* 2020, 541, 141–149.

Retrieved from <https://encyclopedia.pub/entry/history/show/53543>