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The strata model inside the earth is close to physical reality. The strata layers can be macro-
anisotropic but transversely isotropic, where some are vertically symmetric and the others are
not. The macroscopic anisotropy is significant for seismic waves with long wave-length regarding
propagation, reflection, refraction, and polarization. This topic review provides the most recent
theoretical development related to geophysical applications. 
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1. Introduction
The acoustic waves at the interface between two different types of anisotropic media play an
important role in acoustic applications, including geophysical applications , seismic research

, petroleum logging , energy conversion device , and medical imaging device
.

A good model needs to be as simple as possible while remaining close to physical reality, such as
the strata model inside the earth. The strata layers can be macro-anisotropic but transversely
isotropic, where some are vertically symmetric and the others not . The macroscopic
anisotropy and related properties have been modeled based on the so-called elastic tensor, which
is usually reserved for the hexagonal crystals . Obviously, macroscopic anisotropy is
significant for seismic waves with long wave-length regarding propagation, reflection, refraction,
and polarization.

The refraction and reflection coefficients and their corresponding phase factors are the typical
physical qualities that deserve special attention. Discussions have been focused mostly on and
limited to the models of the transversely isotropic rock layers . Due to
mathematical complexity, there have been temptations and interests in approximate expressions

 However, the analytic solutions of the amplitudes of the reflected and refracted
waves are desirable, yet difficult .

For angles of reflection and refraction, at the interface between similar types of strata, a fourth-
order polynomial has been established for transversely isotropic media with a vertical axis of
symmetry (VTI) . At the interface between unlike strata, an eighth-order polynomial has
been established for transversely isotropic media with a tilting axis of symmetry (TTI).
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While an interface between likewise-media has a relatively simple geometric structure
, the interface between unlike-media can be much more

complicated .

2. The Interface Between VTI and TTI
Sedimentary rocks are typically anisotropic media but treated as transversely isotropic. Mostly,
they are polar anisotropic. The VTI and TTI media, as medium models, are the most common
structures of the strata, as shown in Figure 1. At the interface between VTI and TTI media, the
reflection and refraction coefficients are affected by many factors, including anisotropy, tilting-
angle of rock-layer, and incident-angle.

Figure 2 is a schematic presentation of the interface between VTI and TTI media, showing the
symmetric axes of the media and the geometric relationship between the VTI and TTI media with a
TTI tilt-angle, Ï.

Figure 1. A schematic representation of the anisotropic rock media: (a) transversely isotropic
media with a vertical axis of symmetry (VTI), (b) transversely isotropic media with a tilting axis of
symmetry (TTI) .

Figure 2. Schematic representation of VTI-TTI media interface, where Z-axis is the symmetric-
axis of TTI medium; z-axis is the symmetric-axis of VTI medium, normal to the interface .

An incident P-wave from the VTI medium striking on the interface would induce several new waves
at the interface, e.g., reflected P-wave, reflected SV-wave, refracted P-wave, and refracted SV-
wave, as shown in Figure 3.
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Figure 3. At the interface between VTI and TTI media, a P-wave from VTI medium leads to
reflection and refraction, which produces the reflected P-wave, reflected SV-wave, refracted P-
wave, and refracted SV-wave, corresponding to the index (1,2,3,4) .

The mechanical and physical properties of a general anisotropic medium can be described by an
elastic stiffness tensor that may have up to 21 independent elements. The elastic stiffness tensors
of the VTI and TTI media have only 5 independent elements .

Now, consider an incident P-wave from VTI to TTI medium with an incident angle (Î¸). For the TTI
medium, Bond transformation can be used to convert its tilt-angle structure to the same tensor
form of the VTI structure ; Kelvin-Christoffel equation can be
solved for the reflected and refracted coefficients; Snellâs law can be applied to determine the
angles of reflection and refraction and to guarantee energy conservation.

Inside the incident VTI medium, Snellâs law yields a fourth-order polynomial for the angles of
reflection of the reflected P-wave and SV-wave ,

                                                                

.                                                                         (1)

Inside the refraction TTI medium, an eighth-order polynomial of the angles of refraction is
obtained for the refracted P-wave and SV-wave ,

                                             

.   .                              (2)

In equations (1)-(2), Î¸ is an incident angle; the coefficients (

 and

) are functions of the incident angle, the anisotropy, and the mechanical parameters of the media.

3. The Effects of TTI Tilting
Consider the interface between VTI and TTI media, where the TTI medium has a tilting-angle, Ï.
The typical mechanical and anisotropy parameters for the VTI and TTI media have been reported

[35]

[36][37]

[24][25][26][27][28][29][30][31][32][33][34]

[24][25]

[35]

[13][14][25][35][38][39]



in the literature . Typically, the tilting level of the TTI medium shows a
significant influence on the critical incident angle, the reflection and refraction coefficients, the
magnitude of power density flux, and the state of polarization.

The critical incidence angle (Î¸ ), corresponding to the refracted P-wave, has been affected
significantly by the tilting level of the TTI medium and its anisotropy, as shown in Table 1. The
tilting-angle and anisotropy of the TTI medium also influence the coefficients of the reflection and
refraction. The calculated refraction coefficients and corresponding phase angles are shown in
Figure 4.

Table 1: The critical incident angle versus the tilting-angle of TTI medium at the interface between
VTI and TTI media.

TTI tilting-angle, Ï 0Â° 45Â° 60Â°

Critical incident-angle, Î¸ 41.3Â° 51.1Â° 55.3Â°

 

It should be noted that the reflection and refraction coefficients are not smooth continuous at the
angle of critical incidence.

Figure 4. The amplitude and corresponding phase angle of the refracted wave, at the interface
between VTI and TTI media, versus incident angle (Î¸) for three selected values of TTI tilting-angle
(Ï) .

The anisotropy influences the magnitude of power density flux but not the sum of the real parts of
power density fluxes of the induced waves in the z-direction. The influence of the tilting-angle is
even more significantly on the reflection and refraction coefficients, much more than anisotropy
does. The real-parts of the energy density fluxes as a function of incident angle, for the induced
waves in the z-direction, are calculated for several parameters and are presented in Figure 5.
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Figure 5. The energy density fluxes of the reflected and refracted waves perpendicular to the
interface between VTI and TTI media versus incident angle (Î¸), for selected tilting-angles (Ï) of the
TTI media. The blue, red, and black curves are for the cases of TTI tilting-angle Ï = 0Â°, 45Â°, and
60Â° .

The polarization state of the refracted wave is also influenced by the tilting-angle and anisotropy
of the refraction medium .  

Prior to the critical incident angle, the polarization coefficients of the waves are all mathematically
real numbers, including the incident P-wave, reflected P-wave, reflected SV-waves, refracted P-
wave, and refracted SV-wave.

In the post-critical angle region, except for the refracted P-wave, the polarization coefficients are
complex numbers for all waves. The polarization coefficients of the refracted P-wave have two
possible solutions. Each solution has two independent components (

and

), where one component is purely real; the other is purely imaginary. If the x-component is purely
real, the z-component must be purely imaginary; vice versa. The choice of the solution determines
the direction of polarization.

4. Final Comments
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Based on our current knowledge from the studies of the VTI-VTI anisotropic media interface, the
VTI-TTI interface can be explained, through Bond transformation, by borrowing the techniques
used in the VTI-VTI interface. Additional work will lead to improved understanding of the interface
between different types of anisotropic media, such as the interface between TVI and TTI
anisotropic media. In practical applications for energy conversion, on the transient response of the
acoustic-electric transducers, a similar issue may appear for acoustic scattering from spheres and
cylinders .

The next steps may include the determinations of anomalous refraction if it ever exists, the effect
of the competition between anisotropy and tilting-angle of the media, and the effect of anisotropy
and the tilting-angle on polarization conversion. With respect to reflection and refraction, it is
extremely desirable to achieve a better understanding of the relative importance of the anisotropy
and TTI angle tilting, i.e., the competition between the anisotropy and angle-tilting of the media.
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