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The Internet of Things (IoT) is transforming various domains, including smart energy management, by enabling the
integration of complex digital and physical components in distributed cyber-physical systems (DCPSs). The design

of DCPSs has so far been focused on performance-related, non-functional requirements.

renewable energy communities (RECS) energy-aware DCPS edge-to-cloud infrastructure

deep learning heirarchical-CPS

| 1. Introduction

The Internet of Things (IoT) has become increasingly prevalent across various application domains, such as smart
cities and Industry 4.0, leading to a heightened emphasis on the design and development of distributed cyber-
physical systems (DCPSs). These systems’ behavior is significantly influenced by their context, encompassing the
external physical environment and the internal states of the IT components and networked infrastructure. In recent
years, DCPSs have been proposed to facilitate renewable energy communities (RECs), which promote sustainable
development within local communities by adopting renewable energy sources. RECs consist of individuals,
organizations, and businesses collaborating to produce and consume renewable energy, such as solar or wind
power. Integrating DCPSs in RECs can enhance energy usage efficiency by monitoring and controlling energy flow
within the community. DCPSs provide the essential infrastructure for RECs to supervise and regulate the
production and consumption of renewable energy sources. In this context, 0T devices collect energy production
and consumption data, which is then analyzed by cloud-based platforms to optimize the energy management
system. By harnessing these technologies, RECs can establish a more decentralized and democratized energy
system, empowering local communities to manage their energy resources actively. Numerous global initiatives
have successfully integrated DCPSs and RECs. For example, in Germany, the “EnergieWendeBauen” project

(energiewendebauen.de, accessed on 1 March 2023) has implemented a DCPS-based platform for energy

management in residential communities. This platform enables residents to monitor and control their energy usage
and share excess renewable energy within the community. Similarly, the “Solar Share” project in ltaly (lifegate.it,
accessed on 1 March 2023)has introduced a DCPS-based platform that allows individuals and small businesses to
share surplus solar energy with their neighbors. Integrating DCPSs and RECs offers a promising opportunity to
promote sustainable development and transform the energy landscape. By leveraging the power of 10T and cloud

computing technologies, these systems can enable more efficient, sustainable, and decentralized energy
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management. Future research in this area should focus on developing scalable and secure DCPS-based platforms

to support the widespread adoption of renewable energy sources in local communities worldwide.

To enable the creation of DCPSs, an overlay-based distinction between the physical environment and the digital
infrastructure is considered a cornerstone of the whole scenario. 10T devices’ sensing and actuation capabilities
facilitate this interaction between the two layers, which collect data to send to the cloud for processing according to
various scopes, such as latency reduction, privacy-preserving, or security purposes. Data processing in the cloud
typically involves logic units adapting their models based on observed data and providing dynamic and queryable
run time models for a pipeline of services. Until now, the design of DCPSs has primarily focused on performance-
related, non-functional requirements. However, sustainability has become critical due to the growing power
consumption and associated computing expenses at different levels in these systems. The increasing
sophistication of DCPSs requires more computational resources, which leads to increased energy costs. To
address the sustainability challenge, integrating energy-aware digital components in DCPSs is an essential activity
to create sustainable systems where 10T devices and server-based infrastructures can make autonomous
decisions based on the outcomes of self-learning algorithms. DCPSs are becoming increasingly complex and
consist of multiple interacting subsystems and environments. The aggregation of subsystems occurs at different
levels, from edge devices to large systems. The proposed solution envisions a future where DCPSs are treated as
conscious systems that can respond to internal and external triggers and adapt their operations to achieve
predefined goals. These systems will be able to learn from experience through self-learning mechanisms and carry
out planned actions and predictive strategies at the overall system level to optimize resources, maximize efficiency,
and reduce energy costs.

A renewable energy community realized upon a DCPS is an environment in which two aspects must be combined
and orchestrated: energy production and energy consumption. The trade-off has to be realized not only in terms of
online orchestration but also by considering historical data related to the two aspects mentioned above. From this
perspective, 10T devices are essential to observe physical parameters, such as current consumption and voltage. A

distributed infrastructure collects and processes these samples through optimizing self-learning algorithms.

2. A Deep Learning-Driven Self-Conscious Distributed Cyber-
Physical System for Renewable Energy Communities

Distributed cyber-physical systems (DCPSs) can significantly benefit from recent advancements in distributed
computing, including architectural elements, algorithms, and models. In [, the authors highlight key challenges
associated with DCPSs, such as latency, energy consumption, security/privacy, and reliability. Designing a reliable
loT communication infrastructure for DCPSs remains an open challenge, as other researchers in 28 emphasized.
Meanwhile, ref. [ formulates the scheduling computation on the cloud continuum as a mixed-integer linear
programming problem and proposes an energy-aware deployment and replication scheduling model, considering

the capability of edge/fog nodes to harvest “green” energy.
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The increased adoption of DCPSs, combined with the need to address emerging climate change issues, has led to
renewable energy communities (RECs). In recent years, energy delivery and consumption in DCPSs have gained
particular attention due to the increasing number of users (producers and consumers) involved in generating and
sharing renewable energy B8, Research on energy management and optimization through energy exchange,
sharing, and storage mechanisms, along with the characterization of user behaviours, is crucial for achieving
sustainability in RECs B, |n this context, ref. (29 proposes a distributed energy management system (EMS) for
optimal microgrid operation, considering power distribution constraints. The EMS demonstrates effectiveness in
both islanded and grid-connected modes, with future work focusing on its implementation in real systems and
performance analysis. Cloud computing has emerged as a popular solution for managing, storing, and processing
data in energy systems. As outlined by 11 it offers a scalable, on-demand, and cost-effective model for delivering
IT resources via the Internet. Numerous researchers have investigated the application of cloud computing for
energy management and optimization. In 12 the authors explore the new challenges that smart grid technology
introduces for comprehensive data management and examine how cloud computing can address these issues.
Their survey encompasses smart grid and energy management methods, investigating the use of cloud computing
in various domains, such as energy management, demand-side management, building energy management,

energy hubs, and power dispatching systems.

Smart grids represent a modernized electrical grid infrastructure that employs cutting-edge technologies to monitor,
control, and optimize electrical power generation, distribution, and consumption. The authors in 13! present a
detailed overview of smart grid technologies, including advanced metering infrastructure, demand response, and
distributed energy resources. Furthermore, ref. 14 reviews demand-side management techniques in smart grids,
emphasizing the importance of load forecasting, demand response, and energy storage systems in achieving
energy efficiency and grid reliability. Integrating the Internet of Things (IoT) and cloud computing has shown
immense potential in enhancing the efficiency of energy management systems. loT provides a platform for
connecting and collecting data from various devices and sensors, while cloud computing enables the processing
and analysis of these data. In (12l the authors discuss how incorporating 10T technologies into smart grids can
improve monitoring, communication, and data processing across various devices. They propose a layered
approach for classifying loT applications in smart grids and explore recent research efforts along with future
directions. On the other hand, the authors in [18! investigate the benefits of combining 10T and cloud computing for
smart grid applications, particularly in demand response, fault detection, and renewable energy integration. This
synergistic approach holds promise for further energy management and optimization advancements, paving the
way for more sustainable and efficient energy systems. Ref. 17 investigates the correlation between solar
irradiance and harmonic distortion in grid-tied photovoltaic distributed energy resource (PV-DERS) systems.
Understanding this relationship can help develop effective grid-to-grid power-sharing arrangements and mitigate

harmonics in bidirectional power-transfer community-grid structures.

The self-management processes that govern the operation of RECs are based on machine learning (ML)
techniques to improve their effectiveness, autonomy, and efficiency. Energy demand and supply forecasting, self-
consumption, characterization of power consumption behaviours, efficient scheduling of energy resources, and

appliance obsolescence are some tasks involving ML and deep learning (DL) techniques [18I[121[20]21]
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Some studies have been conducted using both statistical approaches 2223124 and ML models for predicting
individual household loads, predominantly the latter, due to their ability to capture complex patterns in the data and
provide accurate predictions [22/281127128] On the other hand, despite other works that have been conducted to
improve the accuracy of household load forecasting using the advantages of DL models, and thus of the use of the
neural network (NN)-based algorithms 29BABL other investigations have focused on improving the accuracy of
household load forecasting by taking advantage of DL architectures for time series prediction, including the highly
effective long short-term memory neural networks (LSTMs) 22831 The |atter have demonstrated remarkable
advancements in recent times, despite the volatility of predictions caused by the heterogeneity and randomness of
household behavior; however, they are out-performed by the more accurate Bi-LSTM networks 4133861 |n this
context, modeling user profiles to meet energy demand while optimizing overall consumption is crucial 7. Thus,
DL models are a must to identify users’ lifestyles based on their daily energy consumption. In addition, the
meteorological forecast data must also be considered when modeling energy profiles, as renewable energy
sources are often intermittent. Research on developing planning strategies for smart load distribution and
integrating renewable energy resources is ongoing, and federated learning (FL) approaches are being investigated
for this purpose 28139,

Energy awareness must be incorporated at every layer (models, data, algorithms, hardware components, etc.) and
tier (cloud, edge/fog, I0T) of the IT infrastructure of DCPSs, and in every phase (design, deployment, execution,
etc.). To address this problem, the scientific community has begun to define methodologies and approaches to
evaluate the energy consumption of models and algorithms based on structural and behavioural parameters 29,
For example, ref. [41l proposes an energy-efficient 10T data compression algorithm to optimize the execution of ML
algorithms at the edge. At the same time, ref. (4243l focuses on the energy optimization of the deployment and
distributed training of ML models at the edge, respectively. The processing capabilities of 0T devices represent
both a resource and a constraint. Thus, designing a suitable infrastructure is both a requirement and a challenge.
The trend towards offloading data analytics tasks from edge devices to the cloud has been increasing. However,
existing offloading approaches face the challenge of being static and needing help to adjust to changing workloads

and network conditions.

Moreover, in 44 an energy-aware workload allocation framework for distributed deep neural networks (DNNSs) in
the edge-cloud continuum was presented to minimize energy costs for inference. This framework considers energy
consumption and computation performance to optimize the allocation of workloads in a distributed computing
environment. Offloading data analytics tasks from edge devices to the cloud has great potential for improving the
efficiency and performance of DCPSs. However, existing offloading approaches have limitations, and researchers

continue to develop more dynamic and energy-efficient solutions to overcome these challenges.

The advancements in DCPS research make significant progress on latency, energy consumption, security/privacy,
reliability, and computation allocation challenges, improving their effectiveness, autonomy, and efficiency while
contributing to sustainability and addressing emerging problems related to climate change. For these reasons, the
solution proposed in this research aims to define an optimal implementation/architecture of an energy-aware

DCPS, providing a smart and flexible power system while enabling the integration of renewable energy sources
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and facilitating the integration of microgrids and other distributed energy resources. Ref. 43 presents an
asymmetrical single-phase eleven-level inverter for the grid integration of distributed power generation sources,
contributing to improved power quality and cost-effectiveness in grid-connected systems. Moreover, ref. [48
introduces a distributed-variable flow-variable temperature (VF-VT) approach for integrated energy and heating
systems, offering privacy preservation, feasibility, and scalability. The study identifies future research directions,
including global optimization, model development, and improved thermal dynamics modeling, which can further

enhance the performance and efficiency of energy-aware DCPSs.

Researchers proposed solution employs a combined approach for managing both the production and consumption
aspects of RECs, which sets it apart from other systems. In addition to this comprehensive approach, their solution
provides three key contributions that, although present in some existing solutions, are not typically found together
in a single framework. Specifically, their approach integrates all three contributions, enhancing the overall
effectiveness and efficiency of the system. In comparison, the papers from references [18119][201[21][22][23][24][25][26][27]
(28][29][30][31](32][33](34][351[36[37] nrimarily focus on applying Al techniques to individual households rather than entire
communities. While these studies offer valuable insights into Al-based energy management, they may not fully
capture the complexity and interconnectedness of energy production and consumption in broader communities. By
addressing energy management at the community level, their solution aims to achieve a more comprehensive
understanding and optimization of energy distribution and utilization in RECs. Moreover, the works from references
BIBI7EIE do not explicitly mention the use of Al techniques in their proposed solutions. Although these studies
contribute to advancing energy-aware DCPSs, they may not fully leverage the potential of Al and ML in improving
energy management, forecasting, and optimization in RECs. By incorporating Al and, more specifically, DL
techniques in researchers' solution, they seek to further enhance the performance, efficiency, and adaptability of

their proposed energy-aware DCPS architecture.
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