

Cervicovaginal Microbiome

Subjects: **Obstetrics & Gynaecology**

Contributor: Encyclopedia Editorial Office

The cervicovaginal microbiome (CVM) denotes the microbial community that inhabits the lower female reproductive tract, principally the vaginal lumen and ectocervix, and the array of host–microbe interactions that occur there. The CVM includes bacteria, viruses, fungi, and eukaryotic microbes, plus metabolites and host immune factors present in cervicovaginal fluid. The composition and activity of this ecosystem influence local physiology, susceptibility to infections, reproductive outcomes, and long-term gynecologic health.

cervicovaginal microbiome

vaginal microbiota

16S rRNA gene

1. Historical Perspective and Conceptual Framework

Until the late 20th century, understanding of the vaginal microbiota was shaped mainly by microscopy and bacterial culture. These approaches emphasized the importance of *Lactobacillus* species as dominant residents in many women, but they underestimated diversity and mischaracterized species not easily cultured. The advent of molecular techniques, especially 16S rRNA gene sequencing and later shotgun metagenomics, transformed understanding of the CVM [1].

A widely adopted framework categorizes cervicovaginal bacterial communities into community state types (CSTs): four dominated by specific *Lactobacillus* species and one diverse, lactobacillus-depleted state [2]. This system has become a cornerstone of research, enabling reproducible classification of vaginal microbial profiles across populations and providing insight into clinical associations.

2. Anatomy and Ecological Niche

The cervicovaginal environment includes the vaginal epithelium (stratified squamous epithelium) and the ectocervix, both bathed in cervicovaginal fluid secreted by cervical glands and transudates. Estrogen promotes glycogen accumulation in epithelial cells, which upon desquamation is metabolized by amylases to maltose and glucose. These sugars serve as substrates for microbial fermentation, particularly by *Lactobacillus* spp., which produce lactic acid [3].

The resulting low pH (3.5–4.5 in reproductive-age women with lactobacillus-dominated communities) acts as an ecological filter, excluding many pathogens. In addition, cervical mucus, antimicrobial peptides, defensins, and secretory IgA contribute to defense, while resident microbes influence host immune tone and mucosal barrier function [4].

3. Community Structure and Key Taxa

Large cohort studies have consistently identified five common CSTs [2][5]:

- CST I: *Lactobacillus crispatus*
- CST II: *Lactobacillus gasseri*
- CST III: *Lactobacillus iners*
- CST V: *Lactobacillus jensenii*
- CST IV: diverse, low-lactobacillus community enriched with *Gardnerella*, *Atopobium*, *Prevotella*, *Sneathia*, and *Mobiluncus*

Each CST differs in stability, host associations, and functional properties. For example, *L. crispatus* produces high levels of lactic acid (including D-lactic acid), providing robust protection, whereas *L. iners* can survive in less favorable conditions but often coexists with anaerobes.

Recent computational tools, such as the VALENCIA classifier, offer standardized assignment of samples to CSTs, improving cross-study comparability.

4. Determinants of Cervicovaginal Microbiome Composition

4.1. Host Biology

Age, hormonal status, pregnancy, and menopause strongly shape the CVM. Estrogen-rich environments favor lactobacillus dominance through glycogen-mediated lactic acid production. Genetic variation in immune response genes may also influence community stability.

4.2. Behavioral and Environmental Factors

Sexual activity, condom use, intravaginal products, and douching influence microbial composition. Menstrual cycle dynamics transiently shift microbial abundance due to pH and hormone fluctuations.

4.3. Ethnicity and Geography

Studies have shown population-level differences in CST prevalence, with some ethnic groups having higher proportions of CST IV communities. This suggests interactions among host genetics, lifestyle, and environment.

4.4. Antibiotic and Healthcare Exposures

Antibiotic therapy can disrupt lactobacilli and promote dysbiosis. Medical interventions such as intrauterine devices or hormonal contraception may also influence microbial states.

4.5. Pregnancy

Pregnancy often stabilizes lactobacillus-dominated communities, though certain women remain at higher risk for dysbiosis, which can have implications for birth outcomes.

5. Biological Functions and Mechanisms

The cervicovaginal microbiome exerts its influence through multiple mechanisms:

- Acidification: *Lactobacillus* fermentation lowers vaginal pH, inhibiting pathogens.
- Antimicrobial production: Bacteriocins, hydrogen peroxide, and biosurfactants inhibit competitors.
- Colonization resistance: Lactobacilli occupy adhesion sites and consume resources, preventing pathogen overgrowth.
- Immune modulation: Dysbiotic states correlate with increased pro-inflammatory cytokines (IL-1 β , TNF- α), while lactobacillus dominance promotes mucosal homeostasis.

6. Clinical and Epidemiological Associations

6.1. Bacterial Vaginosis (BV)

BV is the most studied dysbiotic state, marked by reduced lactobacilli and enrichment of anaerobes such as *Gardnerella vaginalis* and *Atopobium vaginae*. BV is associated with malodor, discharge, and increased susceptibility to sexually transmitted infections (STIs), pelvic inflammatory disease, and adverse pregnancy outcomes.

6.2. Sexually Transmitted Infections (STIs) and HPV Persistence

Women with CST IV communities are at greater risk of acquiring HIV, chlamydia, gonorrhea, and persistent HPV infection. Dysbiosis appears to compromise epithelial integrity and modulate immunity in ways that enhance viral persistence and reduce clearance.

6.3. Preterm Birth and Pregnancy Outcomes

Meta-analyses show *L. crispatus* dominance correlates with reduced risk of spontaneous preterm birth, while CST IV profiles predict elevated risk. Microbial markers of dysbiosis appear stronger predictors of early than late

preterm birth.

6.4. Cervical Neoplasia and Cancer

Diverse, anaerobe-rich CVMs are more frequently associated with high-grade cervical intraepithelial neoplasia and may play a role in HPV-mediated carcinogenesis, though causality remains under investigation.

6.5. Other Outcomes

Links between CVM dysbiosis and infertility, vulvovaginal candidiasis, and pelvic pain syndromes are emerging but require stronger evidence.

7. Methods to Study the Cervicovaginal Microbiome

7.1. 16S rRNA Sequencing

The most widely used method for bacterial profiling; cost-effective and suitable for CST assignment in large studies.

7.2. Shotgun Metagenomics

Provides higher resolution at species and strain level, detects functional genes, and characterizes the virome and mycobiome.

7.3. Metatranscriptomics, Metaproteomics, and Metabolomics

These techniques illuminate microbial activity, metabolite production (e.g., lactic acid stereoisomers, short-chain fatty acids), and host–microbe interactions.

7.4. Integrated Multi-omics

Combining microbial, immune, and metabolite data with clinical outcomes enables predictive modeling. Standardization across sample collection and analysis remains a critical challenge.

8. Mechanistic Insights into Host–Microbe Interactions

- Metabolite-driven effects: Lactate maintains acidic pH, while sialidases and proteases from anaerobes degrade mucus and extracellular matrix.
- Immune activation: Dysbiotic CVMs induce cytokine release, recruit neutrophils, and increase mucosal permeability.

- Virus facilitation: Pro-inflammatory and enzymatic activities in CST IV may enhance viral persistence, contributing to HPV-related disease.

9. Diagnostic and Therapeutic Implications

9.1. Diagnostics

Research-based microbiome profiling is progressing toward clinical use, with CST classification and risk prediction for preterm birth and recurrent BV under evaluation.

9.2. Antibiotic Therapy

Metronidazole and clindamycin remain first-line treatments for BV, but recurrence rates are high due to incomplete microbial eradication and poor lactobacillus re-establishment.

9.3. Probiotics and Live Biotherapeutics

Trials with oral and intravaginal *Lactobacillus* probiotics show variable efficacy. Strain-specific colonization ability appears critical for outcomes.

9.4. Vaginal Microbiome Transplantation (VMT)

Pilot studies demonstrate VMT's potential for refractory BV, but standardization, donor screening, and regulatory approval are needed.

10. Challenges and Knowledge Gaps

- Distinguishing causality versus association in disease outcomes.
- Expanding functional studies beyond compositional analyses.
- Addressing ethnic and geographic variation in global cohorts.
- Standardizing methodology across studies.

11. Future Directions

Advances are likely in:

- Mechanistic models using organoids and humanized animal systems.

- Personalized therapeutics such as engineered *Lactobacillus* strains and bacteriophage therapies.
- Integrated risk prediction models combining multi-omic data with clinical risk factors.

12. Conclusion

The cervicovaginal microbiome is a critical determinant of reproductive health and disease. *Lactobacillus*-dominated communities confer protection, while diverse anaerobic states increase vulnerability to infection, preterm birth, and neoplastic progression. As multi-omic approaches mature and therapies evolve, CVM profiling may soon enter mainstream gynecologic practice.

References

1. Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women. *Proc Natl Acad Sci U S A*. 2011;108 Suppl 1:4680–4687. <https://doi.org/10.1073/pnas.1002611107>.
2. Gajer P, Brotman RM, Bai G, et al. Temporal dynamics of the human vaginal microbiota. *Sci Transl Med*. 2012;4(132):132ra52. <https://doi.org/10.1126/scitranslmed.3003605>.
3. Mirmonsef P, Gilbert D, Zariffard MR, et al. The effects of commensal bacteria on innate immune responses in the female genital tract. *Am J Reprod Immunol*. 2011;65(3):190–195. <https://doi.org/10.1111/j.1600-0897.2010.00942.x>.
4. Boris S, Barbés C. Role played by lactobacilli in controlling the population of vaginal pathogens. *Microbes Infect*. 2000;2(5):543–546. [https://doi.org/10.1016/S1286-4579\(00\)00313-0](https://doi.org/10.1016/S1286-4579(00)00313-0).
5. Ravel J, Brotman RM, Gajer P, et al. Daily temporal dynamics of vaginal microbiota before, during and after episodes of bacterial vaginosis. *Microbiome*. 2013;1:29. <https://doi.org/10.1186/2049-2618-1-29>.

Retrieved from <https://encyclopedia.pub/entry/history/show/131568>