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Artificial Intelligence (AI) can be a useful tool in the management of disease processes such as hepatocellular carcinoma

(HCC) as treatment decisions are often complex and multifaceted. AI applications in medicine are expanding with the

ongoing advances in AI including more sophisticated machine learning and deep learning processes.
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1. Introduction

Primary liver cancer is the sixth most commonly diagnosed cancer worldwide and hepatocellular carcinoma (HCC)

accounts for over 80% of newly diagnosed cases . Due to the lack of early diagnostic markers, absence of specific

symptoms in early disease, and inadequate screening programs in most countries, nearly two out of every three patients

diagnosed with HCC have intermediate or advanced disease upon diagnosis . Unfortunately, these patients often have

a poor prognosis as their disease may not be amenable to curative interventions, such as surgical resection, liver

transplantation, or ablation, and, until recently, effective systemic options were limited. As a result, HCC is the fourth most

common cause of cancer-related death worldwide with a relative five-year survival rate of 18% . However, the recent

inclusion of immunotherapy into the HCC treatment paradigm and the expansion of downstaging/bridging protocols to liver

transplantation have improved overall survival and established a new standard of care for patients with HCC . In

addition to surgical and systemic therapeutic options, a number of liver-directed therapies (e.g., bland transarterial

embolization (TAE), transarterial chemoembolization (TACE), radioembolization (RE)) are available depending on the

extent of cirrhosis and the stage of the disease . With the expanding therapeutic armamentarium for patients with HCC,

novel tools are needed to effectively stratify patients to maximize therapeutic benefit.

Artificial intelligence (AI) has recently emerged as a viable clinical tool with growing utility in the management of HCC.

Broadly, AI is a subdivision of data science which describes the theory and development of computer systems that

perform tasks requiring human-level intelligence such as visual perception or decision making. AI was originally

conceptualized in the 1950s by the mathematician Alan Turing and the field has greatly expanded since its original

conception. As technology continues to evolve, new AI techniques have been developed to address more complex and

sophisticated problems. Machine learning and deep learning are two such subfields of AI (Figure 1).

[1]

[2][3]

[4][5]

[6][7]

[5]



Figure 1. The Relationship between artificial intelligence, machine learning, and deep learning.

In machine learning, computer systems learn and adapt by using algorithms and statistical models to draw inferences

from patterns present in data . Unlike traditional statistical programming where the data and algorithms are provided and

the output is produced, machine learning systems are provided the data and then independently “develop” an algorithm to

process the data. Algorithm accuracy improves overtime as the system “learns” from additional data/output cycles. Two

common learning methods are supervised and unsupervised learning. In supervised learning, the computer system is

provided human-labeled datasets including desired inputs and outputs. The operator knows the desired output; the

algorithm “learns” from the observations to identify patterns in the data and make predictions. Examples of supervised

learning include classification, regression, and forecasting. In contrast, unsupervised machine learning systems do not

receive output information. The system identifies associations and relationships to group the data in a more organized

way without an “answer key”. Clustering and dimension reduction are two examples of unsupervised learning .

The datasets used to develop machine learning models are typically divided into training, validation, and testing datasets.

Once an algorithm has been developed from a training dataset, it is further optimized and tuned with a validation set.

Upon completion of the training phase, its performance will be evaluated with a test dataset comprising new data which

the system has not yet encountered. Ideally, the algorithm will have a similar predictive power with the test dataset as with

the one it was trained through, implying generalizability of the model. It is important to note the generalizability of an

algorithm is largely based upon the characteristics of its training and the validation dataset. Any biases present within the

dataset, such as homogeneity due to sampling error, will become inherent to the model. This will ultimately lead to

decreased generalizability and a poorer predictive performance of the model .

Deep learning is a subset of machine learning and more closely mimics human intelligence. The system is built upon

artificial neural networks that are modeled on the biologic neural networks of the brain . Deep learning models have the

ability to process more complex data, such as images, text or sounds, and are the basis of complex models such as

speech recognition or large-scale image analysis. This method of AI processes data through multiple neural layers,

progressively extracting higher-level features to produce a complete learned result. These networks can comprise millions

of neural layers each of which receives data from the previous layer, transforms the data, and sends them to connected

neurons in succeeding layers (Figure 2). Each of these connections has a different weighted value based upon which

characteristics are most important and predictive in achieving an accurate output. These networks of neurons—in addition

to the initial input and final output layers—are known as hidden layers. One major limitation of deep learning methods is

that it is not always understood how the model has reached the final output, a phenomenon known as the “black box” of

deep learning. It is often unclear how the model has transformed the data to reach the output. Furthermore, data are

processed in such a granular fashion and through countless amounts of hidden neural layers that these connections are

often not comprehensible or meaningful to the human brain . Another major limitation of deep learning is that these

models require sizable training datasets in order to extrapolate meaningful relationships within the data. This can be a

[8]

[9]

[9]

[10]

[11]



deterrent to developing functional models for entities with few observations as is frequently the case when evaluating rare

diseases .

Figure 2. Deep learning processes and transforms data through multiple artificial neural networks to generate a predictive

algorithm based on complex patterns within the data.

AI has a growing presence in medicine; however, ethical considerations and technical constraints initially limited broader

adoption and the implementation of AI within the medical field. While many ethical considerations remain, recent

advances in AI methodologies have overcome some of the technical constraints. For example, Jiang et al. reported on the

superiority of a self-supervised large language model that was trained on unstructured clinical notes from an electronic

health record to predict 30-day all-cause readmission, in-hospital mortality, comorbidity indices, lengths of stay, and

insurance denial when compared with traditional models . Furthermore, an AI model using deep network automatic

segmentation outperformed a clinical model and a radiomic model in discriminating between patients with pancreatic

cancer with and without lymph node metastasis . These advances have improved the accuracy and expanded the

clinical utility of AI systems in the field of medicine.

2. Screening and Detection

Since many patients diagnosed with HCC have advanced disease and limited therapeutic options, improvements in

screening and early detection are necessary to improve outcomes. For example, a review of country-level HCC

surveillance programs demonstrated that countries with established and effective HCC surveillance programs detected

HCC at significantly earlier stages and had lower overall mortality . Effective programs identify and stratify patients at

high-risk of developing HCC and enroll them into regular surveillance protocols such as biannual evaluation with liver

ultrasound and liquid tumor markers. Ideally, healthcare professionals intervene prior to the development of irreversible

HCC risk factors (i.e., cirrhosis). However, cost/benefit restraints and high false-positive rates limit the utility of screening

low-prevalence populations. AI techniques may help us to overcome these limitations (Table 1). In a 2022 study, Blanes-

Vidal et al. evaluated asymptomatic patients from a primary care population without a prior diagnosis of liver disease .

The authors tested the diagnostic performance of ensemble models, a machine learning approach, to detect liver fibrosis

and then compared the performance with standard blood-based scoring systems. The ensemble models included data

readily available during a primary care visit. In a subset of 463 patients that received a liver biopsy, the ensemble learning

models significantly outperformed standard blood-based indices to detect liver stiffness (>8 kPa) and fibrosis (Kleiner

biopsy stage F2 to F4) with AUCs of 0.86–0.94 vs. 0.60–0.76. Furthermore, all the ensemble models had a ≥98%

negative predictive value. Similarly, other AI models have demonstrated superiority to standard models in predicting the

development of HCC .

Radiomics, a quantitative method to extract features (e.g., shape, intensity, texture) from medical imaging, can

significantly improve the diagnostic yield of imaging modalities, especially when combined with other AI techniques such

as deep learning. While established criteria exist for the radiologic diagnosis of HCC in high-risk patients (i.e., LI-RADS),

the true proportion of patients with LI-RADS 5 lesions (diagnostic of HCC) is unclear. Additionally, this classification

system only applies to patients at high risk of HCC (e.g., cirrhosis, HBV infection) . The diagnostic uncertainty of many
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newly identified liver lesions may lead to unnecessary serial imaging, invasive procedures (e.g., biopsy), and undue

psychological stress on the patient. For these reasons, much energy has been devoted to building radiomic-based models

that can accurately detect and diagnose HCC (Table 1). Yasaka et al. developed a deep learning model using a

convolutional neural network (CNN) to differentiate malignant liver lesions from non-malignant lesions . In this

retrospective study, the authors built a CNN using imaging sets from 460 patients who were found to have liver lesions on

triple-phase CT. The lesions were classified into five categories as follows: classic HCC (A), malignant tumors other than

HCC (B), indeterminate masses and rare benign liver masses (C), hemangiomas (D), or cysts €. The CNN accurately

identified malignant lesions with the median AUC of 0.92 for differentiating categories A–B from categories C–E.

Furthermore, Mokrane et al. used a radiomic model to improve the diagnostic accuracy of HCC in cirrhotic patients with

indeterminate liver nodules . In this multicenter retrospective study, multiphasic CT scans of 178 cirrhotic patients who

had undergone the biopsy of indeterminate liver nodules were included. Nearly 14,000 quantitative features were

extracted from imaging sets. With machine learning algorithms, a radiomic signature was created and validated to classify

these indeterminate liver nodules as HCC or non-HCC. While the LI-RADS scores were similar between the HCC and

non-HCC groups, the radiomic signature reached an AUC of 0.70 in the discovery cohort and 0.66 in the validation cohort.

AI has also been used to augment the diagnostic capabilities of other imaging modalities including ultrasound and

magnetic resonance imaging (MRI) .

While the generalizability of screening and diagnostic models derived from AI techniques requires further evaluation,

these models offer non-invasive and resource-efficient means to reliably screen and detect HCC in select populations.

This technology can be especially useful in low resource centers where specialized liver radiologists may not be readily

available to aid in the diagnosis of complex liver lesions. Furthermore, these models may help institutions and

governments to more efficiently allocate scarce resources to HCC screening and intervention due to improved risk

stratification. For example, using a deep learning recurrent neural network model to generate HCC risk scores, Ioannou et

al. found that 80% of HCC cases diagnosed in the subsequent three years occurred in the highest 51% of risk scores .

Risk-based screening supported by AI algorithms may increase diagnostic yield, optimize resource utilization, and help us

to overcome the suboptimal performance of existing tools .

Table 1. Select studies utilizing AI in screening and diagnosis of HCC.

Author, Year Model Design Population AI Methodology Accuracy

Blanes-Vidal
et al. (2022)

Prediction of liver fibrosis using
clinical data readily available to

primary care physicians

Low-prevalence primary care
population

Ensemble learning
model

AUC:
0.86–0.94

Ioannou et al.
(2020) 

Identification of patients at high risk
of developing HCC by extracting data

from electronic medical records

Patients with known Hepatitis
C Virus and cirrhosis

Recurrent neural
network

AUROC:
0.759

Yasaka et al.
(2018) 

Differentiation of liver masses on CT,
with categorization into HCC, other

liver tumors, hemangiomas, or cysts

Patients who had undergone
dynamic contrast-enhanced

CT for evaluation of liver
lesions

Convolutional
neural network

AUROC:
0.92

Mokrane et al.
(2020) 

Diagnosis of liver nodules as HCC vs.
non-HCC based on quantitative

features extracted from triphasic CT

Patients with cirrhosis and
biopsy-proven indeterminate

liver nodules

Machine learning-
based radiomic

signature

AUROC:
0.66

Schmauch et
al. (2019) 

Detection and characterization of
focal liver lesions as benign- vs.
malignant-based on ultrasound

characteristics

Patients with known liver
nodules

Residual neural
network

AUROC:
0.935

3. Prognosis and Treatment

3.1. HCC Prognosis and Risk of Recurrence

Recent multi-omic investigations have advanced the understanding of the carcinogenic mechanisms responsible for HCC,

revealing many potential biomarkers . Evaluating these large data sets with AI methods may improve current

prognostic ability by identifying more aggressive subtypes and patients at high risk of recurrence (Table 2). In an early

study using a deep learning framework to integrate multi-omic data in patients with HCC, Chaudhary et al. developed a

deep learning model from 360 patients with HCC using RNA sequencing, miRNA sequencing, and methylation data from

The Cancer Genome Atlas . The model identified a more aggressive subtype with worse survival characterized through
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frequent TP53 mutations; a higher expression of KRT19, EPCAM, and BIRC5; and activated Wnt and Akt signaling

pathways. The investigators then validated the model on five external data sets with acceptable results.

In addition to detecting relationships within large multi-omic data sets to improve prognostication, AI techniques can help

us identify biomarkers in the preoperative setting typically only identified through pathologic evaluation such as

microvascular invasion (MVI) . For example, multiple studies have shown the feasibility of using machine learning

algorithms to accurately predict the presence of MVI based on preoperative axial imaging characteristics . Chong

et al. built a radiomic-based nomogram to assess the risk of MVI . This retrospective study analyzed preoperative MRIs

from 356 patients with pathologically confirmed solitary HCC less than 5 cm. The nomogram, built by extracting radiomic

features from images containing tumors, peritumoral tissue, and non-tumoral liver parenchyma, accurately predicted the

risk of MVI as well as recurrence-free survival.

Similarly, other groups have identified biomarkers of HCC recurrence using machine learning methods (Table 2) . Yan

et al. created a deep learning MR signature derived from imaging characteristics including tumor size, arterial phase

enhancement type, capsular appearance, presence of a hypointense halo, intratumoral necrosis, satellite nodules, and

peritumoral hypointensity . When combined with clinical factors such as MVI and tumor number, the MR signature

predicted early recurrence better than clinical data alone. Another model created by Ji et al. extracted radiomic features

from preoperative CT scans to build a radiomic signature that, when integrating clinical data such as MVI, AFP level, and

tumor number, accurately predicted the risk of recurrence in patients after resection of early-stage HCC . Improved

prognostication and risk stratification with AI techniques may better inform management decisions for patients with HCC.

Table 2. Key studies utilizing AI to predict prognosis and risk of recurrence of HCC.

Author, Year Model Design Pertinent Risk
Factors Population AI Methodology Accuracy

Chaudhary
et al. (2018)

Predictive model for HCC
prognosis based on molecular
signature and multi-omic data

TP53 inactivation

mutation

EPCAM, KRT1,

BIRC5

upregulation

HCC patients
within the Genome

Cancer Atlas
(TCGA)

Deep learning C-index:
0.68

Liu et al.
(2021) 

Prediction of MVI
preoperatively based on CT
imaging characteristics and

patient clinical factors

Radiomic

features

identified from

CT images

Patients with HCC Residual Neural
Network

AUC:
0.845

Chong et al.
(2021) 

Creation of radiomic-based
nomogram to preoperatively

predict risk of MVI and
recurrence-free survival,

based. on MRI characteristics
and clinical data

Elevated AFP,

total bilirubin

Radiomic values

Peritumoral

enhancement

Incomplete or

absent capsule

enhancement

Patients with
solitary HCC

smaller than 5cm
Random Forrest AUC:

0.92
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Author, Year Model Design Pertinent Risk
Factors Population AI Methodology Accuracy

Ji et al.
(2020) 

Creation of radiomic signature
with pre- and post-resection

features to predict recurrence
for early-stage HCC

Tumor number

Cirrhosis

Arterial

peritumoral

enhancement

Tumor necrosis

Satellite lesion

MVI

Patients with HCC
that met the Milan

Criteria and
underwent curative

intent resection

Machine
learning-based

radiomic
signature

C-index:
0.77

3.2. Pathologic Assessment

AI techniques have also been applied to evaluate associations between histologic features and outcomes in numerous

disease processes, including HCC (Table 3) . Using whole-slide imaging, Yamashita et al. developed a deep

learning-based system to predict a recurrence-free disease interval after curative-intent hepatectomy in patients with

HCC. Their model stratified patients into low-risk and high-risk subgroups and outperformed the standard tumor–node–

metastasis (TNM) staging system .

Chen et al. built a neural network that was able to assist in the prognostication of HCC based on histologic whole-slide

imaging. The model used hematoxylin and eosin slides from a genomic database to train a neural network to classify liver

lesions as malignant with 96.0% accuracy and predict lesion histopathological grade with 89.6% accuracy. Furthermore,

the model also predicted select gene mutations including CTNNB1, FMN2, TP53, and XFZ4 . AI-based pathology

models can also predict the activation of immune signatures in HCC. Zeng et al. used deep learning approaches on

whole-slide histologic images and gene expression profiling, derived from the Cancer Genome Atlas Liver Hepatocellular

Carcinoma (TCGA-LIHC) public dataset, to develop models that predicted the activation of six key immune signatures

that, when overexpressed, correlated with the response to immunotherapy . While prospective validation studies are

needed, these data demonstrate the potential utility of AI to select patients who will have a greater response to

immunotherapy and may inform adjuvant therapy decisions.

Table 3. Key studies demonstrating the use of AI on whole-slide imaging.

Author, Year Model Design Population AI Methodology Accuracy

Qu et al.
(2022) 

Creation of histological score
using whole-slide imaging to

predict HCC recurrence

Patients with early-stage HCC who
had undergone surgical resection

in a single institutional dataset
and the TCGA dataset

Convolutional neural
network

C-index:
0.804

Saillard et al.
(2020) 

Use of whole-slide imaging to
predict risk of HCC recurrence
and stratifying it into low- and

high-risk subgroups

Patients with HCC who had
undergone surgical resection in a
single institutional dataset and the

TCGA dataset

Convolutional neural
network

C-index:
0.72

Yamashita et
al. (2021) 

Use of whole-slide imaging to
formulate a risk score predictive

of HCC recurrence

Patients with HCC in the TCGA
and Stanford-HCC dataset

Convolutional neural
network

C-index:
0.724

Zeng et al.
(2022) 

Prediction of activation of
immune gene signatures based

on whole-slide imaging

Patients with HCC who had
undergone surgical resection in

the TCGA dataset

Clustering-constrained
attention multiple
instance learning

AUROC:
0.78–0.91

3.3. Locoregional Therapies

AI-based models may help to select patients who are good candidates for locoregional therapies such as radiofrequency

ablation (RFA) (Table 4). Wu et al. built an artificial neural network based on fifteen clinical variables from HCC patients

who had undergone CT-guided RFA . Variables included patient characteristics, tumor size, tumor number, and

laboratory values (e.g., AFP). Ultimately, the artificial neural network model predicted one-year disease-free survival with
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an AUC of 0.84 and one-year disease-free survival with an AUC of 0.75. Lui et al. created a deep learning radiomic-based

model of preoperative contrast-enhanced liver ultrasound images and predicted the response to the first TACE session in

patients with HCC . In another study, investigators trained and validated a CNN to automatically assess splenic volume.

Patients with higher splenic volumes, as automatically determined by the CNN, had significantly higher risk of hepatic

decompensation and lower overall survival after TACE. Conversely, axial and craniocaudal splenic diameter did not

correlate with outcomes .

3.4. Automatic Methods for Liver and Tumor Segmentation

Automatic liver and tumor segmentation has numerous clinical applications which may aid in the management of HCC

such as the preoperative volumetric quantification and assessment of treatment responses to locoregional therapies

(Table 4). The use of manual and semi-automatic liver segmentation methods can lead to inconsistencies due to user

variability. Furthermore, segmentation is often a slow, labor-intensive process. With advancements in deep learning

techniques and CNNs, completely automatic liver segmentation is now feasible . However, automatic algorithms

do have their own limitations including the need for large training datasets to develop accurate algorithms. Automatic

tumor segmentation can be even more challenging as tumor characteristics, such as variability in size, variability in

location, and indiscrete borders between healthy liver parenchyma and tumors, can decrease the accuracy of models.

Regardless, early studies demonstrate that automatic segmentations outperform semi-automatic methods with regard to

the accuracy and repeatability of segmentation . Meng et al. used a three-dimensional (3D) dual-path multiscale CNN

to build a liver and liver tumor segmentation algorithm based on abdominal CT images. The dual path multiscale 3D

network architecture allowed the model to capture large scale global features through one path while capturing more

granular local features through the second path. Notably, their algorithm performed best on large tumors . Zheng et al.

built a four-dimensional (4D) deep learning model to segment HCC lesions based on dynamic contrast-enhanced MRIs. In

an attempt to avoid the “black box” learning that occurs with many automatic segmentation models, the investigators first

build a 3D CNN to separately extract imaging features from each individual phase of imaging. From there, these data

were fed into a convolutional long short-term memory (C-LSTM) network module in order to extract higher-level features,

including temporal information and dynamic features, that varied through the multi-phase imaging. This allows us to use

dynamic features that are not only characteristic of HCC but critical to diagnosis, such as arterial phase

hyperenhancement and portal venous or delayed-phase washout. Their model achieved a Dice score of 0.825 ± 0.077 for

HCC tumor segmentation in an internal test set and 0.786 ± 0.073 in an external set, implying good generalizability of this

model .

3.5. Surgical Complications

Many HCC patients have some level of hepatic dysfunction upon presentation, increasing the risk of post-hepatectomy

liver failure (PHLF). PHLF remains the most frequent cause of postoperative mortality in patients following hepatectomy,

highlighting the importance of identifying patients at high risk of PHLF prior to resection to more effectively select patients

for adjuncts such as portal vein embolization. Wang et al. constructed a machine learning clinical model using laboratory

values, tumor characteristics, and surgical variables (e.g., surgical approach, extent of resection, intraoperative blood

loss) to predict the risk of PHLF. The model outperformed traditional models such as MELD, Child-Turcotte-Pugh, or

albumin-bilirubin grade when predicting PHLF . AI-derived algorithms have successfully predicted other surgical

complications. Laino et al. predicted the risk of a postoperative bile leak following hepatectomy using a combined clinical–

radiomic model in 378 patients with a preoperative CT. Radiomic data was extracted from a virtual liver biopsy obtained

from a 2 cm cylinder of non-tumoral liver parenchyma on the portal phase of preoperative CT. Their combined model

(AUC 0.74) outperformed a model using clinical data alone (AUC 0.61) to predict the risk of a bile leak .

Table 4. Key studies demonstrating the use of AI in management of HCC.

Author,
Year Model Design Population AI Methodology Accuracy

Wu et al.
(2017) 

Prediction of disease-free survival
after radiofrequency ablation based

on clinical variables

Patients who underwent CT-
guided radiofrequency

ablation
Artificial neural network AUC:

0.75–0.84

Liu et al.
(2020) 

Prediction of response to first TACE
session using contrast- enhanced

liver ultrasound

Patients who underwent
ultrasound within one week

of TACE for HCC

Radiomic-based deep
learning

AUC:
0.81–0.93

Meng et al.
(2020) 

Automatic liver parenchyma and
liver tumor segmentation from CT

images

Multi-institutional liver tumor
segmentation (LiTS) dataset

Dual path multiscale
convolutional neural

network

Dice:
0.689–
0.965
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Author,
Year Model Design Population AI Methodology Accuracy

Zheng et
al. (2022) Automatic segmentation of HCC

lesions based on dynamic MRI

Patients with HCC who
underwent dynamic contrast-

enhanced MRI

Convolutional neural
network and recurrence

neural network

Dice:
0.825

Wang et al.
(2022) 

Prediction of post-hepatectomy liver
failure based on clinical

characteristics and surgical
variables

Patients with HCC who
underwent hepatectomy

Light gradient boosting
machine learning

AUC:
0.822–
0.944

4. Intraoperative Use of Artificial Intelligence

A thorough understanding of the vascular and biliary anatomy from adequate multiphasic abdominal imaging is necessary

to perform a safe hepatectomy and minimize complications. Three-dimensional liver reconstruction technology may

improve perioperative outcomes in patients undergoing a major hepatectomy by further elucidating spatial relationships

between the tumor and critical vascular and biliary structures. A meta-analysis evaluating the efficacy and safety of 3D-

reconstruction liver models in patients undergoing a major hepatectomy showed shorter operative times, less

intraoperative blood loss, fewer hepatic inflow occlusion events, shorter hospital stays, and fewer postoperative

complications when using such technology . Deep learning algorithms can help us to automate the reconstruction of 3D

liver models with reliable accuracy and detail .

As an adjunct to intraoperative liver ultrasound (IOUS), machine learning algorithms may help us to overcome some

limitations of traditional ultrasounds and improve the accuracy of identifying liver lesions intraoperatively. Barash et al.

trained a CNN on intraoperative ultrasound imaging to detect liver lesions. The algorithm achieved an AUC of 80.2% and

an overall classification accuracy of 74.6% . Furthermore, Takamoto et al. used real-time virtual sonography (RVS), an

AI-assisted platform that merges preoperative CT images with real-time IOUS, to enhance IOUS with the identification of

small intrahepatic lesions . The median liver lesion size was 6.0 mm and RVS significantly improved surgeon

confidence in lesion identification. Importantly, of the 17 lesions undetectable using fundamental IOUS, 14 were identified

through RVS and ultimately treated.

However, despite the successful applications of AI technology during liver surgery, several challenges remain. This is

especially true of 3D overlays, which are difficult to use during hepatectomy. The mobilization of the liver and the

deformation of the parenchyma during hepatectomy make real-time overlays onto tissues more challenging and less

accurate. This is in comparison with other surgical disciplines such as neurosurgery, where the target—in this case the

brain—is rigid and fixed, allowing for an easy overlay of 3D reconstructions. Preliminary studies demonstrate the feasibility

of a physics-based elastic augmented reality model that can provide a real-time 3D overlay during hepatectomy, allowing

for the deformation and mobilization of the tissue; however, further quality improvement needs to occur prior to meaningful

use during hepatectomy .
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