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The development of graphene and its derivatives in gas-phase biomarker detection was reviewed in terms of the

detection principle and the latest detection methods and applications in several common gases, etc. 

graphene  gas sensing

1. Nitric Oxide

Nitric oxide (NO) is synthesized by L-arginine through nitric oxide synthase (NOS) in various cells such as

neutrophils, red blood cells, endothelial cells, macrophages, and nerve cells. The determination of NO content in

exhaled air has been used as a marker for judging the degree of acute respiratory infection and inflammation in

respiratory diseases . The presence of NO in exhaled gases can be used for rapid detection of lung infections ,

including new coronary pneumonia , asthma , allergic rhinitis  severe acute respiratory syndrome (SARS) ,

and chronic obstructive pulmonary disease . At the same time, continuous monitoring of NO is also essential for

coronary heart disease , Alzheimer’s disease , and mental illness . Jiang et al. reported on a chlorinated

graphene FET and its application in monitoring of NO under specified physiological requirements . 

Deng et al. synthesized an antimony tetroxide (Sb O ) nanoflower/rGO nanocomposite material using a simple and

environmentally friendly solvothermal method . As shown in Figure 1a, the combination of highly electroactive

Sb O  nanoflowers and rGO with a larger specific surface area shows a synergistic effect on the recognition of NO.

It can detect the NO released by living cells in real time, effectively distinguishing normal and tumor cells. In this

case, the reactive Sb  and rGO help to achieve rapid electron transfer and the nanoflower structure provides a

three-dimensional high-speed channel for NO, making the distance across which the NO must travel to reach the

reaction center very short, and thereby obtaining a high mass transfer rate.
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Figure 1. (a) Synthetic route of antimony tetroxide (Sb O ) nanoflower/rGO nanocomposite . Copyright (2021),

used with permission from Elsevier. (b) Schematic diagram of the process of monodisperse superparticles (SPs)

prepared by coordinating bridged graphene quantum dots (GQDs) and superoxide dismutase (SOD) using terbium

ion as metal . Copyright (2021), used with permission from Wiley.

Inspired by self-limiting nano-components, Qu et al. assembled graphene quantum dots (GQDs) and superoxide

dismutase (SOD) into monodisperse superparticles (SPs) . As shown in  Figure 1b, graphene quantum dots

(GQDs) and superoxide dismutase (SOD) were assembled to synthesize GQD–Tb –SOD SPs, and were coated

on a glass plate for NO sensing test. Superoxide dismutase (SOD) can alternately catalyze the dismutation of

superoxide anion free radicals (O ), usually with copper as the active center. When Cu(II) in SOD is reduced to

Cu(I), the fluorescence of the optically active component Tb  fluorophore is enhanced, which is tightly sandwiched

by protein and GQD. Tb  combines graphene quantum dots (GQDs) and SOD to realize effective energy transfer,

thereby “turning on” detection of NO, and realizing reliable monitoring as low as 600 molecules/mL. It is verified

that the sensor can achieve ultra-sensitive detection of NO with a concentration as low as 10 × 10   M. The

sensor opens up a new direction in using self-limiting nano-components. The high sensitivity and non-invasiveness

of SP detection means it is widely used in home health monitoring.

Xu et al. constructed an ultra-sensitive NO gas sensor by long-period fiber grating (LFPG) which was covered with

GO on a long-period fiber grating (LFPG) that had good sensitivity by refractive index (SRI) changes . The GO

was coated on the long-period fiber grating (LPFG) (Figure 2a). It can be seen that NO adsorption on the GO

depends on two adsorption processes. NO is oxidized by epoxy groups to generate nitrogen dioxide. These

complex processes cause NO to be completely removed from the GO surface. The sensor can identify 0–400 ppm

NO with high sensitivity. To create more active centers, adjust the band gap of the composite material, and

effectively improve the catalytic activity, Qiu et al. used metal oxide nanocrystals (ZnO) to dope redox graphene
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with nitrogen (N–rGO). These promote the interaction with the attached metal oxides, create more active centers

for gas adsorption, and reduce the hydrolysis rate of Zn(OAc)  by adding different amounts of NH OH dropwise to

achieve controllable nucleation. In the experiment, the volume of NH OH was controlled to be 0.1, 0.3, and 0.5 mL,

and the corresponding products were named NGZ–0.1, NGZ–0.3, and NGZ–0.5 to obtain N–rGO/ZnO (NGZ)

hybrid material . At low temperatures, the gas-sensitive response of ZnO nanocrystals on the surface of N–rGO

to NO is much better than that of ZnO microcrystals aggregated or formed on the surface of N–rGO alone. The

resistance of the zinc oxide channel with a heterojunction in Conduction path 1 in Figure 2b,c is much larger than

that of the N–RGO channel in Conduction path 2 (R1 ≫ R2). Because metal oxide nanoparticles with a smaller

particle size have a p–n heterojunction in NGZ–0.3, which has a strong adsorption effect on NO, the sensitivity of

NGZ–0.3 to NO is much greater than that of NGZ–0.1 and NGZ–0.5. Table 2  summarizes the progress of NO-

sensing materials, detection limits, and response/recovery time in recent years.

Figure 2.  (a) The structure of GO–LPFG and the response mechanism to NO . Copyright (2019), used with

permission from Elsevier. (b) Physical model of NGZ–0.3 (the volume of NH OH is 0.3 mL) composite material N–

rGO/ZnO (NGZ); (c) physical model of NGZ–0.1 or NGZ–0.5 (NH4OH volume 0.1 and 0.5 mL) composite material

. Copyright (2020), used with permission from Elsevier.

Table 1. The detection range and response time of other graphene composite materials to NO, NH3 gas.

Material Gas Detection
Limit

Response/Restore
Time Reference

Pd–rGO NO 2–420 ppb 1000 s–1 h

Sub–graphene–
hemin

NO 0.3 nM 47–54 ms

GQD–Tb –
SOD

NO
600

molecules/mL
500 s

LPFG coated
with GO

NO 0–400 ppm 23.6 min/N.A.

N–rGO/ZnO NO 100 ppb 522/303 s
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Material Gas Detection
Limit

Response/Restore
Time Reference

    300 ppb 478/410 s  

    800 ppb 284/473 s  

Graphene/PS
brush

NH ≥4.88 ppb 150 s/N.A.

PPy NH 7.6 ppm 105/182 s

PPy/GO NH 0.90 ppm 81/116 s  

PPy/rGO NH 0.035 ppm 72/151 s  

PPy/srGO NH 0.00020 ppm 48/234 s  

PPy–rGO NH 10 ppm ~100 s

PPy/SnO /GNR NH ≥0.6 ppm ~100 s/200 s

MoO /GFET NH ≥310 ppb 356 s

PUF–PPy–GO NH 1.1–182 ppm ~7/13 s

GO–PANI NH 1 ppm ~5/10 min

N.A.: not available.

2. Nitrogen Hydride

The production of NH  in the human body is related to protein metabolism. Proteins are degraded into non-storable

amino acids to be used or metabolized, which leads to the formation of NH   . Ammonia (NH ) itself is a toxic

and irritating gas. Its accumulation in the human body promotes acidosis in the blood, causes enzyme

denaturation, and ultimately leads to death. When the concentration of exhaled ammonia exceeds 2935 ppb, it

means that the kidney urea cycle is out of balance. Due to the gas exchange between blood, alveoli, and air, a

small amount of ammonia is exhaled in the breath. The main mechanism of ammonia metabolism is the excretion

of the urine after the detoxification process, which is the renal urea cycle. In this process, NH  is converted into the

less toxic soluble compound urea . If the kidneys cannot filter the urea in the blood, urea will enter the body’s

gas circulation with the blood, and the NH  concentration in the breath will increase . This is why patients

with chronic kidney disease (CKD) exhale ammonia gas.

Compared with G, oxygen-containing groups on the surface of GO can enhance the gas sensitivity by interacting

with polar gas molecules. There are still some oxygen-containing functional groups on the surface of rGO. To

distinguish the influence of polar water molecules on NH  detection, Kim et al. studied the response of graphene
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gas sensors under two different humidity (RH%) conditions . A passivation layer of polystyrene (PS) brush was

used on the surface of silicon dioxide to cover the hydroxyl groups in SiO /Si.

Figure 3a shows that the improvement in gas sensitivity may be attributed to the π–π stacking and the formation of

hydrogen bonds between PPy and rGO, resulting in a larger surface area and fast carrier transport after the two

are recombined. Shahmoradi et al. used an in-situ chemical oxidative polymerization method to prepare polypyrrole

(PPy) composites with graphene oxide (GO), reduced graphene oxide (rGO), or p-benzenesulfonic acid sulfonated

reduced graphene oxide (srGO) . The sensor response process is shown in Figure 3b. The effect of the working

temperature of different nanocomposite materials at four temperatures (28, 40, 50, and 60 °C) on the sensor’s

performance was studied. The PPy/srGO sensor showed the highest detection sensitivity, which was 0.20 ppb~12

ppm NH . The response principle is attributed to the charge transfer mechanism between NH   and the

nanocomposite surface. The electron transfer process of NH  molecules to the surface of the p-type polypyrrole

sensor is depleted, resulting in an increase in resistance. On the other hand, p-type rGO is donated to electrons.

When the PPy/srGO sensor is exposed to NH  gas, a hydrogen bond interaction was generated between NH  and

bare PPy and also between NH  and srGO; thereby the electrical resistance was increased. Hsieh et al. further

improved the hybrid system of PPy and graphene. They prepared a polypyrrole (PPy)/tin oxide (SnO )/graphene

nanoribbon (GNR) ternary nanocomposite by using an in-situ chemical oxidation polymerization method . The

results showed that the response sensitivity of the PPy/SnO /GNR sensor containing 3 wt% SnO  nanoparticles in

1 ppm NH  is about three times that of pure PPy. Figure 6c shows that the PPy-coated SnO  and GNR can form

covalent bonds. The larger specific surface area contributed by SnO  and GNR could further enhance the contact

site with PPy and provide many adsorption sites for NH  gas. The band gaps of PPy and SnO  are 2.81 eV and

3.709 eV, respectively. Thus, the p–n heterojunction formed between p-type PPy and n-type SnO   benefits the

formation of a self-established depletion layer electric field at the PPy/SnO  heterojunction.
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Figure 3.  (a) Schematic diagram of the interaction between NH  and PPy/rGO . Copyright (2017), used with

permission from Elsevier. (b) Device of PPy/srGO nanocomposite gas sensor . Copyright (2021), used with

permission from Elsevier. (c) The energy band diagram and sensing mechanism of the PPy/SnO /GNR

nanocomposite sensor . Copyright (2021), used with permission from Elsevier.

The excellent sensing and recovery performance of the MoO /GFET sensor is mainly attributed to the effective

adjustment of the height of the Schottky barrier. The energy band in  Figure 4a indicates the changes in hole

density and Fermi energy caused by NH   exposure. Under the bias voltage from −50 V to +75 V, the positive

change in the back-gate voltage (V ) causes the Fermi energy valence band to move upward to make it closer to

the energy level of NH , resulting in a smaller energy difference and less charge transfer between NH  and p-type

GFET sensors.
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Figure 4.  (a) Fermi-level tuning diagram in MoOx/graphene composite field-effect transistor sensor (D100) (back

gate voltage V  from −50 to +75 V, electron transfer from NH3 to p-type graphene) . Copyright (2020), used

with permission from Elsevier. (b) The expanded coil when PANI nanocomposites were pinned to the GO sheets;

(c) the adsorption mechanism of GO–PANI in ammonia . Copyright (2021), used with permission from Elsevier.

Javadian-Sara et al. explored a microwave-based open-loop resonator (SRR) sensor based on the nanocomposite

prepared by the in-situ polymerization of polyaniline (PANI) on the surface of GO , as shown in Figure 4b. At

room temperature, it has a high sensitivity of 0.038 dB ppm   to low concentration (1–25 ppm) ammonia, a

response/recovery time of 150/400 s, and a sensitivity of 0.0045 dB ppm  to high concentrations (>25 ppm). As

shown in Figure 4c, when the GO(10%)–PANI nanocomposite is exposed to ammonia gas, due to the acid-base

interaction between PANI and ammonia gas, the PANI changes from a conductive form to a non-conductive state.

Ammonia gas acts as a base to reduce the aniline ion R–NH  carriers of PANI through deprotonation, showing a

strong de-doping effect and enhancing the internal resistance of PANI. The prepared sensor can selectively detect

ammonia in the atmosphere of other higher concentrations of dangerous gases and across a wider range of RH%

(15–90%). The response signal can be repeated after 30 days with less than 0.32% variation.

The high efficiency of graphene-based sensor components can be achieved by designing and optimizing their

preparation processes, but graphene-based sensors for the physiological analysis of ammonia in breath are still

being studied.
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3. Sulfide Gas

The cause of bad breath is multifactorial, involving various body organs (mouth, lungs, and stomach). About 90% of

all types of bad breath can be classified as intraoral bad breath, which stems from oral-related pathological

conditions (dental periodontitis and gingivitis) and physiological characteristics, especially the microbial coating on

the tongue . The microorganisms in the tongue coating produce a variety of metabolites, including volatile

sulfides (VSCs), such as methyl mercaptan (CH SH), hydrogen sulfide (H S), and dimethyl sulfide (CH SCH ) 

.

As shown in Figure 5a, the adsorption of oxygen causes electrons in the conduction band of the SnO  QW to be

deprived, causing the energy band to bend and increasing the resistance. The H S gas can react with the oxygen

adsorbed on the surface, and it is oxidized to sulfur dioxide, making the electrons return to the SnO  QW. In this

case, it helps to adjust the surface state of the band structure, so that SnO   QWs generate more oxygen

adsorption sites. At the same time, GO acts as an electron migration channel, which improves the sensitivity of

selection. Shewale et al. used a simple air-jet deposition method to uniformly modify GO on copper-doped zinc

oxide (CZO) nanostructured films . As shown in Figure 5b, the 3CZO/rGO sensor doped with ZnO/rGO (mass

fraction of 3 wt% copper nitrate aqueous solution) is fixed on the ceramic microheater with thermal paste. To

accurately measure the temperature of the gas sensor, a highly sensitive temperature sensor is installed on the

surface of the microheater. The synthesized 3CZO/rGO nanocomposite sensor shows better gas sensitivity to H S

at room temperature (24 °C) than undoped ZnO/rGO, and a better response to H S. The response and recovery

time to 100 ppm H S are, respectively, 14 s and 32 s, which dramatically improves the potential application of

nanocomposite sensors in medical diagnosis. The recent applications of other graphene and its derivatives in the

detection of H2S gas biomarkers were summarized in Table 2.

Table 3. The detection range and response/recovery time of graphene composites to H S gas.

Material Gas Detection Limit Response/Recover Time (s) References

SnO @GO H S 200 ppb 9/23 (54%RH)

  H S   6/21 (93.6%RH)  

ZnO/rGO H S 136 ppb 14/32

rGO/GaN H S 100 ppm ~800

(rGO) –NiO(NiOBNG) H S 1 ppm 31/49

  H S 20 ppm 38/44  

  H S 50 ppm 28/75  

β–Ga O /rGO H S 3 ppm N.A.

WO /rGO H S 32.7 ppb 340/180
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Material Gas Detection Limit Response/Recover Time (s) References

GQD–SnO  QNP/ZnO H S 0.1 ppm 14/13

N.A.: not available.

Figure 5.  (a) Schematic diagram of H S adsorption mechanism based on SnO @GO gas sensor . Copyright

(2020), used with permission from Elsevier. (b) CZO/rGO sensor structure . Copyright (2020), used with

permission from Elsevier. (c) Schematic diagram of rGO)/GaN nanorods (NRS); (d) scanning electron microscope

(SEM) image of rGO/GaN nanorod (NRS) composite material . Copyright (2020), used with permission from

Wiley. (e) Schematic diagram of band configuration at the interface of the GQD–SnO /ZnO . Copyright (2021),

used with permission from the American Chemical Society.

Reddeppa et al. reported a rGO/GaN nanorod (NRs) hybrid system for hydrogen (H ) and hydrogen sulfide (H S)

gas sensing at room temperature . Figure 5c shows the prepared (rGO)/GaN NRs hybrids. As shown in Figure

5d, the surface of the GaN nanorods has a wavy structure without the rGO film, and the spin-coated reduced

graphene oxide layer does not penetrate between the nanorods. Compared with pure GaN NRs, rGO/GaN NRs

have better gas sensitivity.

4. VOCs

Volatile organic compounds (VOCs) can be generated through various biochemical pathways. The detection of

VOC biomarkers can be realized by measuring changes in the electrical, optical, chemical, and chromatic

properties of sensitive materials that interact with VOC molecules . Probiotics can regulate intestinal problems

and maintain the body’s intestinal homeostasis. It is possible to diagnose the balance of human probiotics by

detecting changes in the concentration of trimethylamine (TMA) in exhalation . Yu et al. reported the real-time

monitoring of TMA in respiration based on the 11–mercaptoundecanoic acid (11–MUA)—Au nanoparticles
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(AuNPs)/rGO composite material microgravimetric method . The sensor shows that the lower limit of detection is

5 ppm, and the response time is 30 s. Hexanal and 5-methylundecane are biomarkers of multiple sclerosis (such

as Alzheimer’s disease (AD) and Parkinson’s disease (PD)) . Mazzatenta et al. reported the real-time detection

of AD fingerprints in exhalation. A significant change in the accumulated VOC fingerprints was detected in the

breath of an AD patient . The recent applications of other graphene and its derivatives in the detection of organic

volatile gases that can be used as markers for cancer and other diseases were summarized in Table 3.

Table 3. The detection range and response/recovery time of graphene composite materials to VOC gases.

Materials Gas Detection Limit Response/Recovery Time (s) References

Au NPs–rGO TMA ≥5 ppm ~30

C –g–CNT ethanol ≥400 ppb ~300/400

  methanol ≥400 ppb ~300/400  

  acetone ≥400 ppb ~300/400  

  chloroform ≥400 ppb ~300/400  

  toluene ≥400 ppb ~300/400  

  cyclohexane ≥400 ppb ~300/400  

C –g–rGO ethanol ≥400 ppb ~300/400

  methanol ≥400 ppb ~300/400  

  acetone ≥400 ppb ~300/400  

  chloroform ≥400 ppb ~300/400  

  toluene ≥400 ppb ~300/400  

  cyclohexane ≥400 ppb ~300/400  

(Parylene C and GO) MS toluene 100–300 ppm 164/412

eG acetaldehyd ≥10 ppm N.A.

GO thin film ethanol >80 ppm N.A.  

rGO/SnO acetone 0.25–30 ppm 24/30 (5 ppm)

Sn Ti O /GO toluene 100 ppb N.A.

  acetone 200 ppb N.A.  

Ag/Fe O /rGO acetone 35.81–50 ppm ~50/70
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Materials Gas Detection Limit Response/Recovery Time (s) References

SiNW/rGO acetaldehyd 1 ppm 30/180

  cyclohexane 1 ppm 30/60~120  

N.A.: not available.

Ghazi et al. developed a GO microfluidic gas sensor by: (1) 3D printing microchannels coated with a 5-µm-thick

parylene carbon layer (propylene polymer). Then, the xylene was used to provide a chemically inert barrier layer.

(2) The modified microchannel was coated with GO to improve the specific surface area to volume ratio of the

micro-features . The performance was improved. The sensing setup of the microfluidic gas sensor is shown

in Figure 6a. Compared with ordinary gas sensors, its selectivity to toluene, ethanol, methanol, pentanol, propanol,

and hexane increased by 64.4% on average (Figure 6b).

Figure 6. (a) Schematic illustration of the microfluidic gas sensor; (b) the sensing intensity of the microfluidic gas

sensor for different VOCs . Copyright (2022), used with permission from the American Chemical Society. (c)

Response of graphene and MOF hybrid nanocomposite on exhaled gas; (d) the schematic diagram of the

hydrogen bond affinity between copper benzene–1,3,5–tricarboxylate (Cu–BTC) and chloroform molecules .

Copyright (2020), used with permission from the American Chemical Society.

It is understood that the abnormal concentrations of toluene exhaled by lung cancer patients are in the hundreds of

ppb, whereas the normal concentration is about 1–18 ppb. Pargoletti et al. synthesized a SnxTi O /GO–based

material through a simple hydrothermal method, where x is the content ratio of tin . When using 32:1 SnO /GO

and 32:1 TiO /GO, there is excellent selectivity to acetone at a level of 100 ppb. However, when compared with

titanium, when a solid solution with a higher tin content (such as 32:1 Sn Ti O /GO) is used, it shows a higher
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performance for the larger non-polar molecule toluene at 350 °C. Tung et al. prepared three different graphene-

MOF hybrid nanocomposites, including

Coppere–benzene–1,3,5–tricarboxylate (PG–Cu BTC)), zirconium 1,4–dicarboxybenzene 1,4–dicarboxylate (PG–

UIO 66) and 2-methylimidazole zinc salt (PG–ZIF 8). They used this for chemoresistance sensing of VOC

biomarkers . As shown in  Figure 6c, the PG–Cu–BTC sensor was tested against VOC biomarkers, and it

showed good selectivity to chloroform. The selectivity principle (Figure 6d) is attributed to the hydrogen bond

between the chloroform molecule and Cu-BTC.

Diabetes mellitus (DM) is a metabolic disease characterized by high blood sugar caused by insufficient insulin

secretion (type I DM), insufficient insulin action (type II DM), or both. Due to hyperglycemia conditions (high blood

sugar levels when fasting GI is greater than 7 mmol/L), the excess sugar cannot be metabolized, which induces the

decarboxylation of acetoacetate and the dehydrogenation of isopropanol. Large amounts of isopropanol in the liver

can produce acetone . The acetone produced in the blood can diffuse through the lungs to the airways, because

acetone has a blood/air partition coefficient of 341 at body temperature, and diffuses through urine. Therefore,

diabetes can be diagnosed by testing the concentration of acetone in the breath at present . Studies have

determined that the average concentration of acetone in the breath of healthy people is 300–900 ppb, and the

abnormal concentration of acetone in the breath of diabetes patients exceeds 1800 ppb.
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