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The growing demands for electrical energy, especially renewable, is boosting the development of wind turbines

equipped with longer composite blades. To reduce the maintenance cost of huge composite parts, the structural

health monitoring (SHM) is an approach to anticipate and/or follow the structural behaviour along time. Apart from

the development of traditional non-destructive testing methods, in order to reduce the use of intrusive

instrumentation there is a growing interest for the development of “self-sensing materials”. An interesting route to

achieve this, can be to introduce carbon nanofillers such as nanotubes (CNT) in the composite structures, which

enables to create systems that are sensitive to both strain and damage. 

composite materials  structural health monitoring (SHM)  fibre-reinforced plastics (FRP)

nano engineered composites  carbon nanotubes (CNT)

1. Introduction

Structural Health Monitoring (SHM) system, which would provide clues about the material’s health state, comes out

as a very interesting tool . SHM systems have multiple objectives, such as allowing an optimal use of the

structure, decreasing the downtime, and avoiding catastrophic failure. It should also help to replace the scheduled

and periodic maintenances by performance-based inspections; as well as to reduce the human involvement for

less labour, human errors, and therefore higher reliability. Structural Health Monitoring (SHM) of wind turbine

blades is required, because their failure is one of the main reasons for turbine downtimes . Today’s main causes

of damages in blades are identified as follows : Firstly, the erosion of the leading edge, mainly close to the tip,

caused by abrasive airborne particles, and reduces the aerodynamic efficiency. It can also create delamination

along the edge. Secondly, the lightning can induce damages and cracks around the impact point. Then, the

accumulation of ice on the blade’s surface, due to the combination of climate and temperature conditions, can

result in a reduction of the aerodynamic or an increase of the fatigue caused by the additional mass.

Wind turbines have an expected life time of 20 years. The degradation of blades due to fatigue mechanisms is

therefore likely to happen before the end of life and requiring reparations after a pertinent diagnosis. The resulting

damages proposed by Sørensen et al.  are shown in Figure 1.
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Figure 1. Sketches of the different types of damage that can occur in a wind turbine blade, (a) by skin-adhesive

debonding, (b) delamination .

The different sketches of damage can be classified in 7 types:

Type 1: Damage formation and growth in the adhesive layer joining skin and main spar flanges (skin/adhesive

debonding and/or main spar/adhesive layer debonding),

Type 2: Damage formation and growth in the adhesive layer joining the up and downwind skins along leading

and/or trailing edges (adhesive joint failure between skins),

Type 3: Damage formation and growth at the interface between face and core in sandwich panels in skins and

main spar web (sandwich panel face/core debonding),

[7]
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Type 4: Internal damage formation and growth in laminates in skin and/or main spar flanges, under a tensile or

compression load (delamination driven by a tensional or a buckling load),

Type 5: Splitting and fracture of separate fibres in laminates of the skin and main spar (fibre failure in tension;

laminate failure in compression),

Type 6: Buckling of the skin due to damage formation and growth in the bond between skin and main spar

under compressive load (skin/adhesive debonding induced by buckling, a specific type 1 case),

Type 7: Formation and growth of cracks in the gel-coat; debonding of the gelcoat from the skin (gel-coat

cracking and gel-coat/skin debonding).

Furthermore, off-shore wind turbines are exposed to harsh environmental conditions (humidity, salinity, varying

temperature…) and fluctuating load that affect the system’s performance and ultimately provoke a failure. A fault is

defined as a significant change in the system parameters beyond acceptable/allowed limits leading to a decrease

of the system performance. Depending on the fault and the related criticality, the required actions may include

corrective maintenance intending to restore the system to its previous (undamaged) state or emergency

maintenance targeting to avoid failures of components and systems. To avoid the downtime of the structure, as

well as localising failures and predicting the remaining life time of blades, the development of SHM techniques is

inevitable, keeping in mind, at the same time, its beneficial impact on the operating and maintenance costs. In a

laminate composite material, damage initiates and propagates in zones of high-stress concentrations, such as free

edges around cut-outs, joints or delamination edges .

2. Commercially Available Technics Based on Strain &
Damage Monitoring

The basic principle of strain gauges is to provide the variation of length of the material on defined zones. The

damage undergone by a structure is not directly obtained by the strain gauges. Using the resistance laws of

materials (Hooke’s laws), the stress can be calculated from the deformation, where the sensor is located . The

knowledge of the mechanical properties of the material is therefore necessary to use strain gauges. Different types

of gauges can be found but their principle is similar: any strain undergone by the gauge is directly converted into an

electrical or optical signal as an output. Once a gauge is attached to the structure, its deformation is locally similar

to the one encountered by the structure. Thus, the gauge signal recording enables an estimation the structure’s

deformation. The existing strain gauges mainly rely on capacitance, inductance or resistance of the sensing

element, and on transmitted or reflected signals of optical fibres .

2.1. Monitoring Technics Used in Strain Analysis

2.1.1. Metallic Strain Gauges
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The elastic deformation of a metal gauge proportionally modifies the value of its resistance. The sensitivity, or

gauge factor (GF), of strain gauges is generally in the order of 2 and the initial resistances can vary from 30 Ω to 3

kΩ. The value of the initial resistance, as well as the gauge factor, is precisely set and controlled. The non-linear

characteristic of metal gauge usually starts with strains up to ±15% . For smaller deformation, there is an

emergence of new strain gauges with much higher gauge factors, up to 150 . In general, these sensors are

preferably positioned on the surface of the structure, possess limited sensitivity towards direction over a defined

area , and have a flat surface allowing an optimised adhesion. Since the patent of the printed circuit for foil strain

gauge in 1952 by Paul Eisler  the technic has obviously become mature. It is a precise and affordable

technology with a standard deviation of the GF value about 1% , and a price around 10 € per direction of

measurement .

2.1.2. Optical Fibres

Several technologies based on optical fibres (OF) already exist, with a predominance of fibre Bragg grating (FBG)

or Rayleigh scattering . A FBG sensor is a periodic variation of the refractive index in the fibre’s core (Figure 2).

The change of the core refraction index is between 10  and 10 , and the length of a Bragg grating is usually

around 10 mm . When an emitted light along the fibre arrives on the sensor, the change of the refraction index

induces the creation of a transmitted and a reflected light signal as shown in Figure 2.
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Figure 2. Principle of a FBG sensor . (a) A Fibre Bragg Grating structure with the different refractive index (outer

n , fibre n , core n , and grating n ) and the distance Λ between each grating. (b) The refractive core index profile.

(c) Illustration of the transmitted and reflected spectral response regarding the input signal.

Any change of the refraction index in the grating modifies the transmitted and reflected signal. External solicitation

such as strain, temperature, humidity, vibrations, breaks and delamination can induce a change in the index 

.

Therefore, any local strain or temperature modification can be measured by FBG sensors. Several FBG sensors

can be grated along a single OF. A discrete mapping of a structure can therefore be assumed by a unique fibre. In

order to discriminate between the strain and the temperature via the wavelength shift, the use of two different

optical fibres is requested in practice .

Rayleigh scattering optical fibres have a refractive index which varies along the fibre as a function of the presence

of defects or non-homogeneities of the material . This index variation allows backscattering of different

wavelengths at different points of the fibre. The analysis of the backscattered light makes possible to obtain

information on the deformation, the changes in temperature, and the undergone flexion at each point along the
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fibre. Compared to FBG, the strain deformation can be estimated along the complete fibre, thus inducing a larger

amount of data.

FBG or Rayleigh fibres can be surface-applied or integrated in the structure. On the surface, they do not modify the

characteristics of the material. Once in the core of the composite, the optical fibre size, usually about 100–150 µm,

is much greater than the composites reinforcing fibres, less than 20 μm for carbon or glass fibres. It results in the

creation of a gap between the optical fibres and the reinforcement fibres, as shown in Figure 3, thus inducing resin

rich regions.

Figure 3. OF embedded in a composite (a) perpendicularly to the fibres (diameter 80 µm and scale bar 500 µm)

 and (b) in the fibres axis (diameter 125 µm) .

2.2. Monitoring Techniques Used in Failure Analysis

2.2.1. Visual Inspection

To date, the periodic structural health inspection of wind turbine blades is made by professional climbers while the

wind turbine is shut down. The inspection is mainly limited to visual inspection and simple manual tapping tests

with a hammer . It allows detecting surface damages in defined critical areas. For internal damages, the

tapping method requires an expertise to distinguish between the damaged and undamaged structure.

2.2.2. Performance Analysis

A wind turbine structure, working in its optimal state, exhibits a certain level of performance (power, nominal

voltage, angle of inclination of the blades, current, speed of the blades, etc.). When the structure degrades,

performance is changed despite identical operating conditions . Consequently, the analysis of various operating

parameters enables to identify the presence of damages on the structure when deviations are important compared

to the optimum performances .

2.2.3. Acoustic Emission (AE)
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Acoustic Emission (AE) is known as the emission of elastic waves with low amplitude ranges and high frequency

(from 100 kHz to 1 MHz) . The AE waves are generated within the material by the release of energy.

Therefore, AE is a passive non-destructive evaluation technic (NDE) because the excitation source is the core

material without any additional external source. Typical sources of AE are initiation and propagation of cracks,

breakage of fibres, fracture of the matrix, friction between different surfaces, deformation, delamination, and

impacts . The detection of the AE waves is made by a surface sensor. The different failures in the structure

can be detected depending on different characteristics of the emitted signal, i.e., counts, rise time, peak amplitude,

arrival time, duration, and signal energy content . This technique is commonly used in the industry for the control

of composites , and allows steady-state wind turbine blade control . This method is already protected

with several patents .

2.2.4. Ultrasonic Measurements

Unlike acoustic emission, which is a passive NDE, ultrasonic measurement (US) is an active monitoring technic. In

addition to the received signal, an external excitation source is emitted. This signal propagates within the structure,

is thus affected by the material which modified its characteristics (change of phase, defect, delamination, interfacial

problems...) . The use of ultrasonic waves enables to obtain information on the material’s state. Three

main techniques exist, named pulse-echo, thickness, and pitch-catch as illustrated in Figure 4. In echo-pulse

mode, the wave is sent orthogonally to the material by a transducer which is attached to the surface. The reflection

of the wave allows to obtain information on the various defects (type, depth). In thickness mode, the wave is sent

through the thickness of the structure, and the reflected wave enables to collect similar information as that in the

pulse-echo mode.
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Figure 4. Damage detection with propagating and standing guided waves: (a) pitch-catch, (b) pulse-echo, and (c)

thickness mode .

2.2.5. Vibrational Analysis

The analysis of a structure vibrations parameters, such as the frequency, and their variation, enables to measure

the structure deformation and the appearance and propagation of cracks . Depending on the vibration

frequencies, varying from 0.01 Hz to 100 kHz , different sensors are used, from motion and speed sensors to

accelerometers and emitted energy sensor. This technic has been identified as promising and patented in the field

of wind blades .

2.2.6. Radiography

Observation by X-ray in transmission provides an image of the state of the material . Figure 5a, produced by

Tan et al. , shows an X-ray images of a 6.1 mm thick CFRP laminate after a 6.7 J impact, where different

resulting damages have been identified. As shown in Figure 5b with a 3D reconstruction of a GFRP sample, this

technique enables to identify the presence of defects such as breaks, delaminations, lacks of adhesive, vacuums,

or shifts in the fibres orientation . The detection limit is about 10 μm, and this technique is sensitive to a

variation of up to 1–2% of the material thickness. It is also possible to retrieve information on the variation of the

materials’ density from the backscattering of X-rays. This technique enables to quickly obtain a state of the

structure because the set of images is obtained simultaneously. On the other hand, it is a complicated technique to
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implement because it requires greater security measures due to the X-rays hazard. It is therefore used to control

the quality of the structure after manufacturing.

Figure 5. (a) X-ray radiography of a 6.1 mm thick CFRP laminate after a 6.7 J impact . (b) 3D-reconstruction of

a part of a GFRP sample by radiography. Insert shows a slice of the reconstruction where voids can be seen in

black .

2.2.7. Optical Fibres (OF)

Optical fibres (OF) were originally used as a strain sensor for structures. The first appearance of OF to detect

damages in composites was introduced by Hofer in 1987 .

3. Emerging Technics Based on Self-Sensing Thermoset
Composites Filled with Carbon Materials

The classical SHM and maintenance technics previously described have shown to be efficient methods for strain

and damage detection. Nevertheless, most of them require either an extensive human involvement or expensive

procedures. Moreover, they present partial information of the structure since they are only sensitive to strain or

damage. Consequently, the combination of complementary technics appears compulsory for a suitable SHM

system. To date, the use of optical fibres is the most promising technique, because firstly it can provide, at a

laboratory scale, both strain and specific damages, and, secondly, unlike the other technics, the optical fibres could

be embedded in the core of composite structures (their detrimental effects on the mechanical properties being

acceptable). Nevertheless, their sensitivity remains lower than that of commercial metallic strain gauges, and a

substantial equipment is required, as well for the fibres’ deployment as for the in-service use. Consequently, in

[43]
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parallel with the previously mentioned strategies, there has been a growing interest for the development of “self-

sensing materials”. Those materials are prone to provide real-time information about themselves or their

environment .

3.1. Carbon Fibre Reinforced Epoxy (CF-EP) as Self-Sensing Materials

In 1989, Schulte and Baron , while studying carbon fibres reinforced epoxy, were the first to report the direct use

of carbon fibres’ resistance change as piezo-resistive sensing strategy. As observed in Figure 6a, the change of

resistance was linear with the strain until the first fibre fracture at 0.7%, followed by a larger change of resistance

and finally infinite resistance at the breakage of the sample. They reported an initial resistivity of 332 Ω·m (2.5 MΩ

for a 19 cm long sample), and a 0.6% change of resistance at 1.0% of deformation. Similar results have been

reported by Wang et al.  with a sample of epoxy reinforced with 5.5 vol.% of short carbon fibres, and Todoroki et

al.  mentioned that they could reach a gauge factor close to 2 with CF-EP samples, as shown in Figure 6b.

Figure 6. (a) Influence of strain on the resistance of a unidirectional Carbon fibre reinforced epoxy . (b)

Measured piezo-resistivity of a 0° CFRP sample during a tensile test .

3.2. Carbon Nanoparticles and Their Associated Nanocomposites as Self-Sensing
Systems

To generate self-sensing composites from electrical insulating components, the most common way is to integrate

conductive particles into the insulating matrix. CNT are thus good candidates thanks to their high electrical,

mechanical, thermal, optical properties, and large aspect ratio .

3.2.1. Electrical Behaviour of CNT-Filled Polymer: Theory of Statistic Percolation

The electrical conductivity of nanocomposites is obtained through the dispersion of conductive fillers into an

insulating matrix. Increasing the amount of conductive fillers leads to an insulator-to-conductor transition, as

illustrated in Figure 7. At low content of fillers dispersed in a matrix, no conductive pathway can be created
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inducing an insulating electrical behaviour . When the first conductive pathway appears throughout the material,

an insulator-to-conductor transition occurs with a sudden decrease of the material’s resistivity . This sharp

transition is commonly referred as the percolation threshold. Above the percolation threshold, the matrix

conductivity can be described by the Equation :

where φ indicates the volume fraction of the conductive filler, φ  the volume fraction at the percolation threshold, ρ

and ρ  are the resistivity at φ and for an infinite content of filler respectively, t is the critical exponent comprises

between 1.3 and 2.0.

Figure 7. Resistivity behaviour of a polymer with the increase of filler volume content. The left inset, in region I,

represents the fillers dispersion with no conductive pathway and a resulting nearly infinite resistivity. The central

zone depicts the insulator-to-conductor transition with the formation of the first conductive path. The right inset, in

[56]
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region II, represents the fillers dispersion in a conductive matrix with several electrical pathways, resulting in low

electrical resistance .

3.2.2. Bucky Paper as a Strain Sensing Element

Dharap et al.  were the first to use the electrical properties of CNT to develop a strain sensing device. They

used a pure SWCNT film called Bucky paper (BP). The film was glued on the surface of a brass sample by a PVC

film and epoxy. It allowed them to choose BP dimension and location and to use it as a strain sensor. The response

of the film’s voltage, obtained by a four-point probe method, as a function of the specimen strain was linear.

The capability of BP to detect defects and damages has also been investigated. Indeed, the propagation of a

delamination through the BP would break the CNT network, and therefore enhanced the resistance drastically as

shown in Figure 8. The resistance was multiplied by 5 after 500 MPa in the propagation stage (II) compared to the

undamaged stage (I) . While monitoring the fracture, the BP electrical resistance was found to be noisy and

increasing until infinite value in the fracture stage (III).

Figure 8. The completed stress–strain and corresponding ΔR/R % response curve for a CNT BP embedded in a

CFEP. Three areas are visible: the stage I until 500 MPa where no macro-damage occurs, the stage II until 600

[60]
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MPa corresponding to the propagation of damage after the first appearance, and stage III with the final fracture .

3.2.3. CNT Dispersed in a Matrix as a Sensing Element

Sensing with a CNT Nanocomposite Matrix

A second possibility of preparing self-sensing materials was proposed by Fiedler et al.  in 2004. They introduced

nanotubes inside the composite epoxy matrix to create a percolated network. Therefore, the whole matrix (and thus

the whole composite part) became an electrically sensing element, in which strain would induce a network change

and consequently a change of its resistance. Thostenson et al.  added 0.5 wt % of

MWCNT into the resin of a glass fibre epoxy (GF-EP) laminate and monitored real-time strain applied to the

composite. They linked the changes in the resistance’s slope with strain to the composite intrinsic events. Figure

9a presents the electrical behaviour when the laminate is subjected to increasing cycling loading. Three electrical

behaviours have been associated to specific events, i. e. the opening of previous cracks, the elastic deformation of

the sample, and the accumulation of new damage in the laminate. Further related this accumulation of damage to

the drift of resistance at rest is shown in Figure 9b.

Figure 9. (a) Cyclic loading of a cross-ply glass fibre CNT-epoxy laminate showing resistance and strain response.

During the tensile part, three electrical behaviours are noticeable by the change of slope: crack reopening, elastic

deformation and damage accumulation . (b) Evolution with the cyclic loading of the elastic modulus and

resistance at rest due the damage in a cross-ply glass fibre CNT-epoxy laminate .

Sensing with a Patch of CNT Nanocomposites

Instead of dispersing CNT in the whole sample matrix, the alternative solution of introducing locally a patch of

matrix-CNT nanocomposite has been studied. This local sensor could be deposited on the surface of the

composite specimen by resin casting , spraying  as shown in Figure 10 (left), or printing . The
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ply is inserted prior the epoxy infusion process, thus after fabrication, the sensors are embedded in the sample’s

core Figure 10 (right). The sensor’s sensitivity can be furthermore adjusted with the filler content in the matrix

according to the percolation law . The use of an epoxy-CNT nanocomposite, closely above it’s percolation

threshold at 0.5 wt %, allowed reaching a very high GF value of 78 , while at 0.7 wt % the GF was about 3.2 .

Such sensors have a typical thickness ranging from 1 µm  to 100 µm . Michelis et al.  also proposed a

CNT based strain gauge made by inkjet printing of CNT on a polymer substrate that allowed them to make a strain

gauge with a GF of 0.98. A similar process has been used by Kaiyan et al.  with the addition of epoxy in the

sensor, reaching a GF of 50 and 20 for 0.3 and 0.5 wt % CNT composite, respectively. Nevertheless, one could

argue that the sensor is still located on the surface of the sample, which avoids in situ core measurements. As for

other industrial sensors, this sensor would also be affected by moisture and temperature. Another strategy is to

embed the CNT based epoxy sensor in the core of the structure. Feller et al.  have sprayed layer by layer

(sLbL) CNT-epoxy solutions on the dry glass fibres from the reinforcement textile prior to epoxy infusion and final

curing of the composite, as illustrated in Figure 10.

Figure 10. Fabrication steps of composite samples equipped with two embedded sprayed nanocomposites sQRS.

A liquid solution containing the epoxy-CNT mixture is sprayed layer by layer directly on the glass fibre fabric (left).

The ply is inserted prior the epoxy infusion process. Thus, after fabrication, the sensors are embedded in the

sample’s core (right) .

3.2.4. CNT Coated Reinforcing Fibres as a Sensing Element
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Another way to trigger the sensitivity of a composite has been investigated in the literature through the coating of

fibres with CNT, later on inserted in the laminate, thus called “fuzzy fibre”. Zhang et al.  showed that this strategy

allowed the monitoring of the piezo-resistive behaviour at the interface between a single fuzzy fibre and the

polymer matrix. Mäder et al.  made the surface of glass fibres conductive by electrophoretic deposition

(EPD)  and dip-coating in a nanotubes solution prior to embedding it into an epoxy matrix. The scholars

performed tensile deformation on the laminate with an in-situ electrical measurement, as shown in Figure 11a, and

identified three stages in the electrical response. At first, the resistance variation was linear with the applied strain,

as caused by dimensional changes of MWCNT network in the interphase. At 1% of strain, they measured a GF

close to 1. Then, an exponentially increase of the slope was observed. The scholars related it to the stress

concentration at interphases, the increasing distance between CNT and the loss of contact points. Finally, the

propagation of cracks in the composite disconnected the network, inducing the resistance value to suddenly

increase to infinite. In this way, the scholars suggested that CNT coated glass fibre could be used as a mechanical

sensor, and this CNT-fibre architecture has ensued interest in the fibres manufacturer community . The scholars

have also investigated the use of a CNT network as a temperature and humidity sensor as shown in Figure 11c,d

. They found an exponential relation with humidity, i.e., the resistance was increased by 50% from 20 to 80 RH

%.
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Figure 11. (a) Simultaneous change of electrical resistance and stress as a function of strain for single coated

fibre/epoxy composite. Inset figures correspond to the sample profiles at different stages . (b) Fuzzy fibre’s

resistance variation with load for different orientations . Relative (c) humidity and (d) temperature dependence of

a fuzzy fibre .

3.2.5. Self-Sensing Materials Based on Hybrid Fillers

Besides CNT, others nano-carbon based fillers have been studied to tune the electrical properties of insulating

composites, like carbon nanoparticles (CNP), graphite and graphene nano-platelets (GNP), as shown in Figure 12.

CNP are nearly spherical particles from 10 to 100 nm welded together during their synthesis into aggregates of 200

to 800 nm . GNP are planar sheets about 1 nm thick and several micron length . CNT are made of graphene

sheets shaped into the form of a tube with one to 20 walls. For commercial multi-walled CNT, the external diameter

and the length are about 10 nm and 1 µm respectively . As for CNT, those carbon-based fillers can also be used

to improve the mechanical , thermal , or electrical properties of nanocomposites 

 and often led to modified rheological  and crystallization behaviours .
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Figure 12. Schematic structure of (A) carbon black primary particles fused together to form aggregates and

agglomerates; (B) hexagonal graphite showing the ABAB stacking of honeycomb carbon layers; (C) structural

variety of CNT and orientation of the carbon network in armchair (n, n) and zigzag configuration (n, 0); (D) Single,

double and multi-walled CNT .

4. Conclusions

The creation of conductive networks inside the insulating epoxy matrix by the percolation of nano carbon fillers,

especially CNT, seemed the most promising. The simple monitoring of the nano composite’s resistance allows to

correlate strain and damage with the matrix piezo-resistive behaviour. However, the state of dispersion, as well as

the CNT content in the matrix appear to be primordial parameters to control, in order to obtain nanocomposite

strain sensors with reproducible performances.

Three approaches have been discussed for different kind of CNT networks: Bucky paper (random network of CNT),

matrix reinforcement (CNT percolated into the polymer) and fuzzy fibres (CNT coating an insulating fibre). All

strategies proved to be effective in measuring strain and detecting damages. Nevertheless, some lockers to their

industrialisation remain, such as for instance, the weakening of the interface between the CNT and the matrix

resulting from the use of Bucky papers that may decrease the composite mechanical properties.

While, the localisation of strain and damage in a matrix completely filled with CNT has been demonstrated with

both ERT and EPM technics, a reduction of the calculation time (ERT) or the number of electrodes (EPM) should

still be improved for real time monitoring and some issues remain for their insertion in the core of parts. In the case

of fuzzy fibres, a sensitivity to the orientation of strain can be obtained thanks to the high aspect ratio of fibres.

Finally, the possible synergistic effect between carbon nanofillers in epoxy-based hybrid composites has been

confirmed to optimize their electrical behaviour. Thanks to the different particles’ geometry the bridging effect and

the creation of hub like interconnection can enhance specific electrical parameters such stability of responses

during cyclic deformation, partial disappearance of double peaks in compression due to the Poisson’s effect.

The state of the art on existing structural health monitoring (SHM) for turbine blades made of composite structures

has allowed to list the different techniques used: metallic strain gauge and optical fibres for strain measurement,

and acoustic emission, ultrasonic measurements and optical fibres for failure analysis. Among these technics, only

optical fibres can detect both strain and failure, but their use for in situ measurements in the core of composites is

still controversial, as their handling during processing is tricky and their integration susceptible to weaken the

composite depending on the structure of its plies.

Consequently, the development of “self-sensing” composites appears to provide a credible alternative to overcome

those issues. Actually, these materials proved to be able to give a real-time information about their mechanical

behaviour and their environment. By simply analysing the resistance variations of their carbon network, it is

possible to evidence delamination, fibre’s fracture, and eventually locate structural defects.

[114]
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Future development of self-sensing sensors will certainly include hybrid nanocomposites obtained by the

combination of various nano carbon fillers such as CNP, CNT, or graphene, which proved a synergistic effect able

to enhance their sensitivity and stabilize their signals.

However, an increase of the technological readiness level (TRL) of piezo-resistive nanocomposite sensors for

structural health monitoring (SHM) still requires the implementation in the data treatment, of the influence of

environmental parameters such as temperature and moisture for example. It is also likely that the massive

acquisition of data in use conditions and their fusion with data from other classical surface technics like acoustic

emission (AE), will allow to perform sharper diagnostics.
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